Lattices with and lattices without spectral gap

Bachir Bekka, Alexander Lubotzky

To cite this version:

Bachir Bekka, Alexander Lubotzky. Lattices with and lattices without spectral gap. Groups, Geometry, and Dynamics, 2011, 5 (2), pp.251-264. 10.4171/GGD/126 . hal-00564631

HAL Id: hal-00564631

https://hal.science/hal-00564631

Submitted on 9 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Lattices with and lattices without spectral gap

Bachir Bekka and Alexander Lubotzky *

September 10, 2009

For Fritz Grunewald on his 60th birthday

Abstract

Let $G=\mathbf{G}(\mathbf{k})$ be the \mathbf{k}-rational points of a simple algebraic group \mathbf{G} over a local field \mathbf{k} and let Γ be a lattice in G. We show that the regular representation $\rho_{\Gamma \backslash G}$ of G on $L^{2}(\Gamma \backslash G)$ has a spectral gap, that is, the restriction of $\rho_{\Gamma \backslash G}$ to the orthogonal of the constants in $L^{2}(\Gamma \backslash G)$ has no almost invariant vectors. On the other hand, we give examples of locally compact simple groups G and lattices Γ for which $L^{2}(\Gamma \backslash G)$ has no spectral gap. This answers in the negative a question asked by Margulis [Marg91, Chapter III, 1.12]. In fact, G can be taken to be the group of orientation preserving automorphisms of a k-regular tree for $k>2$.

1 Introduction

Let G be a locally compact group. Recall that a unitary representation π of G on a Hilbert space \mathcal{H} has almost invariant vectors if, for every compact subset Q of G and every $\varepsilon>0$, there exists a unit vector $\xi \in \mathcal{H}$ such that $\sup _{x \in Q}\|\pi(x) \xi-\xi\|<\varepsilon$. If this holds, we also say that the trivial representation 1_{G} is weakly contained in π.

Recall that a lattice Γ in G is a discrete subgroup such that there exists a finite G-invariant regular Borel measure μ on $\Gamma \backslash G$. Denote by $\rho_{\Gamma \backslash G}$ the unitary representation of G given by right translation on the Hilbert space

[^0]$L^{2}(\Gamma \backslash G, \mu)$ of the square integrable measurable functions on $\Gamma \backslash G$. The subspace $\mathbb{C}_{\Gamma \backslash G}$ of the constant functions on $\Gamma \backslash G$ is G-invariant as well as its orthogonal complement
$$
L_{0}^{2}(\Gamma \backslash G)=\left\{\xi \in L^{2}(\Gamma \backslash G): \int_{\Gamma \backslash G} \xi(x) d \mu(x)=0\right\} .
$$

Denote by $\rho_{\Gamma \backslash G}^{0}$ the restriction of $\rho_{\Gamma \backslash G}$ to $L_{0}^{2}(\Gamma \backslash G, \mu)$. We say that $\rho_{\Gamma \backslash G}$ (or $L^{2}(\Gamma \backslash G, \mu)$) has a spectral gap if $\rho_{\Gamma \backslash G}^{0}$ has no almost invariant vectors. (In [Marg91, Chapter III., 1.8], Γ is then called weakly cocompact.) It is well-known that $L^{2}(\Gamma \backslash G)$ has a spectral gap when Γ is cocompact in G (see [Marg91, Chapter III, 1.10]). Margulis (op.cit, 1.12) asks whether this result holds more generally when Γ is a subgroup of finite covolume.

The goal of this note is to prove the following results:
Theorem 1 Let \mathbf{G} be a simple algebraic group over a local field \mathbf{k} and $G=$ $\mathbf{G}(\mathbf{k})$, the group of \mathbf{k}-rational points in \mathbf{G}. Let Γ be a lattice in G. Then the unitary representation $\rho_{\Gamma \backslash G}$ on $L^{2}(\Gamma \backslash G)$ has a spectral gap.

Theorem 2 For an integer $k>2$, let X be the k-regular tree and $G=$ $\operatorname{Aut}(X)$. Then G contains a lattice Γ for which the unitary representation $\rho_{\Gamma \backslash G}$ on $L^{2}(\Gamma \backslash G)$ has no spectral gap.

So, Theorem 2 answers in the negative Margulis' question mentioned above.

Theorem 1 is known in case $\mathbf{k}=\mathbf{R}$ ([Bekk98]). It holds, more generally, when G is a real Lie group ([BeCo08]). Observe also that when $\mathbf{k}-\operatorname{rank}(\mathbf{G}) \geq$ 2, the group G has Kazhdan's Property (T) (see [BHV]) and Theorem 1 is clear in this case. When \mathbf{k} is non-archimedean with characteristic 0 , every lattice Γ in $\mathbf{G}(\mathbf{k})$ is uniform (see [Serr, p.84]) and hence the result holds as mentioned above. By way of contrast, G has many non uniform lattices when the characteristic of \mathbf{k} is non zero (see [Serr] and [Lubo91]). So, in order to prove Theorem 1, it suffices to consider the case where the characteristic of \mathbf{k} is non-zero and where $\mathbf{k}-\operatorname{rank}(\mathbf{G})=1$.

Recall that when \mathbf{k} is non-archimedean and $\mathbf{k}-\operatorname{rank}(\mathbf{G})=1$, the group $\mathbf{G}(\mathbf{k})$ acts by automorphisms on the associated Bruhat-Tits tree X (see [Serr]). This tree is either the k-regular tree X_{k} (in which every vertex has constant degree k) or is the bi-partite bi-regular tree $X_{k_{0}, k_{1}}$ (where every vertex has either degree k_{0} or degree k_{1} and where all neighbours of a vertex
of degree k_{i} have degree $\left.k_{1-i}\right)$. The proof of Theorem 1 will use the special structure of a fundamental domain for the action of Γ on X as described in [Lubo91] (see also [Ragh89] and [Baum03]).

Theorems 1 and 2 provide a further illustration of the different behaviour of general tree lattices as compared to lattices in rank one simple Lie groups over local fields; for more on this topic, see [Lubo95].

The proofs of Theorems 1 and 2 will be given in Sections 3 and 4; they rely in a crucial way on Proposition 6 from Section 2, which relates the existence of a spectral gap with expander diagrams. In turn, Proposition 6 is based, much in the spirit of [Broo81], on analogues for diagrams proved in [Mokh03] and [Morg94] of the inequalities of Cheeger and Buser between the isoperimeric constant and the bottom of the spectrum of the Laplace operator on a Riemannian manifold (see Proposition 5). This connection between the combinatorial expanding property and representation theory is by now a very popular theme; see [Lubo94] and the references therein. While most applications in this monograph are from representation theory to combinatorics, we use in the current paper this connection in the opposite direction: the existence or absence of a spectral gap is deduced from the existence of an expanding diagram or of a non-expanding diagram, respectively.

2 Spectral gap and expander diagrams

We first show how the existence of a spectral gap for groups acting on trees is related with the bottom of the spectrum of the Laplacian for an associated diagram.

A graph X consists of a set of vertices $V X$, a set of oriented edges $E X$, a fix-point free involution ${ }^{-}: E X \rightarrow E X$, and end point mappings $\partial_{i}: E X \rightarrow$ $V X$ for $i=0,1$ such that $\partial_{i}(\bar{e})=\partial_{1-i}(e)$ for all $e \in E X$. Assume that X is locally finite, that is, for every $x \in V X$, the degree $\operatorname{deg}(x)$ of x is finite, where $\operatorname{deg}(x)$ is the cardinality of the set

$$
\partial_{0}^{-1}(x)=\left\{e \in E X: \quad \partial_{0}(e)=x\right\} .
$$

The group $\operatorname{Aut}(X)$ of automorphisms of the graph X is a locally compact group in the topology of pointwise convergence on X, for which the stabilizers of vertices are compact open subgroups.

We will consider infinite graphs called diagrams of finite volume. An edgeindexed graph (D, i) is a graph D equipped with a function $i: E D \rightarrow \mathbf{R}^{+}$
(see [BaLu01, Chapter 2]). A measure μ for an edge-indexed graph (D, i) is a function $\mu: V D \cup E D \rightarrow \mathbf{R}^{+}$with the following properties (see [Mokh03] and [BaLu01, 2.6]):

- $i(e) \mu\left(\partial_{0} e\right)=\mu(e)$
- $\mu(e)=\mu(\bar{e})$ for all $e \in V D$, and
- $\sum_{x \in V D} \mu(x)<\infty$.

Following [Morg94], we will say that $D=(D, i, \mu)$ is a diagram of finite volume. The in-degree $\operatorname{indeg}(x)$ of a vertex $x \in V D$ is defined by

$$
\operatorname{indeg}(x)=\sum_{e \in \partial_{0}^{-1}(x)} i(e)=\sum_{e \in \partial_{0}^{-1}(x)} \frac{\mu(e)}{\mu(x)}
$$

The diagram D is k-regular if indeg $(x)=k$ for all $x \in V D$.
Let $D=(D, i, \mu)$ be a connected diagram of finite volume. Observe that μ is determined, up to a multiplicative constant, by the weight function i. Indeed, fix $x_{0} \in V D$ and set $\Delta(e)=i(e) / i(\bar{e})$ for $e \in E D$. Then

$$
\mu\left(\partial_{1} e\right)=\frac{\mu(\bar{e})}{i(\bar{e})}=\frac{\mu(e)}{i(\bar{e})}=\mu\left(\partial_{0} e\right) \Delta(e)
$$

for every $e \in E D$. Hence $\mu(x)=\Delta\left(e_{1}\right) \Delta\left(e_{2}\right) \ldots \Delta\left(e_{n}\right) \mu\left(x_{0}\right)$ for every path $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ from x_{0} to $x \in V D$.

Let $D=(D, i, \mu)$ be a diagram of finite volume. An inner product is defined for functions on $V D$ by

$$
\langle f, g\rangle=\sum_{x \in V D} f(x) \overline{g(x)} \mu(x)
$$

The Laplace operator Δ on functions f on $V D$ is defined by

$$
\Delta f(x)=f(x)-\frac{1}{\operatorname{indeg}(x)} \sum_{e \in \partial_{0}^{-1}(x)} \frac{\mu(e)}{\mu(x)} f\left(\partial_{1}(e)\right)
$$

The operator Δ is a self-adjoint positive operator on $L^{2}(V D)$. Let

$$
L_{0}^{2}(V D)=\left\{f \in L^{2}(V D):\left\langle f, 1_{V D}\right\rangle=0\right\}
$$

and set

$$
\lambda(D)=\inf _{f}\langle\Delta f, f\rangle,
$$

where f runs over the unit sphere in $L_{0}^{2}(V D)$. Observe that

$$
\lambda(D)=\inf \{\lambda: \lambda \in \sigma(\Delta) \backslash\{0\}\}
$$

where $\sigma(\Delta)$ is the spectrum of Δ.
Let now X be a locally finite tree, and let G be a closed subgroup of $\operatorname{Aut}(X)$. Assume that G acts with finitely many orbits on X. Let Γ be a discrete subgroup of G acting without inversion on X. Then the quotient graph $\Gamma \backslash X$ is well-defined. Since Γ is discrete, for every vertex x and every edge e, the stabilizers Γ_{x} and Γ_{e} are finite. Moreover, Γ is a lattice in G if and only if Γ is a lattice in $\operatorname{Aut}(X)$ and this happens if and only if

$$
\sum_{x \in D} \frac{1}{\left|\Gamma_{x}\right|}<\infty
$$

where D is a fundamental domain of Γ in X (see [Serr]). The quotient graph $\Gamma \backslash X \cong D$ is endowed with the structure of an edge-indexed graph given by the weight function $i: E D \rightarrow \mathbf{R}^{+}$where $i(e)$ is the index of Γ_{e} in Γ_{x} for $x=\partial_{0}(e)$. A measure $\mu: V D \cup E D \rightarrow \mathbf{R}^{+}$is defined by

$$
\mu(x)=\frac{1}{\left|\Gamma_{x}\right|} \quad \text { and } \quad \mu(e)=\frac{1}{\left|\Gamma_{e}\right|}
$$

for $x \in V D$ and $e \in E D$. Observe that $\mu(V D)=\sum_{x \in D} 1 /\left|\Gamma_{x}\right|<\infty$. So, $D=(D, i, \mu)$ is a diagram of finite volume.

Let G be a group acting on a tree X. As in [BuMo00, 0.2], we say that the action of G on X is locally ∞-transitive if, for every $x \in V X$ and every $n \geq 1$, the stabilizer G_{x} of x acts transitively on the sphere $\{y \in X: d(x, y)=n\}$.

Proposition 3 Let X be either the k-regular tree X_{k} or the bi-partite biregular tree $X_{k_{0}, k_{1}}$ for $k \geq 3$ or $k_{0} \geq 3$ and $k_{1} \geq 3$. Let G be a closed subgroup of $\operatorname{Aut}(X)$. Assume that the following conditions are both satisfied:

- G acts transitively on $V X$ in the case $X=X_{k}$ and G acts transitively on the set of vertices of degree k_{0} as well as on the set of vertices of degree k_{1} in the case $X=X_{k_{0}, k_{1}}$;
- the action of G on X is locally ∞-transitive.

Let Γ be a lattice in G and let $D=\Gamma \backslash X$ be the corresponding diagram of finite volume. The following properties are equivalent:
(i) the unitary representation $\rho_{\Gamma \backslash G}$ on $L^{2}(\Gamma \backslash G)$ has a spectral gap;
(ii) $\lambda(D)>0$.

For the proof of this proposition, we will need a few general facts. Let G be a second countable locally compact group and U a compact subgroup of G. Let $C_{c}(U \backslash G / U)$ be the space of continuous functions $f: G \rightarrow \mathbf{C}$ which have compact support and which are constant on the double cosets $U g U$ for $g \in G$.

Fix a left Haar measure μ on G. Recall that $L^{1}(G, \mu)$ is a Banach algebra under the convolution product, the L^{1}-norm and the involution $f^{*}(g)=$ $\overline{f\left(g^{-1}\right)}$; observe that $C_{c}(U \backslash G / U)$ is a $*$-subalgebra of $L^{1}(G, \mu)$. Let π be a (strongly continuous) unitary representation of G on a Hilbert space \mathcal{H}. A continuous *-representation of $L^{1}(G)$, still denoted by π, is defined on \mathcal{H} by

$$
\pi(f) \xi=\int_{G} f(x) \pi(x) \xi d \mu(x), \quad f \in L^{1}(G), \quad \xi \in \mathcal{H}
$$

Assume that the closed subspace \mathcal{H}^{U} of U-invariant vectors in \mathcal{H} is non-zero. Then $\pi(f) \mathcal{H}^{U} \subset \mathcal{H}^{U}$ for all $f \in C_{c}(U \backslash G / U)$. In this way, a continuous *-representation π_{U} of $C_{c}(U \backslash G / U)$ is defined on \mathcal{H}^{U}.

Proposition 4 With the previous notation, let $f \in C_{c}(U \backslash G / U)$ be a function with the following properties: $f(x) \geq 0$ for all $x \in G, \int_{G} f d \mu=1$, and the subgroup generated by the support of f is dense in G. The following conditions are equivalent:
(i) the trivial representation 1_{G} is weakly contained in π;
(ii) 1 belongs to the spectrum of the operator $\pi_{U}(f)$.

Proof Assume that 1_{G} is weakly contained in π. There exists a sequence of unit vectors $\xi_{n} \in \mathcal{H}$ such that

$$
\lim _{n}\left\|\pi(x) \xi_{n}-\xi_{n}\right\|=0
$$

uniformly over compact subsets of G. Let

$$
\eta_{n}=\int_{U} \pi(u) \xi_{n} d u
$$

where $d u$ denotes the normalized Haar measure on U. It is easily checked that $\eta_{n} \in \mathcal{H}^{U}$ and that

$$
\lim _{n}\left\|\pi(f) \eta_{n}-\eta_{n}\right\|=0
$$

Since

$$
\left\|\eta_{n}-\xi_{n}\right\| \leq \int_{U}\left\|\pi(u) \xi_{n}-\xi_{n}\right\| d u
$$

we have $\left\|\eta_{n}\right\| \geq 1 / 2$ for sufficiently large n. This shows that 1 belongs to the spectrum of the operator $\pi_{U}(f)$.

For the converse, assume that 1 belongs to the spectrum of $\pi_{U}(f)$. Hence, 1 belongs to the spectrum of $\pi(f)$, since $\pi_{U}(f)$ is the restriction of $\pi(f)$ to the invariant subspace \mathcal{H}^{U}. As the subgroup generated by the support of f is dense in G, this implies that 1_{G} is weakly contained in π (see [BHV, Proposition G.4.2]).

Proof of Proposition 3 We give the proof only in the case where X is the bi-regular tree $X_{k_{0}, k_{1}}$. The case where X is the regular tree X_{k} is similar and even simpler.

Let X_{0} and X_{1} be the subsets of X consisting of the vertices of degree k_{0} and k_{1}, respectively. Fix two points $x_{0} \in X_{0}$ and $x_{1} \in X_{1}$ with $d\left(x_{0}, x_{1}\right)=1$. So, X_{0} is the set of vertices x for which $d\left(x_{0}, x\right)$ is even and X_{1} is the set of vertices x for which $d\left(x_{0}, x\right)$ is odd. Let U_{0} and U_{1} be the stabilizers of x_{0} and x_{1} in G. Since G acts transitively on X_{0} and on X_{1}, we have $G / U_{0} \cong X_{0}$. and $G / U_{1} \cong X_{1}$.

We can view the normed $*$-algebra $C_{c}\left(U_{0} \backslash G / U_{0}\right)$ as a space of finitely supported functions on X_{0}. Since U_{0} acts transitively on every sphere around x_{0}, it is well-known that the pair $\left(G, U_{0}\right)$ is a Gelfand pair, that is, the algebra $C_{c}\left(U_{0} \backslash G / U_{0}\right)$ is commutative (see for instance [BLRW09, Lemma 2.1]). Observe that $C_{c}\left(U_{0} \backslash G / U_{0}\right)$ is the linear span of the characteristic functions $\delta_{n}^{(0)}$ (lifted to G) of spheres of even radius n around x_{0}. Moreover, $C_{c}\left(U_{0} \backslash G / U_{0}\right)$ is generated by $\delta_{2}^{(0)}$; indeed, this follows from the formulas (see
[BLRW09, Theorem 3.3])

$$
\begin{aligned}
\delta_{4}^{(0)} & =\delta_{2}^{(0)} * \delta_{2}^{(0)}-k_{0}\left(k_{1}-1\right) \delta_{0}^{(0)}-\left(k_{1}-2\right) \delta_{2}^{(0)} \\
\delta_{2 n+2}^{(0)} & =\delta_{2}^{(0)} * \delta_{2 n}^{(0)}-\left(k_{0}-1\right)\left(k_{1}-1\right) \delta_{2 n-2}^{(0)}-\left(k_{1}-2\right) \delta_{2 n}^{(0)} \quad \text { for } \quad n \geq 2
\end{aligned}
$$

Let $f_{0}=\frac{1}{\left\|\delta_{2}^{(0)}\right\|_{1}} \delta_{2}^{(0)}$. We claim that f_{0} has all the properties listed in Proposition 4.

Indeed, f_{0} is a non-negative and U_{0}-bi-invariant function on G with $\int_{G} f_{0}(x) d x=1$. Moreover, let H be the closure of the subgroup generated by the support of f_{0}. Assume, by contradiction, that $H \neq G$. Then there exists a function in $C_{c}\left(U_{0} \backslash G / U_{0}\right)$ whose support is disjoint from H. This is a contradiction, as the algebra $C_{c}\left(U_{0} \backslash G / U_{0}\right)$ is generated by f_{0}. This shows that $H=G$.

Let π be the unitary representation of G on $L_{0}^{2}(\Gamma \backslash G)$ defined by right translations. Observe that the space of $\pi\left(U_{0}\right)$-invariant vectors is $L_{0}^{2}\left(\Gamma \backslash X_{0}\right)$. So, we have a $*$-representation $\pi_{U_{0}}$ of $C_{c}\left(U_{0} \backslash G / U_{0}\right)$ on $L^{2}\left(\Gamma \backslash X_{0}, \mu\right)$, where μ is the measure on the diagram $D=\Gamma \backslash X$, as defined above.

Similar facts are also true for the algebra $C_{c}\left(U_{1} \backslash G / U_{1}\right)$: this is a commutative normed $*$-algebra, it is generated by the characteristic function $\delta_{2}^{(1)}$ of the sphere of radius 2 around x_{1}, and the representation π of G on $L_{0}^{2}(\Gamma \backslash G)$ induces a $*$-representation $\pi_{U_{1}}$ of $C_{c}\left(U_{1} \backslash G / U_{1}\right)$ on $L_{0}^{2}\left(\Gamma \backslash X_{1}, \mu\right)$. Likewise, the function $f_{1}=\frac{1}{\left\|\delta_{2}^{(1)}\right\|_{1}} \delta_{2}^{(1)}$ has all the properties listed in Proposition 4.

Let A_{X} be the adjacency operator defined on $\ell^{2}(X)$ by

$$
A_{X} f(x)=\frac{1}{\operatorname{deg}(x)} \sum_{e \in \partial_{0}^{-1}(x)} f\left(\partial_{1}(e)\right), \quad f \in \ell^{2}(X)
$$

Since A_{X} commutes with automorphisms of X, it induces an operator A_{D} on $L^{2}(V D, \mu)$ given by

$$
A_{D} f(x)=\frac{1}{\operatorname{indeg}(x)} \sum_{e \in \partial_{0}^{-1}(x)} \frac{\mu(e)}{\mu(x)} f\left(\partial_{1}(e)\right), \quad f \in L^{2}(V D, \mu),
$$

where D is the diagram obtained from the quotient graph $\Gamma \backslash X$. So, $\Delta=$ $I-A_{D}$, where Δ is the Laplace operator on D.

Let B_{D} denote the restriction of A_{D} to the space $L_{0}^{2}(V D, \mu)$. It follows that $\lambda(\Delta)>0$ if and only if 1 does not belong to the spectrum of B_{D}.

Proposition 3 will be proved, once we have shown the following
Claim: 1 belongs to the spectrum of B_{D} if and only if 1_{G} is weakly contained in π.

For this, we consider the squares of the operators A_{X} and A_{D} and compute

$$
A_{X}^{2} f(x)=\frac{1}{k_{0} k_{1}} \operatorname{deg}(x) f(x)+\frac{1}{k_{0} k_{1}} \sum_{d(x, y)=2} f(y), \quad f \in \ell^{2}(X)
$$

The subspaces $\ell^{2}\left(X_{0}\right)$ and $\ell^{2}\left(X_{1}\right)$ of $\ell^{2}(X)$ are invariant under A_{X}^{2} and the restrictions of A_{X}^{2} to $\ell^{2}\left(X_{0}\right)$ and $\ell^{2}\left(X_{1}\right)$ are given by right convolution with the functions

$$
\begin{aligned}
& g_{0}=\frac{1}{k_{0} k_{1}} \delta_{e}+\left(1-\frac{1}{k_{0} k_{1}}\right) f_{0} \\
& g_{1}=\frac{1}{k_{0} k_{1}} \delta_{e}+\left(1-\frac{1}{k_{0} k_{1}}\right) f_{1},
\end{aligned}
$$

where δ_{e} is the Dirac function at the group unit e of G.
It follows that the restrictions of B_{D}^{2} to the subspaces $L_{0}^{2}\left(\Gamma \backslash X_{0}, \mu\right)$ and $L_{0}^{2}\left(\Gamma \backslash X_{1}, \mu\right)$ coincide with the operators $\pi_{U_{0}}\left(g_{0}\right)$ and $\pi_{U_{1}}\left(g_{1}\right)$, respectively.

For $i=0,1$, the spectrum $\sigma\left(\pi_{U_{i}}\left(g_{i}\right)\right)$ of $\pi_{U_{i}}\left(g_{i}\right)$ is the set

$$
\sigma\left(\pi_{U_{i}}\left(g_{i}\right)\right)=\left\{\frac{1}{k_{0} k_{1}}+\left(1-\frac{1}{k_{0} k_{1}}\right) \lambda: \lambda \in \sigma\left(\pi_{U_{i}}\left(f_{i}\right)\right)\right\} .
$$

Thus, 1 belongs to the spectrum of $\pi_{U_{0}}\left(f_{i}\right)$ if and only if 1 belongs to the spectrum of $\pi_{U_{0}}\left(g_{i}\right)$.

To prove the claim above, assume that 1 belongs to the spectrum of B_{D}. Then 1 belongs to the spectrum of B_{D}^{2}. Hence 1 belongs to the spectrum of either $\pi_{U_{0}}\left(g_{0}\right)$ or $\pi_{U_{1}}\left(g_{1}\right)$ and therefore 1 belongs to the spectrum of either $\pi_{U_{0}}\left(f_{0}\right)$ or $\pi_{U_{1}}\left(f_{1}\right)$. It follows from Proposition 4 that 1_{G} is weakly contained in π.

Conversely, suppose that 1_{G} is weakly contained in π. Then, again by Proposition 4, 1 belongs to the spectra of $\pi_{U_{0}}\left(f_{0}\right)$ and $\pi_{U_{1}}\left(f_{1}\right)$. Hence, 1 belongs to the spectra of $\pi_{U_{0}}\left(g_{0}\right)$ and $\pi_{U_{1}}\left(g_{1}\right)$. We claim that 1 belongs to the spectrum of B_{D}.

Indeed, assume by contradiction that 1 does not belong to the spectrum of B_{D}, that is, $B_{D}-I$ has a bounded inverse on $L_{0}^{2}(V D, \mu)$. Since 1 belongs to the spectrum of the self-adjoint operator $\pi_{U_{0}}\left(g_{0}\right)$, there exists a sequence of unit vectors $\xi_{n}^{(0)}$ in $L_{0}^{2}\left(\Gamma \backslash X_{0}, \mu\right)$ with

$$
\lim _{n}\left\|\pi_{U_{0}}\left(g_{0}\right) \xi_{n}^{(0)}-\xi_{n}^{(0)}\right\|=0
$$

As the restriction of B_{D}^{2} to $L_{0}^{2}\left(\Gamma \backslash X_{0}, \mu\right)$ coincides with $\pi_{U_{0}}\left(g_{0}\right)$, we have

$$
\begin{aligned}
\left\|\pi_{U_{0}}\left(g_{0}\right) \xi_{n}^{(0)}-\xi_{n}^{(0)}\right\| & =\left\|\left(B_{D}^{2}-I\right) \xi_{n}^{(0)}\right\| \\
& =\left\|\left(B_{D}-I\right)\left(B_{D}+I\right) \xi_{n}^{(0)}\right\| \\
& \geq \frac{1}{\left\|\left(B_{D}-I\right)^{-1}\right\|}\left\|\left(B_{D}+I\right) \xi_{n}^{(0)}\right\|
\end{aligned}
$$

So, $\lim _{n}\left\|B_{D} \xi_{n}^{(0)}+\xi_{n}^{(0)}\right\|=0$. On the other hand, observe that B_{D} maps $L_{0}^{2}\left(\Gamma \backslash X_{0}, \mu\right)$ to the subspace $L^{2}\left(\Gamma \backslash X_{1}, \mu\right)$ and that these subspaces are orthogonal to each other. Hence,

$$
\left\|B_{D} \xi_{n}^{(0)}+\xi_{n}^{(0)}\right\|^{2}=\left\|B_{D} \xi_{n}^{(0)}\right\|^{2}+\left\|\xi_{n}^{(0)}\right\|^{2}
$$

This is a contradiction since $\left\|\xi_{n}^{(0)}\right\|=1$ for all n. The proof of Proposition 3 is now complete.

Next, we rephrase Proposition 3 in terms of expander diagrams. Let (D, i, w) be a diagram with finite volume. For a subset S of $V D$, set

$$
E\left(S, S^{c}\right)=\left\{e \in E D: \partial_{0}(e) \in S, \partial_{1}(e) \notin S\right\}
$$

We say that D is an expander diagram if there exists $\varepsilon>0$ such that

$$
\frac{\mu\left(E\left(S, S^{c}\right)\right)}{\mu(S)} \geq \varepsilon
$$

for all $S \subset V D$ with $\mu(S) \leq \mu(D) / 2$. The motivation for this definition comes from expander graphs (see [Lubo94]).

We quote from [Mokh03] and [Morg94] the following result which is standard in the case of finite graphs.

Proposition 5 ([Mokh03], [Morg94]) Let (D, i, w) be a diagram with finite volume. Assume that $\sup _{e \in E D} i(\bar{e}) / i(e)<\infty$ and that $\sup _{x \in V D} \operatorname{indeg}(x)<$ ∞ The following conditions are equivalent:
(i) D is an expander diagram;
(ii) $\lambda(D)>0$.

As an immediate consequence of Propositions 3 and 5 , we obtain the following result which relates the existence of a spectral gap to an expanding property of the corresponding diagram.

Proposition 6 Let X be either the k-regular tree X_{k} or the bi-partite biregular tree $X_{k_{0}, k_{1}}$ for $k \geq 3$ or $k_{0} \geq 3$ and $k_{1} \geq 3$. Let G be a closed subgroup of $\operatorname{Aut}(X)$ satisfiying both conditions from Proposition 3. Let Γ be a lattice in G and let $D=\Gamma \backslash X$ be the corresponding diagram of finite volume. The following properties are equivalent.
(i) The unitary representation $\rho_{\Gamma \backslash G}$ on $L^{2}(\Gamma \backslash G)$ has a spectral gap;
(ii) D is an expander diagram.

3 Proof of Theorem 1

Let $G=\mathbf{G}(\mathbf{k})$ be the \mathbf{k}-rational points of a simple algebraic group \mathbf{G} over a local field \mathbf{k} and let Γ be a lattice in G. As explained in the Introduction, we may assume that \mathbf{k} is non-archimedean and that $\mathbf{k}-\operatorname{rank}(\mathbf{G})=1$. By the Bruhat-Tits theory, G acts on a regular or bi-partite bi-regular tree X with one or two orbits. Moreover, the action of G on X is locally ∞-transitive (see [Chou94, p.33]).

Passing to the subgroup G^{+}of index at most two consisting of orientation preserving automorphisms, we can assume that G acts without inversion. Indeed, assume that $L^{2}\left(\Gamma \cap G^{+} \backslash G^{+}\right)$has a spectral gap. If Γ is contained in G^{+}, then $L^{2}(\Gamma \backslash G)$ has a spectral gap since G^{+}has finite index (see [BeCo08, Proposition 6]). If Γ is not contained in G^{+}, then $\Gamma \cap G^{+} \backslash G^{+}$may be identified as a G^{+}-space with $\Gamma \backslash \Gamma G^{+}=\Gamma \backslash G$. Hence, $1_{G^{+}}$is not weakly contained in the G^{+}-representation defined on $L_{0}^{2}(\Gamma \backslash G)$.

Let X be the Bruhat-Tits tree associated to G. It is shown in [Lubo91, Theorem 6.1] (see also [Baum03]) that Γ has fundamental domain D in X of the following form: there exists a finite set $F \subset D$ such that $D \backslash F$ is a union of finitely many disjoint rays r_{1}, \ldots, r_{s}. (Recall that a ray in X is an infinite
path beginning at some vertex and without backtracking.) Moreover, for every ray $r_{j}=\left\{x_{0}^{j}, x_{1}^{j}, x_{2}^{j}, \ldots\right\}$ in $D \backslash F$, the stabilizer $\Gamma_{x_{i}^{j}}$ of x_{i}^{j} is contained in the stabilizer $\Gamma_{x_{i+1}^{j}}$ of x_{i+1}^{j} for all i.

To prove Theorem 1, we apply Proposition 6. So, we have to prove that D is an expander diagramm.

Choose $i \in\{0,1, \ldots\}$ such that, with

$$
D_{1}=F \cup \bigcup_{j=1}^{s}\left\{x_{0}^{j}, \ldots, x_{i}^{j}\right\}
$$

we have $\mu\left(D_{1}\right)>1 / 2$.
Let S be a subset of D with $\mu(S) \leq \mu(D) / 2$. Then $D_{1} \nsubseteq S$. Two cases can occur.

- First case: $S \cap D_{1}=\emptyset$. Thus, S is contained in

$$
\bigcup_{j=1}^{s}\left\{x_{i+1}^{j}, x_{i+2}^{j}, \ldots\right\} .
$$

Fix $j \in\{1, \ldots, s\}$. Let $i(j) \in\{0,1, \ldots\}$ be minimal with the property that $x_{i(j)+1}^{j} \in S$. Then $e_{j}:=\left(x_{i(j)+1}^{j}, x_{i(j)}^{j}\right) \in E\left(S, S^{c}\right)$. Observe that $\left|\Gamma_{x_{l+1}^{j}}\right|=$ $\operatorname{deg}\left(x_{l}^{j}\right)\left|\Gamma_{x_{l}^{j}}\right|$ for all $l \geq 0$. Let k be the minimal degree for vertices in X (so, $k=\min \left\{k_{0}, k_{1}\right\}$ if $\left.X=X_{k_{0}, k_{1}}\right)$.Then $\mu\left(x_{l+1}^{j}\right) \leq \mu\left(x_{l}^{j}\right) / k$ for all l and

$$
\mu\left(e_{j}\right)=\frac{1}{\left|\Gamma_{e_{j}}\right|} \geq \frac{k}{\left|\Gamma_{x_{i(j)}^{j}}\right|}=k \mu\left(x_{i(j)}^{j}\right) .
$$

Therefore, we have

$$
\begin{aligned}
\frac{\mu\left(E\left(S, S^{c}\right)\right)}{\mu(S)} & \geq \frac{\sum_{j=1}^{s} \mu\left(e_{j}\right)}{\sum_{j=1}^{s} \mu\left(\left\{x_{i(j)+1}^{j}, x_{i(j)+1}^{j}, \ldots,\right\}\right)} \\
& \geq k \frac{\sum_{j=1}^{s} \mu\left(x_{i(j)}^{j}\right)}{\sum_{j=1}^{s} \sum_{l=0}^{\infty} \mu\left(x_{i(j)+l}^{j}\right)} \\
& \geq k \frac{\sum_{j=1}^{s} \mu\left(x_{i(j)}^{j}\right)}{\sum_{j=1}^{s} \mu\left(x_{i(j)}^{j}\right) \sum_{l=0}^{\infty} k^{-l}} \\
& =k \frac{\sum_{j=1}^{s} \mu\left(x_{i(j)}^{j}\right)}{\frac{1}{1-k^{-1}} \sum_{j=1}^{s} \mu\left(x_{i(j)}^{j}\right)} \\
& =k \frac{1}{\frac{1}{1-k^{-1}}}=k-1 .
\end{aligned}
$$

- Second case: $S \cap D_{1} \neq \emptyset$. Then there exist $x \in S \cap D_{1}$ and $y \in D_{1} \backslash S$. Since D_{1} is a connected subgraph, there exists a path $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ in $E D_{1}$ from x to y. Let $l \in\{1, \ldots, n\}$ be minimal with the property $\partial_{0}\left(e_{l}\right) \in S$ and $\partial_{1}\left(e_{l}\right) \notin S$. Then $e_{l} \in E\left(S, S^{c}\right)$. Hence, with $\left.C=\min \left\{\mu(e): e \in E D_{1}\right)\right\}>0$, we have

$$
\frac{\mu\left(E\left(S, S^{c}\right)\right)}{\mu(S)} \geq \frac{C}{\mu(D)} .
$$

This completes the proof of Theorem 1.

4 Proof of Theorem 2

Let (D, i, μ) be a k-regular diagram. By the "inverse Bass-Serre theory" of groups acting on trees, there exists a lattice Γ in $G=\operatorname{Aut}\left(X_{k}\right)$ for which $D=\Gamma \backslash X_{k}$. Indeed, we can find a finite grouping of (D, i), that is, a graph of finite groups $\mathbf{D}=(D, \mathcal{D})$ such that $i(e)$ is the index of \mathcal{D}_{e} in $\mathcal{D}_{\partial_{0} e}$ for all $e \in E D$. Fix an origin x_{0}. Let $\Gamma=\pi_{1}\left(\mathbf{D}, x_{0}\right)$ be the fundamental group of $\left(\mathbf{D}, x_{0}\right)$. The universal covering of $\left(\mathbf{D}, x_{0}\right)$ is the k-regular tree X_{k} and the diagram D can identified with the diagram associated to $\Gamma \backslash X_{k}$. For all this, see (2.5), (2.6) and (4.13) in [BaLu01].

In view of Proposition 6, Theorem 2 will be proved once we present examples of k-regular diagrams with finite volume which are not expanders.

An example of such a diagram appears in [Mokh03, Example 3.4]. For the convenience of the reader, we review the construction.

Fix $k \geq 3$ and let $q=k-1$. For every integer $n \geq 1$, let D_{n} be the finite graph with $2 n+1$ vertices:

$$
\stackrel{\circ}{x_{1}^{(n)}}-\underset{x_{2}^{(n)}}{\circ}-\circ-\cdots \circ-\underset{x_{2 n}^{(n)}}{\circ}-\underset{\substack{(n) \\ x_{2 n+1}}}{\circ}
$$

Let D be the following infinite ray:

$$
\stackrel{\circ}{x_{0}}-\stackrel{\circ}{x_{1}}-D_{1}-\underset{x_{2}}{\circ}-\underset{x_{3}}{\circ}-D_{2}-\circ-\circ-\cdots--\underset{x_{2 n-2}}{\circ}-\underset{x_{2 n-1}}{\circ}-D_{n}-\circ-\circ \cdots
$$

We first define a weight function i_{n} on $E D_{n}$ as follows:

- $i_{n}(e)=1$ if $e=\left(x_{1}^{(n)}, x_{2}^{(n)}\right)$ or $e=\left(x_{2}^{(n)}, x_{1}^{(n)}\right)$
- $i_{n}(e)=q$ if $e=\left(x_{m}^{(n)}, x_{m+1}^{(n)}\right)$ for m even
- $i_{n}(e)=1$ if $e=\left(x_{m}^{(n)}, x_{m+1}^{(n)}\right)$ for m odd
- $i_{n}(e)=q$ if $e=\left(x_{m+1}^{(n)}, x_{m}^{(n)}\right)$ for m even
- $i_{n}(e)=1$ if $e=\left(x_{m+1}^{(n)}, x_{m}^{(n)}\right)$ for m odd.

Observe that $i_{n}(e) / i_{n}(\bar{e})=1$ for all $e \in E D_{n}$. Define now a weight function i on $E D$ as follows:

- $i(e)=q+1$ if $e=\left(x_{0}, x_{1}\right)$
- $i(e)=q$ if $e=\left(x_{1}, x_{0}\right)$
- $i(e)=1$ if $e=\left(x_{m}, x_{m+1}\right)$ for $m \geq 1$
- $i(e)=q$ if $e=\left(x_{m+1}, x_{m}\right)$ for $m \geq 1$
- $i(e)=i_{n}(e)$ if $e \in E D_{n}$.

One readily checks that, for every vertex $x \in D$,

$$
\sum_{e \in \partial_{0}^{-1}(x)} i(e)=q+1=k
$$

that is, (D, i) is k-regular. The measure $\mu: V D \rightarrow \mathbf{R}^{+}$corresponding to i (see the remark at the beginning of Section 2) is given by

- $\mu\left(x_{0}\right)=1 /(q+1)$
- $\mu\left(x_{2 m-2}\right)=1 / q^{m-1}$ for $m \geq 2$
- $\mu\left(x_{2 m-1}\right)=1 / q^{m}$ for $m \geq 1$
- $\mu(x)=1 / q^{n}$ if $x \in D_{n}$.

One checks that, if we define $\mu(e)=i(e) \mu\left(\partial_{0} e\right)$ for all $e \in E D$, we have $\mu(\bar{e})=\mu(e)$. Moreover,

$$
\mu\left(D_{n}\right)=(2 n+1) \frac{1}{q^{n}}
$$

and hence

$$
\mu(D) \leq \frac{1}{q+1}+2 \sum_{n \geq 0} \frac{1}{q^{n}}+\sum_{n \geq 1} \mu\left(D_{n}\right)<\infty .
$$

We have also

$$
E\left(D_{n}, D_{n}^{c}\right)=\left\{\left(x_{2 n-1}, x_{2 n-2}\right),\left(x_{2 n}, x_{2 n+1}\right)\right\}
$$

so that

$$
\mu\left(E\left(D_{n}, D_{n}^{c}\right)\right)=q \frac{1}{q^{n}}+\frac{1}{q^{n}}=\frac{q+1}{q^{n}} .
$$

Hence

$$
\frac{\mu\left(E\left(D_{n}, D_{n}^{c}\right)\right)}{\mu\left(D_{n}\right)}=\frac{\frac{q+1}{q^{n}}}{(2 n+1) \frac{1}{q^{n}}}=\frac{q+1}{2 n+1}
$$

and

$$
\lim _{n} \frac{\mu\left(E\left(D_{n}, D_{n}^{c}\right)\right)}{\mu\left(D_{n}\right)}=0 .
$$

Observe that, since $\lim _{n} \mu\left(D_{n}\right)=0$, we have $\mu\left(D_{n}\right) \leq \mu(D) / 2$ for sufficiently large n. This completes the proof of Theorem 2 .

References

[BLRW09] U. Baumgartner, M. Laca, J. Ramagge, G. Willis. Hecke algebras from groups actings on trees and HNN extensions. J. of Algebra 321, 3065-3088 (2009).
[Baum03] U. Baumgartner. Cusps of lattices in Rank 1 Lie groups over local fields. Geo. Ded. 99, 17-46 (2003).
[BaLu01] H. Bass, A. Lubotzky. Tree lattices, Birkhäuser 2001.
[BeCo08] B. Bekka, Y. de Cornulier. A spectral gap property for subgroups of finite covolume in Lie groups. Prepint 2008, arXiv:0903.4367v1 [math.GR].
[Bekk98] B. Bekka. On uniqueness of invariant means. Proc. Amer. Math. Soc. 126, 507-514 (1998).
[BHV] B. Bekka, P. de la Harpe, A. Valette. Kazhdan's Property (T), Cambridge University Press 2008.
[Broo81] R. Brooks. The fundamental group and the spectrum of the Laplacian. Comment. Math. Helv. 56, 581-598 (1981).
[BuMo00] M. Burger, S. Mozes. Groups acting on trees: from local to global structure. Inst. Hautes Etudes Sci. Publ. Math. 92, 113-150 (2001).
[Chou94] F. M. Choucroun. Analyse harmonique des groupes d'automorphismes d'arbres de Bruhat-Tits. Mémoires Soc. Math. France (N. S.) 58, 170 pp. (1994)
[Dixm69] J. Dixmier. Les C^{*}-algèbres et leurs représentations, GauthierVillars, 1969.
[Lubo91] A. Lubotzky. Lattices in rank one Lie groups over local fields. Geom. Funct. Anal. 4, 405-431 (1991).
[Lubo94] A. Lubotzky. Discrete groups, expanding graphs and invariant measures, Birkhäuser 1994.
[Lubo95] A. Lubotzky. Tree-lattices and lattices in Lie groups. In: Combinatorial and geometric group theory (Edinburg 1993), London Math. Soc. Lecture Notes Ser. 204, Cambridge Univ. Press, 217232 (1995).
[Marg91] G.A. Margulis. Discrete subgroups of semisimple Lie groups, Springer-Verlag, 1991.
[Mokh03] S. Mokhtari-Sharghi. Cheeger inequality for infinite graphs. Geom. Dedicata 100, 53-64 (2003).
[Morg94] M. Morgenstern. Ramanujan diagrams. SIAM J. Disc. Math 7, 560-570 (1994).
[Morg95] M. Morgenstern. Natural bounded concentrators. Combinatorica 15, 111-122 (1995)
[Ragh72] M.S. Raghunathan. Discrete subgroups of Lie groups, SpringerVerlag, 1972.
[Ragh89] M.S. Raghunathan. Discrete subgroups of algebraic groups over local fields of positive charactersitics. Proc.Indian Acad. Sci.(Math. Sci.) 99, 127-146 (1989)
[Serr] J-P. Serre. Trees, Springer-Verlag, 1980.
[Tits70] J. Tits. Sur le groupe des automorphismes d'un arbre. In: Essays on topology and related topics, Mémoires dédiés à G. de Rham, Springer Verlag, 188-211 (1970).

Addresses

Bachir Bekka
UFR Mathématiques, Université de Rennes 1,
Campus Beaulieu, F-35042 Rennes Cedex
France
E-mail : bachir.bekka@univ-rennes1.fr
Alexander Lubotzky
Institute of Mathematics,
Hebrew University, Jerusalem 91904
Israel
E-mail : alexlub@math.huji.ac.il

[^0]: *This research was supported by a grant from the ERC

