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Pascal Maillard∗
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Summary. Let Z be a point process on R and TαZ its translation by
α ∈ R. Let Z ′ be an independent copy of Z. We say that Z is super-
posable, if TαZ + TβZ

′ and Z are equal in law for every α, β ∈ R, such
that eα + eβ = 1. We prove a characterisation of superposable point pro-
cesses in terms of decorated Poisson processes, which was conjectured by
Brunet and Derrida [A branching random walk seen from the tip, 2010,
http://arxiv.org/abs/1011.4864v1]. We further prove a generalisation
to random measures.
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1 Introduction

Let Z be a random measure on R, i.e. a random variable taking values in the space M of
boundedly finite measures on R, i.e. measures, which assign finite mass to every bounded
Borel set in R. In addition, let N ⊂ M be the space of boundedly finite counting measures
on R. If Z takes values in N , we also call Z a point process.

For every x ∈ R define the translation operator Tx : M → M, by (Txµ)(A) = µ(A − x)

for every Borel set A ⊂ R. Note that Tx(N ) = N . Denote equality in law by
(d)
=. Let Z ′ be

an independent copy of Z. We say that Z is superposable, if

TαZ + TβZ
′ (d)= Z, for every α, β ∈ R such that eα + eβ = 1.

The main result of this article states informally: Every superposable point process can be
represented as a Poisson process of intensity measure e−x dx on R, decorated by an auxil-
iary point process. We further prove a generalisation of this result to superposable random
measures.

The content of the article is organised as follows: In Section 2 we recall a connection with
branching Brownian motion that motivated our study. In Section 3, results about infinitely
divisible random measures are recalled. Decorated Poisson point processes are defined and
studied in Section 4. Section 5 contains the main results. In Section 6, some results about
spaces of measures are recalled. The main theorems are proven in Section 7. Section 8
contains a discussion of the results.
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2 A connection with branching Brownian motion

Consider a particle system on the real line where, starting with one particle at the origin,
particles move according to Brownian motion with variance 2 and branch at rate 1. This
system is called the branching Brownian motion. Let X(t) =

∑
i δXi(t) be the point process

formed by the particles alive at time t. Lalley and Sellke [7] showed that the derivative
martingale Wt =

∑
i(2t−Xi(t)) exp(Xi(t)− 2t) converges almost surely to a limit W > 0 as

t → ∞ and that for every x ∈ R,

lim
s→∞

lim
t→∞

P (max
i

Xi(t) < mt + x|Fs) = exp(−CW e−x) = exp(−Ce−x+logW ),

where mt = 2t − 3
2 log t and C > 0. Brunet and Derrida [2] refined this result and provided

convincing arguments that for any finite number of initial particles at arbitrary positions,
conditioning on W , T−mtX(t) converges in law as t → ∞ to TlogWZ, where Z is a point
process independent from W whose law does not depend on the initial configuration. In
other words, the point process formed by the right-most particles of branching Brownian
motion at a large time t is a translation by mt + logW of an independent point process Z.

Brunet and Derrida deduced from this a property they called superposability : Let X ′ be
another branching Brownian motion independent from X, let X ′′ = X+X ′ be the superposi-
tion of X and X ′ and let W ′ and W ′′ be the limits of their respective derivative martingales.
Then W ′′ = W +W ′ by definition and conditionally on W and W ′,

Tlog(W+W ′)Z
′′ (d)= d-lim

t→∞
T−mtX

′′(t)
(d)
= d-lim

t→∞
T−mtX(t) + T−mtX

′′(t)
(d)
= TlogWZ + TlogW ′Z ′,

where Z ′ and Z ′′ are defined analogously to Z and d-lim means limit in law. Since W and W ′

can take any positive value (for example by choosing the initial configurations accordingly),

this gives TγZ
(d)
= TαZ + TβZ

′ for every α, β, γ ∈ R, such that eα + eβ = eγ . Thus, Z is
superposable, in the sense defined in the introduction.

Brunet and Derrida now conjectured (p. 18 of the same paper) that Z could be represented
as a Poisson process of intensity measure e−x dx on R, decorated by an auxiliary point process.
Furthermore, they asked the question whether this is the case for every superposable point
process. As mentioned above, we show in this article that this conjecture is indeed true for
every superposable point process.

3 Infinitely divisible random measures

A random measure Z is said to be infinitely divisible if for every n ∈ N there exist iid random
measures Z(1), . . . , Z(n) such that

Z
(d)
= Z(1) + · · ·+ Z(n).

The random measure Z is said to be infinitely divisible as a point process, if for every n ∈ N

there exist iid point processes Z(1), . . . , Z(n) such that the above equality holds. In particular,
Z is a point process. Note that a point process can be infinitely divisible as a random
measure, but not as a point process (example: if µ ∈ N is non-random and non-zero, then
µ = 1

nµ+ · · ·+ 1
nµ, but µ is not infinitely divisible as a point process).
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For every non-negative measurable function f : R → R+ define the Laplace functional

L(f) = LZ(f) = E [exp(−〈Z, f〉)] ∈ [0, 1],

where 〈µ, f〉 =
∫
R
f(x)µ(dx) for any µ ∈ M and any µ-integrable function f . The Laplace

functional uniquely characterises Z ([3], p. 161). We further define the cumulant

K(f) = − logL(f) ∈ [0,∞].

The main result about infinitely divisible random measures is the following (see [6], The-
orem 6.1 or [4], Proposition 10.2.IX, however, note the error in the theorem statement of
the latter reference: F1 may be infinite as it is defined). Here, we define M∗ = M\{0} and
N ∗ = N\{0}.

Fact 3.1. The random measure Z is infinitely divisible if and only if

K(f) = 〈λ, f〉+

∫

M∗

[1− exp(−〈µ, f〉)]Λ(dµ),

where
− λ ∈ M is a (non-random) measure and
− Λ is a measure on M∗ satisfying

∫ ∞

0
(1− e−x)Λ(µ(A) ∈ dx) < ∞, (3.1)

for every bounded Borel set A ⊂ R.

The probabilistic interpretation ([6], Lemma 6.5) of this fact is that Z is the superposition
of the non-random measure λ and of the atoms of a Poisson process on M∗ with intensity Λ.
It has the following analogous result in the case of point processes ([4], Proposition 10.2.V):

Fact 3.2. A point process Z is infinitely divisible if and only if its cumulant K satisfies

K(f) =

∫

N ∗

[1− exp(−〈µ, f〉)]Q̃(dµ),

for some measure Q̃ on N ∗ which satisfies Q̃(µ(A) > 0) < ∞ for every bounded Borel set
A ⊂ R. In other words, an infinitely divisible random measure is infinitely divisible as a point
process if and only if λ = 0 and Λ is concentrated on N ∗, where λ and Λ are the measures
from Fact 3.1.

Lemma 3.3. Let Z be a superposable random measure. Then Z is infinitely divisible. If Z
is a point process, then it is infinitely divisible as a point process.

Proof. Let α, β, γ ∈ R such that eα + eβ = eγ . Let Z ′ be an independent copy of Z. The
superposability of Z implies that

TγZ
(d)
= Tγ

(
Tα−γZ + Tβ−γZ

′
)
= TαZ + TβZ

′.

Now one easily shows by induction that if n ∈ N and α1, . . . , αn ∈ R such that eα1+· · ·+eαn =
1 and if Z(1), . . . , Z(n) are independent copies of Z, then

Z
(d)
= Tα1Z

(1) + · · ·+ TαnZ
(n).

In particular, choosing αi = − log n, i = 1, . . . , n proves both statements.
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4 Decorated Poisson processes

Let D be a random measure on R (the decoration), and ξ a Poisson point process on R

with intensity measure m(dx) (also denoted by PPP(m)). Denote its atoms by ξ1, ξ2, . . . Let
D(1),D(2), . . . be independent copies of D and independent of ξ. We set

Z =
∞∑

i=1

TξiD
(i). (4.1)

We say that Z exists, if it is almost surely boundedly finite. In this case, Z is called a decorated
Poisson point process with Poisson intensity m and decoration D (denoted by DPPP(m,D)
for short). It is a particular version of the independent Poisson cluster process ([3], Section
6.3).

Proposition 4.1. The DPPP(m,D) exists if and only if
∫ ∞− [∫ ∞

0
(1− e−y)P(D(A− x) ∈ dy)

]
m(dx) < ∞, (4.2)

for every bounded Borel set A ⊂ R. In this case, its cumulant satisfies

K(f) =

∫

R

(1− E[exp(−〈TxD, f〉)])m(dx). (4.3)

Remark 4.2. If D is a point process, then (4.2) is equivalent to
∫ ∞−

P(D(A− x) > 0)m(dx) < ∞. (4.4)

If m(dx) = ϕ(x) dx, we also write DPPP(ϕ(x),D) for short. In this paper, we will mostly
consider the case where ϕ(x) = e−x.

Proposition 4.3. Let Z be a DPPP(e−x,D). Then Z is superposable. Moreover, Z has finite
intensity (i.e. E[Z(A)] < ∞ for every bounded Borel set A ⊂ R) if and only if E[〈D, ex〉] < ∞.

Proof of Proposition 4.1. Let Z be defined by (4.1). Conditioning on ξ we get for any non-
negative measurable function f ,

E[exp(−〈Z, f〉)] = E

[
∏

i∈N

E[exp(−〈TξiD
(i), f〉) | ξ]

]

= exp

(∫

R

(E[exp(−〈TxD, f〉)]− 1)m(dx)

)
,

since the probability generating functional of a PPP(m) is given by ([4], Example 9.4(c), p.
60)

E

[
∏

i∈N

g(ξi)

]
= exp

(∫

R

(g(x) − 1)m(dx)

)
,

for any measurable function g taking values in [0, 1]. It follows that K(f) is of the form (4.3)
if the process exists.

Let Q denote the law of the decoration D restricted to M∗. If Z exists, it is infinitely
divisible by Fact 3.1 with λ = 0 and Λ =

∫
R
TxQm(dx). Equation (4.2) then follows from

(3.1). On the other hand, if (4.2) is fulfilled, then (3.1) is verified as well and Z exists by
Fact 3.1.

4



Proof of Proposition 4.3. Let f : R → R
+ be measurable and set g(x) = E[exp(−〈TxD, f〉)].

For every α ∈ R, we have

E[exp(−〈TαZ, f〉)] = exp

(∫

R

e−x(g(x+ α)− 1) dx

)
= exp

(
eα

∫

R

e−x(g(x) − 1) dx

)

= E[exp(−〈Z, f〉)]e
α

.

Now let α, β ∈ R such that eα + eβ = 1 and let Z ′ be an independent copy of Z. Then

E[exp(−〈TαZ + TβZ
′, f〉)] = E[exp(−〈Z, f〉)]e

α+eβ = E[exp(−〈Z, f〉)],

hence Z is superposable. For the second statement, note that we have by Tonelli’s theorem,

E[Z(A)] = E

[
∑

i∈N

E[TξiD(A) | ξ]

]
=

∫

R

E[D(A− y)e−y] dy = E

[∫

R

D(A− y)e−y dy

]
,

for every bounded Borel set A ⊂ R. Again by Tonelli’s theorem we have

∫

R

D(A− y)e−y dy =

∫

R

∫

R

1A−y(x)e
−y dy D(dx) = 〈D,

∫

R

1A−y(·)e
−y dy〉.

For x ∈ R, x ∈ A− y implies y ∈ [minA−x,maxA−x]. Since e−y is decreasing, we therefore
have

|A|e−maxAex ≤

∫

R

1A−y(x)e
−y dy ≤ |A|e−minAex,

where |A| denotes the Lebesgue measure of A. We conclude that E[Z(A)] < ∞ if and only if
E[〈D, ex〉] < ∞.

5 Main results

For µ ∈ M∗, define the measurable function

M(µ) = inf{x ∈ R : µ((x,∞)) < min(1, µ(R)/2)}.

By definition, M(µ) ∈ R ∪ {+∞} for all µ ∈ M∗. Note that if µ is a counting measure, then
M(µ) is the position of the right-most atom of µ, i.e. M(µ) = sup suppµ.

Theorem 5.1. Let Z be a random measure and let K(f) be its cumulant. Then Z is super-
posable if and only if for every measurable non-negative function f : R → R+,

K(f) = c

∫

R

e−xf(x) dx+

∫

R

e−x

∫

M∗

[1− exp(−〈µ, f〉)]Tx∆(dµ) dx, (5.1)

for some constant c ≥ 0 and some measure ∆ on M∗, such that

∫

R

ex
∫ ∞

0
(1− e−y)∆(µ(A+ x) ∈ dy) dx < ∞, (5.2)

for every bounded Borel set A ⊂ R. Furthermore, for any m ∈ R, ∆ can be chosen such that
∆(M(µ) 6= m) = 0, and as such, it is unique.
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The decomposition of the cumulant in Theorem 5.1 is reminiscent of (4.3), and indeed, if
∆ has unit mass, then the theorem says that Z is a superposition of a measure λ(dx) = ce−xdx
and a DPPP(e−x,D), where D follows the law ∆. In general, however, ∆ need not have finite
mass, in which case Z cannot be represented as a DPPP(e−x,D). This corresponds to an
accumulation of an infinite number of “small” measures in a bounded set and is therefore not
possible if we restrict ourselves to point processes. The following theorem is the consequence:

Corollary 5.2. A point process Z is superposable if and only if it is equal in law to a
DPPP(e−x,D) for some point process D satisfying (4.4). In this case, there exists a unique
pair (m,D), where m ∈ R is a constant and D a point process satisfying (4.4) and P(M(D) =
m) = 1, such that Z is equal in law to DPPP(e−x,D).

6 Spaces of measures

Let (X , dX ) be a complete separable metric space with a fixed origin x0 ∈ X and let MX be
the space of all boundedly finite positive measures on X . We equip MX with the metric

d(µ, ν) =

∫ ∞

0
e−r dr(µ, ν)

1 + dr(µ, ν)
dr, (6.1)

where

dr(µ, ν) = inf{ε ≥ 0 : µ(F ) ≤ ν(F ε) + ε and ν(F ) ≤ µ(F ε) + ε

for all closed F ⊂ Br(x0)}.
(6.2)

Here, Br(x0) the open ball of radius r around x0 and F ε = {x ∈ X : dX (x, F ) < ε}. It
is known ([3], p. 403ff1) that the metric space (MX , d) is complete and separable and that
d(µn, µ) → 0 as n → ∞ if and only if 〈µn, f〉 → 〈µ, f〉 for every bounded continuous function
f vanishing outside a bounded set. If X is locally compact and the closed bounded sets are
compact, d induces the vague topology on MX . Note however that MX is in general not
locally compact, even if X is.

The subset M∗
X = MX \{0} being open it is a complete separable metric space as well

([1], IX.6.1, Proposition 2) when endowed with the metric

d∗(µ, ν) = d(µ, ν) +

∣∣∣∣
1

d(µ, 0)
−

1

d(ν, 0)

∣∣∣∣ , (6.3)

which is equivalent to d on M∗
X . Note that since d(µ, ν) ≤ 1 for all µ, ν ∈ MX , a set A ⊂ M∗

X

is bounded in (M∗
X , d

∗) if and only if inf{d(µ, 0) : µ ∈ A} > 0.
During the rest of the paper, X will either be the real line R, equipped with the usual

distance dR(x, y) = |x−y| and the origin x0 = 0, or the space (M∗
R
, d∗) with an arbitrary fixed

origin µ0 ∈ M∗
R
. Note that with our previous notation, we have M = MR and M∗ = M∗

R
.

The symbols d and d∗ will always refer to the metrics of M and M∗. We further define
M = MM∗ .

We now prove the Lipschitz and local Lipschitz properties of the translation operator Tx

in M and M∗.
1Their definition is slightly different but the results hold for our definition as well. Indeed, their definition

seems to be erroneous, since their dr(µ
(r), ν(r)) is not necessarily increasing in r, as stated on page 403. Our

dr(µ, ν), however, is increasing in r.
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Proposition 6.1. 1. We have d(Txµ, Tyµ) ≤ |x− y| for every x, y ∈ R and µ ∈ M.

2. For every bounded A ⊂ M∗ there exists LA ∈ (0,∞), such that

d∗(Txµ, Tyµ) ≤ LA|x− y| for every x, y ∈ [0, 1] and µ ∈ A.

In proving the second part of Proposition 6.1, we need the following lemma, which is
useful by itself, too.

Lemma 6.2. Let A ⊂ M∗ be bounded and a ≥ 0. Then the set

B =
⋃

x∈[−a,a]

TxA

is bounded as well.

Proof. Let µ ∈ M∗. Inspecting the definition of dr in (6.2), we see that

dr(Txµ, 0) ≥ dr−|x|(µ, 0),

for every x ∈ R and r ≥ |x|. The function g(x) = x/(1 + x) being monotone on R+, we
therefore get

d(Txµ, 0) =

∫ ∞

0
e−rg(dr(Txµ, 0)) dr ≥

∫ ∞

|x|
e−rg(dr−|x|(µ, 0)) dr = e−|x|d(µ, 0).

In particular, d(Txµ, 0) ≥ e−ad(µ, 0) for x ∈ [−a, a]. The statement now follows from the fact
that a set A ⊂ M∗ is bounded if and only if inf{d(µ, 0) : µ ∈ A} > 0.

Proof of Proposition 6.1. Inspecting (6.2) gives dr(Txµ, Tyµ) ≤ |x − y| for all µ ∈ M and
r ≥ 0, whence

d(Txµ, Tyµ) ≤

∫ ∞

0
e−rdr(Txµ, Tyµ) ≤ |x− y|.

This proves the first part. For the second part, let B = {Txµ : µ ∈ A, x ∈ [0, 1]}, which is
bounded by Lemma 6.2. Hence, α = inf{d(µ, 0) : µ ∈ B} > 0. For µ, ν ∈ B we therefore have

∣∣∣∣
1

d(µ, 0)
−

1

d(ν, 0)

∣∣∣∣ ≤
1

α2
|d(ν, 0) − d(µ, 0)| ≤

1

α2
d(µ, ν),

by the triangle inequality, whence d∗(µ, ν) ≤ (1 + α−2)d(µ, ν). The statement now follows
from the first part (with LA = 1 + α−2).

7 Proofs

The “if” part of Corollary 5.2 is the first statement of Proposition 4.3. The “if” part of
Theorem 5.1 is proven in the same way. It remains to prove the “only if” parts. Let Z be a
superposable random measure. Then, for α, β ∈ R, such that eα + eβ = 1, we have

K(f) = − logE[exp(−〈Z, f〉)] = − logE[exp(−〈TαZ, f〉)]− logE[exp(−〈TβZ, f〉)]

= K(f(·+ α)) +K(f(·+ β)),

since Z is superposable. Setting ϕ(x) = K(f(·+ x)) for x ∈ R and replacing f by f(·+ x) in
the above equation, we get ϕ(x) = ϕ(x + α) + ϕ(x + β) for all x ∈ R. The following lemma
now shows that ϕ(x) = exϕ(0) for every x ∈ R:
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Lemma 7.1. Let g : R → R+ be a non-negative function with the property

g(x) = g(x + α) + g(x + β), for all α, β ∈ R such that eα + eβ = 1.

Then g(x) = exg(0) for every x ∈ R.

Proof. As in the proof of Lemma 3.3, one easily shows by induction that for every real
numbers α1, . . . , αn, such that

∑n
i=1 e

αi = 1, we have g(x) =
∑n

i=1 g(x + αi). In particular,
taking αi = − log n, i = 1, . . . , n, we get

g(x) = ng(x− log n). (7.1)

In particular, g(− log n) = g(0)/n.

Now, g is an increasing function, since for every α < 0 and eβ = 1 − eα, we have g(x) −
g(x + α) = g(x + β) ≥ 0. Since g(− log n) = g(0)/n → 0 as n → ∞, g(x) goes to 0 as
x → −∞. It follows that g(x) − g(x + α) = g(x + β) → 0 as α ↑ 0, since β → −∞ as α ↑ 0,
hence g is left-continuous.

Now fix x ∈ R and let qn = pn
rn

be an increasing sequence of rational numbers converging
to ex. Then g(x) = limn→∞ g(log qn). By (7.1),

g(log qn) = g(log pn − log rn) = png(− log rn) =
pn
rn

g(0),

which goes to exg(0) as n → ∞. This proves the statement.

Corollary 7.2.

K(f(·+ x)) = exK(f), for all x ∈ R.

By Lemma 3.3, Z is infinitely divisible. Let λ,Λ be the corresponding measures from
Fact 3.1.

Lemma 7.3. There exists a constant c ≥ 0, such that λ = ce−x dx. Furthermore, for every
x ∈ R, the Radon-Nikodym derivative of TxΛ with respect to Λ is

dTxΛ

dΛ
= ex.

Proof. The measures Txλ, TxΛ are the measures corresponding to the infinitely divisible
random measure TxZ by Fact 3.1. But by Corollary 7.2, the measures exλ and exΛ correspond
to TxZ, as well. Since these measures are unique, we have Txλ = exλ and TxΛ = exΛ. The
second statement follows immediately. For the first statement, note that c1 = λ([0, 1)) < ∞,
since [0, 1) is a bounded set. It follows that

λ([0,∞)) =
∑

n≥0

λ([n, n+ 1)) =
∑

n≥0

c1e
−n =

c1e

e− 1
=: c,

hence λ([x,∞)) = ce−x for every x ∈ R. The first statement of the lemma follows.

In order to obtain the decomposition (5.1) of the measure Λ, we are going to disintegrate
it with respect to the measurable map M . The next lemma ensures that M is Λ-almost surely
finite.
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Lemma 7.4. There exists a strictly positive increasing function h : R → R+, such that
h(x) = 1 for x ≥ 0 and

Λ(〈µ, h〉 = ∞) = 0.

In particular, Λ(M(µ) = +∞) = 0.

Proof. We first show that Λ(µ((0,∞)) = ∞) = 0. For n ∈ Z, let In = [n, n+1) and I = [0, 1).
By (3.1), we have ∫ 1

0
Λ(µ(I) > x) dx =

∫ 1

0
xΛ(µ(I) ∈ dx) < ∞.

By monotonicity, the first integral is greater than or equal to xΛ(µ(I) > x) for every x ∈ [0, 1],
hence Λ(µ(I) > x) ≤ C/x for some constant 0 ≤ C < ∞. By Lemma 7.3, it follows that

Λ(µ(In) > e−n/2) = e−nΛ(µ(I) > e−n/2) ≤ Ce−n/2,

for every n ∈ N. Hence,
∑

n∈N Λ
(
µ(In) > e−n/2

)
< ∞. By the Borel-Cantelli lemma,

Λ

(
lim sup
n→∞

{
µ(In) > e−n/2

})
= 0,

which implies Λ(µ((0,∞)) = ∞) = 0.

Now let (hn) be a decreasing sequence of strictly positive numbers, such that

Λ(hnµ(I−n) > e−n) < e−n.

Set h(x) = hn for x ∈ I−n and h(x) = 1 for x ≥ 0. The statement now follows from the
Borel-Cantelli lemma and the first part.

For a Borel set A ⊂ R define M∗
A = {µ ∈ M∗ : M(µ) ∈ A}. Then M∗

A ∩ M∗
A′ = ∅, if

A∩A′ = ∅. Furthermore, by Lemma 7.4, we have Λ(M(µ) = ∞) = 0, hence Λ is concentrated
on M∗

R
.

For n ∈ N0 define

∆n = 2nΛ∣∣M∗

[0,2−n)

.

We are going to show that the sequence (∆n)n∈N converges in M to a limit ∆ and that

Λ =

∫

R

e−xTx∆dx. (7.2)

We first need to show that the sequence (∆n) is relatively compact in M. By [3], Propo-
sition A2.6.IV, p. 405, this is true if and only if the restrictions (∆F

n ) to all bounded closed
F ⊂ M∗ are relatively compact in the weak topology. By Prokhorov’s theorem, this is the
case for a fixed F if and only if

sup
n∈N

∆n(F) < ∞, (7.3)

and for all δ > 0 there exists a compact K ⊂ F , such that

∀n ∈ N : ∆n(F\K) < δ. (7.4)
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First of all, we note that by Lemma 7.3 we have for every n ≥ 0:

Λ∣∣M∗

[0,1)

=
2n−1∑

k=0

e−k2−n

Tk2−nΛ∣∣M∗

[0,2−n)

,

hence

∆0 = 2−n
2n−1∑

k=0

e−k2−n

Tk2−n∆n. (7.5)

Now let A ⊂ M∗ be a bounded Borel set and set B =
⋃

x∈[0,1] TxA, which is bounded by
Lemma 6.2. By (7.5), we have for every n ∈ N:

∆0(B) = 2−n
2n−1∑

k=0

e−k2−n

Tk2−n∆n(B).

But since Tk2−n∆n(B) = ∆n(T−k2−nB) ≥ ∆n(A), it follows that

SA = sup
n∈N

∆m(A) < ∞ for every bounded A ⊂ M∗, (7.6)

whence (7.3) follows.

Now let F ⊂ M∗ be bounded and closed. Boundedness implies that F is a subset of
{µ ∈ M : d(µ, 0) ≥ ε} for some ε > 0, which is closed in M, hence F is closed in M as well.
Let h be the function from Lemma 7.4, such that Λ and hence all ∆n are concentrated on

Mh = {µ ∈ M : 〈µ, h〉 < ∞}.

For c ≥ 0, define

Mh
c = {µ ∈ M : 〈µ, h〉 ≤ c},

which is compact ([6], 15.7.5, p. 170). F being closed in M, the set Fc = F ∩ Mh
c is then

compact as well. Set Gc = F\Fc. Since h is increasing, we have TxGc ⊂ Gc for every x ≥ 0.
It follows that

∆n(Gc) ≤ ∆n(T−xGc) = Tx∆n(Gc).

Equation (7.5) now implies that ∆n(Gc) ≤ e∆0(Gc) for every n ∈ N. Since ∆0 is concentrated
on Mh, ∆0(Gc) converges to 0 as c → ∞, whence (7.4) follows. As mentioned above, it follows
that (∆n) is relatively compact in M.

Let ∆ ∈ M be any accumulation point of the sequence (∆n). We show that ∆0 =∫
[0,1) e

−xTx∆dx. Note that this proves (7.2), since by Lemma 7.3 we have

Λ =
∑

k∈Z

e−kTk∆0.

Let f : M∗ → R+ be bounded, Lipschitz-continuous with Lipschitz constant Lf and
supported on a bounded set. Set A =

⋃
x∈[−1,0] Tx supp f and B =

⋃
x∈[−1,1] Tx supp f , which

are bounded sets by Lemma 6.2. Note that for µ ∈ A and x, y ∈ [0, 1], we have Txµ, Tyµ ∈ B
and therefore

|f(Txµ)− f(Tyµ)| ≤ Lfd
∗(Txµ, Tyµ) ≤ LfLB|x− y|, (7.7)
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by Proposition 6.1. Writing Γ(f) =
∫
M∗ f(µ) Γ(dµ) for any measure Γ ∈ M, we get by (7.5),

∣∣∣∣∆0(f)−

∫ 1

0
e−xTx∆(f) dx

∣∣∣∣ ≤
∣∣∣∣∣

2n−1∑

k=0

2−ne−k2−n

Tk2−n(∆n −∆)(f)

∣∣∣∣∣

+

∣∣∣∣∣

2n−1∑

k=0

2−ne−k2−n

Tk2−n∆(f)−

∫ 1

0
e−xTx∆(f) dx

∣∣∣∣∣ .
(7.8)

Define gn(x) = Tx(∆n −∆)(f), x ∈ [0, 1]. Since ∆n → ∆ in M, gn(x) converges pointwise to
0 as n → ∞. Moreover, by (7.7)

|gn(x)− gn(y)| ≤

∣∣∣∣
∫

A
f(Txµ)− f(Tyµ)∆n(dµ)

∣∣∣∣+
∣∣∣∣
∫

A
f(Txµ)− f(Tyµ)∆(dµ)

∣∣∣∣

≤ (SA +∆(A))LfLB|x− y|,

hence the convergence is uniform. This implies that the first term of the right hand side of
(7.8) goes to 0 as n → ∞.

For the second term, let x, y ∈ [0, 1] and µ ∈ A. By (7.7),

|e−xf(Txµ)− e−yf(Tyµ)| ≤ |f(Txµ)− f(Tyµ)|+ |(e−|x−y| − 1)f(Txµ)|

≤ (LfLB + ||f ||∞)|x− y| =: Kf |x− y|,

hence
|e−xTx∆(f)− e−yTy∆(f)| ≤ ∆(A)Kf |x− y| (7.9)

The second term of the right hand side of (7.8) is then smaller than ∆(A)Kf2
−(n+1),

which converges to 0 as n → ∞. It follows that

∆0(f) =

∫ 1

0
e−xTx∆(f) dx.

Since every characteristic function of a bounded open set can be approximated by an increas-
ing sequence of bounded Lipschitz-continuous functions with bounded support, this proves
that the two measures are equal, from which (7.2) and therefore (5.1) follow. Equation (5.2)
follows from (7.2) and (3.1).

By construction, ∆(M(µ) 6= 0) = 0. Given m ∈ R, one easily checks that (7.2) holds as
well with ∆ replaced by e−mTm∆, which is concentrated on {µ ∈ M∗ : M(µ) = m}. Finally,
the uniqueness statement of Theorem 5.1 follows from the next lemma:

Lemma 7.5. Let Λ1,Λ2 ∈ M, such that
∫

R

e−xTxΛ1 dx = Λ =

∫

R

e−xTxΛ2 dx. (7.10)

Suppose further that there exist y1, y2 ∈ R, such that Λ1(M(µ) 6= y1) = Λ2(M(µ) 6= y2) = 0.
Then Λ2 = ey1−y2Ty2−y1Λ1.

Proof. Set Λ′
1 = ey1−y2Ty2−y1Λ1. Then Λ′

1(M(µ) 6= y2) = 0 and changing variables in (7.10)
gives

∫
R
e−xΛ′

1 dx = Λ. We can therefore assume w.l.o.g. that y1 = y2 = y. For ε ∈ (0, 1), we
then have

Λ∣∣M[y,y+ε]
=

∫

[0,ε]
e−xTxΛi dx, i = 1, 2. (7.11)
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Now let f , Lf , A, B and LB be as above. By (7.9), with ∆ replaced by Λi, we have

∣∣∣∣∣

∫

[0,ε]
[e−xTxΛi(f)− Λi(f)] dx

∣∣∣∣∣ ≤ ε2KfΛi(A)/2, (7.12)

for i = 1, 2. Equations (7.11) and (7.12) now imply

Λ1(f) = lim
ε→0

ε−1Λ∣∣M[y,y+ε]
(f) = Λ2(f),

which gives Λ1 = Λ2.

If Z is a point process, we know from Lemma 3.3 that it is infinitely divisible as a point
process. Fact 3.2 then implies that λ = 0 and that Λ is concentrated on N ∗, hence ∆ as
well. Equation (5.2) then implies that ∆(µ(A) > 0) < ∞ for any bounded Borel set A ⊂ R.
In particular, this holds for A = [−1, 1]. But since M(µ) = 0 implies µ([−1, 1]) > 0 and
since ∆ is concentrated on M∗

{0}, it has finite mass. If ∆ has mass zero, then Z = 0 almost

surely and Z is a DPPP(e−x, 0). If ∆ has positive mass, set m = log∆(M∗). The measure
∆′ = e−mTm∆ is then a probability measure and (7.2) holds with ∆ replaced by ∆′. By
Proposition 4.1, Z is a DPPP(e−x,D), where D follows the law ∆′. Uniqueness of the pair
(m,D) follows from Lemma 7.5.

8 Discussion

• The decomposition (7.2) is really a disintegration of Λ with respect to the measurable
map M : M∗ → R. One could ask whether the above proof could be simplified by
using abstract measure disintegration theorems (e.g. [5]). If these could be applied,
they would give a family of measures (Γx)x∈R, such that Λ =

∫
R
Γx dx, and applying

Lemma 7.3, one could hope to obtain Γx = e−xTx∆ for some measure ∆. However, a
priori this would only be true for almost every x ∈ R and not for all x. Thus, we cannot
simply set ∆ = Γ0. It is this problem that had us choose the much more elementary
approach used in the preceding proof.

• If one does not require ∆ to be concentrated on {M(µ) = m} for some m ∈ R, then the
uniqueness property of Theorem 5.1 does not hold. For example, any linear combination∫
Tx∆ ν(dx) of the Tx∆ (with some measure ν on R) satisfies (7.2) and (5.1) (modulo

some multiplicative constant).

• Call a random measure Z ρ-superposable (ρ 6= 0), if

TαZ + TβZ
′ (d)= Z, for every α, β ∈ R such that eρα + eρβ = 1,

where Z ′ is an independent copy of Z. Define the scaling operator Sr : M → M
for r 6= 0 by Srµ(A) = µ(A/r) for any Borel set A ⊂ R. One easily checks that
TαSr = SrTα/r, and as a consequence, the random measure SρZ is superposable. Thus,
the study of ρ-superposable measures reduces easily to superposable measures.
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