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GROUPS WITH FAITHFUL IRREDUCIBLE
PROJECTIVE UNITARY REPRESENTATIONS

BACHIR BEKKA AND PIERRE DE LA HARPE

Abstract. For a countable group Γ and a multiplier ζ ∈ Z2(Γ,T),
we study the property of Γ having a unitary projective ζ-repre-
sentation which is both irreducible and projectively faithful. Theo-
rem 1 shows that this property is equivalent to Γ being the quotient
of an appropriate group by its centre. Theorem 4 gives a criterion
in terms of the minisocle of Γ. Several examples are described to
show the existence of various behaviours.

1. Introduction

For a Hilbert space H, we denote by U(H) the group of its unitary
operators. We identify T :=

{
z ∈ C

∣∣ |z| = 1
}

with the centre of U(H),
namely with the scalar multiples of the identity operator idH, we denote
by PU(H) := U(H)/T the projective unitary group of H, and by

pH : U(H) −→ PU(H)

the canonical projection.
Let Γ be a group. A projective unitary representation, or shortly

here a projective representation, of Γ in H is a mapping

π : Γ −→ U(H)

such that π(e) = idH and such that the composition

π := pHπ : Γ −→ PU(H)

is a homomorphism of groups. When we find it useful, we write Hπ for
the Hilbert space of a projective representation π.

A projective representation π of a group Γ is projectively faithful, or
shortly P-faithful, if the corresponding homomorphism π is injective.
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The projective kernel of π is the normal subgroup

(1) Pker(π) = ker(π) =
{
x ∈ Γ

∣∣ π(x) ∈ T
}

of Γ. In case π is a unitary representation, ker(π) is a subgroup of
Pker(π), sometimes called the the quasikernel of π, which can be a
proper subgroup, so that faithfulness of π does not imply P-faithfulness.

A projective representation π is irreducible if the only closed π(Γ)-
invariant subspaces of Hπ are {0} and Hπ.

As a continuation of [BeHa–08], the present paper results from our
effort to understand which groups have irreducible P-faithful projective
representations. Our first observation is a version in the present context
of Satz 4.1 of [Pahl–68]. We denote by Z(Γ) the centre of a group Γ.

Theorem 1. For a group Γ, the following two properties are equivalent:

(i) Γ affords an irreducible P-faithful projective representation;
(ii) there exists a group ∆ which affords an irreducible faithful uni-

tary representation and which is such that ∆/Z(∆) ≈ Γ.

If, moreover, Γ is countable, these properties are also equivalent to:

(iii) there exists a countable group ∆ as in (ii).

Countable groups which have irreducible faithful unitary represen-
tations have been characterised in [BeHa–08], building up on results of
[Gasc–54] for finite groups.

A group Γ is capable if there exists a group ∆ with Γ ≈ ∆/Z(∆), and
incapable otherwise. The notion appears in [Baer–38], which contains a
criterion of capability for abelian groups which are direct sums of cyclic
groups (for this, see also [BeFS–79]), and the terminology “capable”
is that of [HaSe-64]. Conditions for capability (several of them being
either necessary or sufficient) are given in Chapter IV of [BeTa–82].

The epicentre of a group Γ is the largest central subgroup A such that
the quotient projection Γ −→ Γ/A induces in homology an injective ho-
momorphism H2(Γ,Z) −→ H2(Γ/A,Z), where Z is viewed as a trivial
module. This group was introduced in [BeFS–79] and [BeTa–82], with
a formally different definition; the terminology is from [Elli–98], and
the characterisation given above appears in Theorem 4.2 of [BeFS–79].

Proposition 2 (Beyl-Felgner-Schmid-Ellis). Let Γ be a group and let
Z∗(Γ) denote its epicentre.

(i) Γ is capable if and only if Z∗(Γ) = {e}.
(ii) Γ/Z∗(Γ) is capable in all cases.
(iii) A perfect group with non trivial centre is incapable.

Corollary 3. A perfect group with non-trivial centre has no P-faithful
projective representation.
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A multiplier on Γ is a mapping ζ : Γ × Γ −→ T such that

(2) ζ(e, x) = ζ(x, e) = 1 and ζ(x, y)ζ(xy, z) = ζ(x, yz)ζ(y, z)

for all x, y, z ∈ Γ. We denote by Z2(Γ,T) the set of all these, which is
an abelian group for the pointwise product. A projective representation
π of Γ in H determines a unique multiplier ζπ = ζ such that

(3) π(x)π(y) = ζ(x, y)π(xy)

for all x, y ∈ Γ; we say then that π is a ζ-representation of Γ. Con-
versely, any ζ ∈ Z2(Γ,T) occurs in such a way; indeed, ζ is the mul-
tiplier determined by the twisted left regular ζ-representation λζ of Γ,
defined on the Hilbert space ℓ2(Γ) by

(4) (λζ(x)ϕ) (y) = ζ(x, x−1y)ϕ(x−1y).

A good reference for these regular ζ-representations is [Klep–62]. In
the special case ζ = 1, a ζ-representation of Γ is just a unitary repre-
sentation of Γ; but we repeat that

First standing assumption. In this paper, by “representation”, we
always mean “unitary representation”.

For a projective representation of Γ in C, namely for a mapping
ν : Γ −→ T with ν(e) = 1, let ζν ∈ Z2(Γ,T) denote the corresponding
multiplier, namely the mapping defined by

(5) ζν(x, y) = ν(x)ν(y)ν(xy)−1.

We denote by B2(Γ,T) the set of all multipliers of the form ζν , which
is a subgroup of Z2(Γ,T), and by H2(Γ,T) := Z2(Γ,T)/B2(Γ,T) the
quotient group; as usual, ζ, ζ ′ ∈ Z2(Γ,T) are cohomologous if they
have the same image in H2(Γ,T).

Given a ζ-representation π of Γ in H, there is a standard bijection
between:

◦ the set of projective representations π′ : Γ −→ U(H) such that
pHπ = pHπ′, on the one hand,

◦ and the set of multipliers cohomologous to ζ, on the other hand.

In other terms, a group homomorphism π of Γ in PU(H) determines a
class1 in H2(Γ,T), and the set of projective representations covering π
is in bijection with the representatives of this class in Z2(Γ,T). Observe
that π and π′ above are together irreducible or not, and together P-
faithful or not.

1This is of course the class associated to the extension of Γ by T pulled back
by π of the extension {1} −→ T −→ U(H) −→ PU(H) −→ {1}. See for example
Section 6.6 in [Weib–94].
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For much more on projective representations and multipliers, in the
setting of separable locally compact groups, see [Mack–58] and the
survey [Pack–08]; for a very short but informative exposition on ear-
lier work, starting with that of Schur, see [Kall–84]. Note that other
authors (such as Kleppner) use “multiplier representation” and “pro-
jective representation” when Mackey uses “projective representation”
and “homomorphism in PU(H)”, respectively.

Definition. Given a group Γ and a multiplier ζ ∈ Z2(Γ,T), the
group Γ is irreducibly ζ-represented if it has an irreducible P-faithful
ζ-representation.

This depends only on the class ζ ∈ H2(Γ,T) of ζ.

For a group Γ, recall that a foot of Γ is a minimal normal subgroup,
that the minisocle is the subgroup MS(Γ) of Γ generated by the union
of all finite feet of Γ, and that MA(Γ) is the subgroup of MS(Γ) gen-
erated by the union of all finite abelian feet of Γ. It is obvious that
MS(Γ) and MA(Γ) are characteristic subgroups of Γ; it is easy to show
that MA(Γ) is abelian and is a direct factor of MS(Γ). For all this,
we refer to Proposition 1 in [BeHa–08].

Let N be a normal subgroup of Γ and σ a ζ-representation of N , for
some ζ ∈ Z2(N,T). If ζ = 1 (the case of ordinary representations),
define the Γ-kernel of σ by

kerΓ(σ) = ker
( ⊕

γ∈Γ

σγ
)

where σγ(x) := σ(γxγ−1); say, as in [BeHa–08], that σ is Γ-faithful
if this Γ-kernel is reduced to {e}; when ζ is the restriction to N of a
multiplier (usually denoted by ζ again) in Z2(Γ,T), there is an analo-
gous notion for the general case (ζ 6= 1), called Γ-P-faithfulness, used
in Theorem 4, but defined only in Section 3 below. Before the next
result, we find it convenient to define one more property.

Definition. A group Γ has Property (Fab) if any normal subgroup
of Γ generated by one conjugacy class has a finite abelianisation.

Examples of groups which enjoy Property (Fab) include finite groups,
SLn(Z) for n ≥ 3, and more generally lattices in a finite product∏

α∈A Gα of simple groups Gα over (possibly different) local fields kα

when
∑

α∈A kα − rank(Gα) ≥ 2 (see [Marg–91], IV.4.10, and Example
VI below). They also include abelian locally finite groups, and more
generally torsion groups which are FC, namely which are such that all
their conjugacy classes are finite; in particular, they include groups of
the form MS(Γ) and MA(Γ).
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Theorem 4. Let Γ be a countable group and let ζ ∈ Z2(Γ,T). Con-
sider the following conditions:

(i) Γ is irreducibly ζ-represented;
(ii) MS(Γ) has a Γ-P-faithful irreducible ζ-representation;
(iii) MA(Γ) has a Γ-P-faithful irreducible ζ-representation.

Then (i) =⇒ (ii) ⇐⇒ (iii).
If, moreover, Γ has Property (Fab), then (ii) =⇒ (i), so that (i),

(ii), and (iii) are equivalent.

The hypothesis “Γ countable” is essential because our arguments use
measure theory and direct integrals; in fact, Theorem 4 fails in general
for uncountable groups (see Example (VII) in [BeHa–08], Page 863).
About the converse of (ii) =⇒ (i), see Example I below.

Recall that a group Γ has infinite conjugacy classes, or is icc, if
Γ 6= {e} and if any conjugacy class in Γr{e} is infinite. For example, a
lattice in a centreless connected semisimple Lie group without compact
factors is icc, as a consequence of Borel Density Theorem (see Example
VI).

Corollary 5. Let Γ be a countable group which has Property (Fab) and
which fulfills at least one of the three following conditions:

(i) Γ is torsion free;
(ii) Γ is icc;
(iii) Γ has a faithful primitive action on an infinite set.

Then, for any ζ ∈ Z2(Γ,T), the group Γ is irreducibly ζ-represented.

Indeed, any of Conditions (i) to (iii) implies that MS(Γ) = {e}.
Recall that, if Γ fulfills (iii) on an infinite set X, any normal sub-
group N 6= {e} acts transitively on X, and therefore is infinite (see
[GeGl–08]).

A group can be either irreducibly represented or not, and also either
irreducibly ζ-represented or not (for some ζ). These dichotomies sepa-
rate groups in four classes, each one illustrated in Section 2 by one of
Examples I to IV below. Examples V and VI illustrate the same class
as Example I.

Section 3 contains standard material on multipliers, and the defi-
nition of Γ-P-faithfulness; mind the “second standing assumption” on
the normalisation of multipliers, which applies to all other sections. In
Section 4, we review central extensions and prove Theorem 1. Sections
5 and 6 contain the proof of Theorem 4, respectively the part which
does not involve our “Property (Fab)” and the part where it appears.
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Section 7 contains material on (in)capability, and the proof of Propo-
sition 2. Section 8 describes a construction of irreducible P-faithful
projective representations of a class of abelian groups, and expands on
Example II. The last section is a digression to point out a fact from
homological algebra which in our opinion is not quoted often enough
in the literature on projective representations.

2. Examples

Example I. The implication (ii) =⇒ (i) of Theorem 4 does not
hold for a free abelian group Zn (n ≥ 1) and the unit multiplier2

ζ = 1 ∈ Z2(Zn,T). Indeed, on the one hand, Condition (ii) of Theo-
rem 4 is satisfied since MS(Zn) = {0}. On the other hand, since Zn

is abelian, any irreducible ζ-representation (that is any ordinary irre-
ducible representation) is one-dimensional, so that its projective kernel
is the whole of Zn, and therefore Zn is not irreducibly ζ-represented.
Moreover, Zn being for any n ≥ 1 a (dense) subgroup of T, it has an
irreducible faithful representation of dimension one.

Example II. There are groups which do not afford any irreducible
faithful representation but which do have projective representations
which are irreducible and P-faithful.

The Vierergruppe V = Z/2Z×Z/2Z, being finite abelian non-cyclic,
does not have any irreducible faithful representation. If ζ ∈ Z2(V,T) is
a cocycle representing the non-trivial cohomology class in H2(V,T) ≈
Z/2Z, then V has a ζ-representation of degree 2 which is both ir-
reducible and P-faithful, essentially given by the Pauli matrices (see
Section IV.3 in [Simo–96]).

Part of this carries over to any non-trivial finite abelian group of the
form L × L. More on this in Section 8.

Example III. Let us first recall a few basic general facts about irre-
ducible projective representations of a finite group Γ. The cohomology
group H2(Γ,T) is isomorphic to the homology group H2(Γ,Z), and is
finite. Choose a multiplier ζ ∈ Z2(Γ,T), say normalised (see Section
3 below). An element x ∈ Γ is ζ-regular if ζ(x, y) = ζ(y, x) whenever
y ∈ Γ commutes with x; it can be checked that a conjugate of a regular
element is again regular. Let h(ζ) denote the number of conjugacy
classes of ζ-regular elements in Γ. Then it is known that Γ has ex-
actly h(ζ) irreducible ζ-representations, up to unitary equivalence, say

2Recall that H2(Z,T) = {0}, because Z is free, so that

Z2(Z,T) = B2(Z,T) = Mapp(Z,T)/ Hom(Z,T).

Also H2(Zn,T) = Zn(n−1)/2 for all n ≥ 1.
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of degrees d1, . . . , dh(ζ); moreover each dj divides the order of Γ, and∑h(ζ)
j=1 d2

j = |Γ|. See Chapter 6 in [BeZh–98], in particular Corollary 10
and Theorem 13 Page 149.

Clearly h(ζ) ≤ h(1) for all ζ ∈ Z2(Γ,T). It follows from Lemma 11
below that, if ζ 6= 1, then dj ≥ 2 for all j ∈ {1, . . . , h(ζ)}.

Now, for the gist of this Example III, assume that Γ is a nonabelian
finite simple group. Then, except for the unit character, any representa-
tion of Γ is faithful and any projective representation of Γ is P-faithful.

Example IV. Let Γ be a perfect group. Its universal central extension

Γ̃ is a perfect group with centre the3 Schur multiplier H2(Γ,Z) and

central quotient Γ [Kerv–70]. If this Schur multiplier is not {0}, Γ̃
is incapable, and therefore does not have any irreducible P-faithful

projective representation (Corollary 3). If Γ is as in (i) or (ii) below, Γ̃
is moreover not irreducibly represented (by [Gasc–54] and [BeHa–08]):

(i) Γ is a finite simple group with H2(Γ,Z) not cyclic4. The com-
plete list of such groups is given in Theorem 4.236, Page 301 of
[Gore–82], and includes the finite simple group PSL3(F4), also
denoted by A2(4), one of the two finite simple groups of order
20160.

(ii) Γ is one of the Steinberg groups St3(Z) and St4(Z), which are
the universal central extensions of SL3(Z) and SL4(Z), respec-
tively. Indeed, van der Kallen5 [Kall–74] has shown that

H2(SL3(Z),Z) ≈ H2(SL4(Z),Z) ≈ Z/2Z × Z/2Z.

Thus, these groups are not irreducibly represented by [BeHa–08].
(For n ≥ 5, it is known that H2(SLn(Z),Z) ≈ Z/2Z; see
[Miln–71], Page 48. And H2(SL2(Z),Z) = {0}, see the com-
ments after Proposition 18.)

Example V. This example and the next one will show, besides the
Zn ’s of Example I, groups which are irreducibly represented, but which
do not have any irreducible P-faithful representation.

Any finite perfect group Γ with centre Z(Γ) cyclic and not {0} has
these properties, by Gaschütz theorem and by Corollary 3. This is for
example the case of the quasi simple group SLn(Fq) whenever the finite

3Recall that, for a perfect group Γ and a trivial Γ-module A, we have H2(Γ, A) ≈
Hom(H2(Γ,Z), A) as a consequence of the universal coefficient theorem for coho-
mology; in particular, H2(Γ,T) is the Pontryagin dual of the Schur multiplier. In
case H2(Γ,Z) is moreover finite, e.g. if Γ is perfect and finite, H2(Γ,T) is isomor-
phic to the Schur multiplier (non-canonically).

4If H2(Γ,Z) is cyclic not {0}, see Example V.
5Thanks to Andrei Rapinchuk for this reference.
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field Fq has non-trivial nth roots of unity, so that Z(SLn(Fq)) = {λ ∈
Fq | λn = 1} is cyclic and not {e}. (As usual, SL2(F2) and SL2(F3) are
ruled out.)

The groups SL2n(Z), for 2n ≥ 4, are perfect with centre cyclic of
order 2, and therefore incapable, so that Corollary 3 applies; the group
SL2(Z), which is not perfect, is also incapable (see Section 7). On
the other hand, since for all n ≥ 1 the minisocle of SL2n(Z) coincides
with its centre, of order 2, these groups do have representations which
are irreducible and faithful. These considerations hold also for the
symplectic groups Sp2n(Z), 2n ≥ 6, which are perfect [Rein–95].

Example VI.a. Let B be a finite set. For β ∈ B, let kβ be a local field
and Gβ be a nontrivial connected semi-simple group defined over kβ,
without kβ-anisotropic factor. Set G =

∏
β∈B Gβ(kβ), with its locally

compact topology which makes it a σ-compact, metrisable, compactly
generated group. Let Γ be an irreducible lattice in G.

If N is a finite normal subgroup of Γ, we claim that N is central in
Γ. If there are several factors (|B| ≥ 2), the claim is a consequence of
the fact that the projection of the lattice in each factor is dense, by
irreducibility. If |B| = 1, consider x ∈ N . The centraliser ZΓ(x) of
x in Γ is also a lattice in G because it is of finite index in Γ. By the
Borel-Wang density theorem (Corollary 4.4 of Chapter II in [Marg–91]),
ZΓ(x) is Zariski-dense in G, so that x commutes with every element of
G, and this proves the claim.

If follows that, if moreover the centre of G is finite cyclic, then
MS(Γ) = MA(Γ) is also a finite cyclic group, so that Γ is irreducibly
represented by [BeHa–08].

Example VI.b. To continue this same example, let us particularise
the situation to the case of a non-compact semi-simple real Lie group
G, which is connected, not simply connected, and with a non-trivial
centre. Let Γ be a lattice in G with a non-trivial centre Z(Γ). Denote

by Γ̃ the inverse image of Γ in the universal cover of G and by p : Γ̃ → Γ

the canonical projection. Observe that Z(Γ̃) = p−1(Z(Γ)). Choose a

set-theoretical section s : Γ → Γ̃ for p with s(e) = e and a character

χ ∈ Hom(Z(Γ̃),T). Define a mapping

ζ : Γ × Γ −→ T, ζ(x, y) = χ
(
s(x)s(y)s(xy)−1

)
.

It is straightforward to check that ζ is a multiplier, namely that ζ ∈
Z2(Γ,T).

[Classes of multipliers of this kind are not arbitrary. They correspond
precisely to those classes in H2(Γ,T) which are restrictions of classes in
the appropriately defined group H2(G,T). The latter group is known
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to be isomorphic to Hom(π1(G),T); see Proposition 3.4 in [Moor–64]
and [BaMi–00].]

It is obvious that, if χ extends to a unitary character χ̃ of Γ̃, then
ζ belongs to B2(Γ,T). Indeed, in this case ζ = ζν for ν : Γ −→ T
defined by ν(x) = χ̃(s(x)). Conversely, assume that ζ = ζν for some ν :
Γ −→ T with ν(e) = 1. As in the proof of Theorem 1.1 in [BaMi–00],

define v : Γ̃ −→ T by v(x) = χ(x−1s(p(x)))−1 for x ∈ Γ̃ (observe that

x−1s(p(x)) ∈ Z(Γ̃), so that v(x) is well-defined). One checks that

ζ(p(x), p(y)) = v(x)v(y)v(xy))−1 ∀x, y ∈ Γ̃.

It follows that the function χ̃ : Γ̃ −→ T, defined by χ̃(x) = ν(p(x))v(x)−1,

is a character of Γ̃ which extends χ.

As a consequence, if the intersection of Z(Γ̃) with the commutator

subgroup [Γ̃, Γ̃] is not reduced to {e}, we can find χ such that the
corresponding multiplier ζ does not belong to B2(Γ,T). We provide in
VI.c below an example for which this does occur.

We claim that Γ has no P-faithful irreducible ζ-representation. By
Theorem 4, it suffices to show that MS(Γ) has no Γ-P-faithful irre-
ducible ζ-representation.

The group MS(Γ) coincides with Z(Γ) as we have shown in Part

VI.a of the present example. Observe that s(x) ∈ Z(Γ̃) for every
x ∈ Z(Γ). We have therefore ζ(x, y) = ζ(y, x) for all x ∈ Z(Γ) and
y ∈ Γ. In particular, it follows that the restriction of ζ to Z(Γ) is trivial
(see Lemma 7.2 in [Klep–65]). Upon changing ζ inside its cohomology
class, we can assume that ζ(x, y) = 1 for all x, y ∈ Z(Γ).

Let σ be an irreducible ζ-representation of Z(Γ). Since the restriction
of ζ to Z(Γ) is trivial, we have Pker σ = Z(Γ). From the fact that
ζ(x, y) = ζ(y, x) for all x ∈ Z(Γ) and y ∈ Γ, it follows that PkerΓ σ =
Z(Γ); see Remark (B) after Proposition 8. Hence, σ is not Γ-P-faithful
since Z(Γ) is non-trivial by assumption.

Example VI.c. Let ∆ be the fundamental group of a closed surface
of genus 2, viewed as a subgroup of PSL2(R). Let Γ be the inverse
image of ∆ in SL2(R); observe that Z(Γ) is the two-element group.

The group Γ̃, the discrete subgroup of the universal cover of SL2(R)
defined in VI.b, has a presentation with (see IV.48 in [Harp–00])

generators: a1, a2, b1, b2, c
and relations: c is central, and [a1, b1][a2, b2] = c2.

In particular, the intersection of Z(Γ̃) with [Γ̃, Γ̃] is non trivial .
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3. Γ-P-faithfulness for projective representations
of normal subgroups of Γ

Let N be a normal subgroup of a group Γ and let ζ ∈ Z2(N,T). Let
σ be a ζ-representation of N .

For γ ∈ Γ, the mapping

N ∋ x 7−→ σ(γxγ−1) ∈ U(Hσ)

is in general not a ζ-representation of N , but is a ζγ-representation of
N , where ζγ ∈ Z2(N,T) is defined by

(6) ζγ(x, y) = ζ(γxγ−1, γyγ−1)

for all x, y ∈ N .
Suppose moreover that ζ is the restriction to N of some multiplier

on Γ. Then the multiplier ζγ is cohomologous to ζ; more precisely:

Lemma 6 (Mackey). Let ζ ∈ Z2(Γ,T), let σ be a ζ-representation of
N , and let γ ∈ Γ.

(i) Define a mapping νγ : N −→ T by νγ(x) = ζ(γ,x)ζ(γx,γ−1)
ζ(γ−1,γ)

. Then

(7)
ζγ(x, y)

ζ(x, y)
=

νγ(xy)

νγ(x)νγ(y)

for all x, y ∈ N . In particular, ζγ = ζ ∈ H2(Γ,T).
(ii) Define a mapping σγ : N −→ U(Hσ) by

(8) σγ(x) = ζ(γ, x)ζ(γx, γ−1) σ(γxγ−1).

Then

(9) σγ(x)σγ(y) = ζ(γ−1, γ)ζ(x, y) σγ(xy)

for all x, y ∈ N .

Proof. For (i), we refer to Lemma 4.2 in [Mack–58], of which the
proof uses (2) from Section 1. For (ii), we have

σγ(x)σγ(y) =

ζ(γ, x)ζ(γx, γ−1)ζ(γ, y)ζ(γy, γ−1)ζ(γxγ−1, γyγ−1) σ(γxyγ−1) =

ζ(γ, x)ζ(γx, γ−1)ζ(γ, y)ζ(γy, γ−1)

ζ(γ, xy)ζ(γxy, γ−1)

ζγ(x, y)

ζ(x, y)
ζ(x, y) σγ(xy) =

ζ(γ−1, γ)
νγ(x)νγ(y)

νγ(xy)

ζγ(x, y)

ζ(x, y)
ζ(x, y) σγ(xy) =

ζ(γ−1, γ)ζ(x, y) σγ(xy),

where we have used (i) in the last equality. �
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Equation (9) makes it convenient to restrict the discussion to nor-
malised multipliers.

Definition. A multiplier ζ on a group Γ is normalised if ζ(x, x−1) = 1
for all x ∈ Γ. A projective representation π of a group Γ is normalised
if π(x−1) = π(x)−1 for all x ∈ Γ.

(Some authors, see e.g. Page 142 of [BeZh–98], use “normalised” for
multipliers in a different meaning.)

Lemma 7. (i) Any multiplier ζ ′ on a group is cohomologous to a nor-
malised mutliplier ζ.

(ii) If ζ is a normalised multiplier on a group Γ, then

(10) ζ(y−1, x−1) = ζ(x, y)

for all x, y ∈ Γ.

Proof. (i) Let π′ be an arbitrary ζ ′-representation of Γ on a Hilbert
space H. Define J = {γ ∈ Γ | γ2 = e} and choose a partition Γ =
J ⊔ K ⊔ L such that ℓ ∈ L if and only if ℓ−1 ∈ K. For each γ ∈
J , choose zγ ∈ T such that (zγπ

′(γ))2 = idH. Define a projective
representation π of Γ on H by π(γ) = zγπ

′(γ) if γ ∈ J , by π(γ) = π′(γ)
if γ ∈ K, and by π(γ) = π′(γ−1)−1 if γ ∈ L. Then π is a normalised
projective representation of which the multiplier ζ is normalised and
cohomologous to ζ ′.

(ii) This is a consequence of the identity

π(x−1)π(y−1) =
1

ζ(x, y)
π(y−1x−1),

which is a way of writing Equation (3) when π is normalised. �

Proposition 8. Let Γ be a group, ζ ∈ Z2(Γ,T) a normalised multi-
plier, and N a normal subgroup of Γ. Let σ be a ζ-representation of
N ; for γ ∈ Γ, define σγ as in Lemma 6.

(i) The mapping
σγ : N −→ U(Hσ)

is a ζ-representation of N .
(ii) We have

(11) σγ1γ2 = (σγ1)γ2

for all γ1, γ2 ∈ Γ.

Proof. Claim (i) follows from Lemma 6, because ζ is normalised, and
checking Claim (ii) is straightforward. �

Second standing assumption. All multipliers appearing from now
on in this paper are assumed to be normalised.
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It is convenient to define now projective analogues of Γ-kernels, and
Γ-faithfulness, a notion already used in the formulation of Theorem 4.

Definitions. Let Γ be a group, N a normal subgroup, ζ ∈ Z2(Γ,T) a
multiplier, and σ : N −→ U(H) a ζ-representation of N .

(i) The projective Γ-kernel of σ is the normal subgroup

(12)

P kerΓ(σ) =
{
x ∈ Pker(σ)

∣∣ σγ(x) = σ(x) for all γ ∈ Γ
}

= Pker
( ⊕

γ∈Γ

σγ
)
.

of Γ.
(ii) The projective representation σ is Γ-P-faithful if P kerΓ(σ) =

{e}.

Remarks. (A) In the particular case ζ = 1, observe that P kerΓ(σ) is
a subgroup of kerΓ(σ) which can be a proper subgroup.

(B) Suppose that N is a central subgroup in Γ. For a ζ-representation
σ of N , we have

P kerΓ(σ) =
{
x ∈ Pker(σ)

∣∣ ζ(γx, γ−1)ζ(γ, x) = 1 for all γ ∈ Γ
}

.

Since

ζ(γx, γ−1)ζ(x, γ) = ζ(x, γ)ζ(xγ, γ−1) = ζ(x, 1)ζ(γ, γ−1) = 1

for every x ∈ Z(Γ) and γ ∈ Γ (recall that ζ is normalised), we have
ζ(γx, γ−1) = ζ(x, γ)−1 and therefore also

(13) P kerΓ(σ) =
{
x ∈ Pker(σ)

∣∣ ζ(x, γ) = ζ(γ, x) for all γ ∈ Γ
}

.

4. Extensions of groups associated to multipliers
Proof of Theorem 1

Consider a group Γ, a multiplier ζ ∈ Z2(Γ,T), and a subgroup A of
T containing ζ(Γ × Γ).

We define a group Γ(ζ) with underlying set A×Γ and multiplication

(14) (s, x)(t, y) = (stζ(x, y), xy)

for all s, t ∈ A and x, y ∈ Γ; observe that (s, x)−1 = (s−1, x−1), because
ζ is normalised. This fits naturally in a central extension

(15) {e} −→ A
s 7→(s,e)
−→ Γ(ζ)

(s,x) 7→x
−→ Γ −→ {e}.

We insist on the fact that Γ(ζ) depends on the choice of A, even if the
notation does not show it. Whenever H is a subgroup of Γ, we identify
H(ζ) with the appropriate subgroup of Γ(ζ).
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To any ζ-representation π of Γ on some Hilbert space H corresponds
a representation π0 of Γ(ζ) on the same space defined by

(16) π0(s, x) = sπ(x)

for all (s, x) ∈ Γ(ζ). Conversely, to any representation π0 of Γ(ζ) on
H which is the identity on A (namely which is such that π0(a) = a idH

for all a ∈ A) corresponds a ζ-representation π of Γ defined by

(17) π(x) = π0(1, x).

Lemma 9. (i) The correspondance π ! π0 given by Equations (16)
and (17) is a bijection between ζ-representations of Γ on H and repre-
sentations of Γ(ζ) on H which are the identity on A.

(ii) If π and π0 correspond to each other in this way, π is irreducible
if and only if π0 is so.

Assume moreover that the subgroup A of T contains both the image
ζ(Γ × Γ) of the multiplier and the subset

(18) Tπ := {z ∈ T | z idH = π(x) for some x ∈ Pker(π)}

of T.
(iii) If π and π0 are as above, π is P-faithful if and only if π0 is

faithful.

Observation. If Γ is countable, ζ(Γ×Γ) and Tπ are countable subsets
of T, so that there exists a countable group A as in (15) which contains
both Tπ and the image of ζ.

Proof. Claims (i) and (ii) are obvious. The generalisation of Claim
(i) for continuous representations of locally compact groups appears
as a corollary to Theorem 1 in [Klep–74]; see also Theorem 2.1 in
[Mack–58].

For Claim (iii), suppose first that π is P-faithful. If (s, x) ∈ ker(π0),
namely if sπ(x) = 1, then x ∈ Pker(π), so that x = e; it follows that
s = 1, so that (s, x) = (1, e). Thus π0 is faithful.

Suppose now that π0 is faithful. If x ∈ Pker(π), namely if there
exists s ∈ T such that sπ(x) = 1, then (s, x) ∈ ker(π0), so that s = 1
and x = e. Thus π is P-faithful. �

Proof of Theorem 1. Let π be an irreducible P-faithful projective
representation of Γ, of multiplier ζ. Choose a subgroup A of T contain-
ing ζ(Γ×Γ) and Tπ (as defined in Lemma 9). Let Γ(ζ) be as in (14) and
π0 be as in (16). Since π0 is irreducible and faithful (Lemma 9), Schur’s
Lemma implies that A is the centre of Γ(ζ), so that Γ ≈ Γ(ζ)/Z(Γ(ζ)).

If Γ is countable, Γ(ζ) can be chosen countable, by the observation
just after Lemma 9.



14 BACHIR BEKKA AND PIERRE DE LA HARPE

Conversely, let ∆ be a group such that Γ ≈ ∆/Z(∆) and let π0

be a representation of ∆ which is irreducible and faithful. Again by
Schur’s Lemma, the subgroup (π0)−1(T) coincides with the centre of
∆. Let µ : Γ −→ ∆ be any set-theoretical section of the projection
∆ −→ ∆/Z(∆) ≈ Γ, with µ(eΓ) = e∆. The assignment π : γ 7−→
π0(µ(γ)) defines a projective representation of Γ which is irreducible
and P-faithful, by Lemma 9. �

Our next lemma reduces essentially to Lemma 9.iii if N = Γ. It will
be used in the proof of Lemma 13.

Lemma 10. Consider a normal subgroup N of Γ and a ζ-representation
σ of N in some Hilbert space H. Let A be a subgroup of T containing
both ζ(N × N) and the subset

(19) Tσ,Γ := {z ∈ T | z idH = σ(x) for some x ∈ PkerΓ(σ)}

of T (compare with Equation (18)). Define N(ζ) and Γ(ζ) as in the
beginning of the present section. Then

(i) (σγ)0 = (σ0)γ for all γ ∈ Γ ;

(ii) P kerΓ(σ) =

{
x ∈ N

∣∣∣
there exists s ∈ A

with (s, x) ∈ kerΓ(ζ)(σ
0)

}
, so that, in

particular, σ is Γ-P-faithful if and only if σ0 is Γ(ζ)-faithful.

Proof. Checking (i) is straightforward.
To show (ii), let x ∈ P kerΓ(σ). Thus there exists s ∈ A such that

σγ(x) = s−1 idH for all γ ∈ Γ. Then, for all γ ∈ Γ, we have

(σ0)γ(s, x) = (σγ)0(s, x) = sσγ(x) = ss−1 idH = idH,

that is, (s, x) ∈ kerΓ(ζ)(σ
0).

Conversely, let x ∈ N be such that there exists s ∈ A with (s, x) ∈
kerΓ(ζ) σ0. Then, for all γ ∈ Γ, we have

σγ(x) = (σγ)0(1, x) = s−1(σγ)0(s, x) = s−1(σ0)γ(s, x) = s−1 idH,

that is, x ∈ P kerΓ(σ). �

Given a group Γ and a multiplier ζ ∈ Z2(Γ,T), a ζ-character of Γ is a
ζ-representation χ : Γ −→ T = U(C); we denote by Xζ(Γ) the set of all
these. Observe that, for χ1, χ2 ∈ Xζ(Γ), the product χ1χ2 is a character
of Γ in the usual sense, namely a homomorphism from Γ to T. Such a
homomorphism factors via the abelianisation Γ/[Γ, Γ], that we denote

by Γab. We denote by Γ̂ab the character group Hom(Γ,T). For further
reference, we state here the following straightforward observations.
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Lemma 11. Let Γ be a group and let ζ ∈ Z2(Γ,T).
(i) If ζ /∈ B2(Γ,T), then Xζ(Γ) = ∅.

(ii) If ζ ∈ B2(Γ,T), there exists a bijection between Xζ(Γ) and Γ̂ab.

Proof. (i) Suppose that there exists χ ∈ Xζ(Γ); then ζ(x, y) =
χ(x)χ(y)

χ(xy)
for all x, y ∈ Γ, so that ζ is a coboundary.

(ii) If ζ ∈ B2(Γ,T), there exists a mapping ν : Γ −→ T such that ζ is
related to ν as in Fromula (5), so that ν ∈ Xζ(Γ). For any χ ∈ Xζ(Γ),
observe that χν is an ordinary character of Γ, so that χ 7−→ χν is a

bijection Xζ(Γ) −→ X1(Γ) = Γ̂ab. �

5. Proof of (i) =⇒ (ii) ⇐⇒ (iii) in Theorem 4

The first proposition of this section is a reminder of Section 3 of
[Mack–58].

Proposition 12 (Mackey). A ζ-representation π of a countable group
Γ has a direct integral decomposition in irreducible ζ-representations,
of the form

(20) π =

∫ ⊕

Ω

πω dµ(ω).

Proof. Consider a subgroup A of T containing ζ(Γ×Γ) and the subset
Tπ defined in (18), the resulting extension Γ(ζ), and the representation
π0 of Γ(ζ) defined in (16). There exists a direct integral decomposition
in irreducible representations

π0 =

∫ ⊕

Ω

(π0)ω dµ(ω)

with respect to a measurable field ω 7−→ (π0)ω of irreducible represen-
tations of Γ(ζ) on a measure space (Ω, µ); see [Di–69C∗], Sections 8.5
and 18.7.

Since π0(s, x) = sπ(x) for all (s, x) ∈ Γ(ζ), we have (π0)ω(s, x) =
s (π0)ω(1, x) for all (s, x) ∈ Γ(ζ) and for almost all ω ∈ Ω. It follows
that, for almost all ω ∈ Ω, the mapping πω : Γ −→ U(Hω) defined by
πω(x) = (π0)ω(1, x) is a ζ-representation of Γ which is irreducible, and
(πω)0 = (π0)ω. Hence we have a decomposition as in (20). �

We isolate in the next lemma an argument that we will use in the
proofs of Propositions 14, 15, and 16.

Notation. Let Γ be a group and N a normal subgroup. We denote
by (Cj)j∈J the Γ-conjugacy classes contained in N and, for each j ∈ J ,
by Nj the normal subgroup of Γ generated by Cj.
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Lemma 13. Let Γ be a group, ζ ∈ Z2(Γ,T), and N a normal subgroup
of Γ. Let (Cj)j∈J and (Nj)j∈J be as above. Let A be a subgroup of T
containing ζ(Γ×Γ), as well as χ(x) for every χ ∈ Xζ(Nj), j ∈ J , and
x ∈ Nj. Let N(ζ) be the central extension of N corresponding to ζ and
A as in (15).

Then, for every ζ-representation σ of N , we have: σ is Γ-P-faithful if
and only if the corresponding representation σ0 of N(ζ) is Γ(ζ)-faithful.

Remark. This lemma will be applied in situations where Γ is a count-
able group. Observe that, if Γ is countable, there exists a countable
group A as in the previous lemma as soon as Γ has Property (Fab),
or more generally as soon as Nab

j is finite for all j ∈ J such that the

restriction of ζ to Nj is in B2(Nj,T).

Proof. In view of Lemma 10, it suffices to prove that A contains Tσ,Γ

for every ζ-representation σ of N .
Let z ∈ Tσ,Γ; choose x ∈ PkerΓ(σ) such that σ(x) = idHσ

. Let
j ∈ J be such that x ∈ Cj; we have Nj ⊂ PkerΓ(σ), because the latter
group is normal in Γ. The restriction of σ to Nj defines a ζ-character
χ ∈ Xζ(Nj) such that z = χ(x). This shows that z ∈ A, by the choice
of A. �

Implications (i) =⇒ (ii) and (i) =⇒ (iii) of Theorem 4 are partic-
ular cases of the following proposition, because the minisocle MS(Γ)
and the subgroup MA(Γ) of a countable group Γ have the properties
assumed for the group N below (Proposition 1 in [BeHa–08]).

Proposition 14. Let Γ be a countable group, N a normal subgroup,
and ζ ∈ Z2(Γ,T). Let (Cj)j∈J and (Nj)j∈J be as just before Lemma
13. Assume that the abelianised group Nab

j is finite for all j ∈ J such

that the restriction to Nj of ζ is in B2(Nj,T).
Let π be a ζ-representation of Γ and let

(21) σ := π|N =

∫ ⊕

Ω

σω dµ(ω)

be a direct integral decomposition of the restriction of π to N in irre-
ducible ζ-representations σω of N .

If π is irreducible and P-faithful, then σω is Γ-P-faithful for almost
all ω ∈ Ω.

Proof. The strategy is to reduce the proof to the case of ordinary
representations and to use Lemma 9 of [BeHa–08].

By hypothesis and by Lemma 11, Xζ(Nj) is finite (possibly empty)
for all j ∈ J . Since J is countable, we can choose a countable subgroup
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A of T containing ζ(Γ × Γ), as well as χ(x) for every χ ∈ Xζ(Nj),
j ∈ J , and x ∈ Nj.

Let Γ(ζ) and N(ζ) be as in (14); let π0 and σ0
ω be the representations

of Γ(ζ) and N(ζ) corresponding to the ζ-representations π and σω,
respectively. Because π is P-faithful, the subset Tπ defined in (18) is
reduced to {e} and therefore π0 is faithful (Lemma 9).

Since (see the proof of Proposition 12)

σ0 = π0|N =

∫ ⊕

Ω

σ0
ωdµ(ω),

the representation σ0
ω of N(ζ) is Γ(ζ)-faithful for almost all ω (Lemma

9 of [BeHa–08]). Therefore, by Lemma 13, σω is Γ-P-faithful for almost
all ω. �

The equivalence (ii) ⇐⇒ (iii) of Theorem 4 is a particular case of
the following Proposition.

Proposition 15. Assume that the normal subgroup N of Γ is a direct
product B × S of normal subgroups of Γ, and that S =

∏
i∈I Si is a

restricted direct product of finite simple nonabelian subgroups Si. As-
sume moreover that any Γ-invariant subgroup of B generated by one
Γ-conjugacy class has finite abelianisation.

The following conditions are equivalent:

(α) N has a Γ-P-faithful irreducible ζ-representation;
(β) B has a Γ-P-faithful irreducible ζ-representation.

Proof The proof of the implication (α) ⇒ (β) follows closely the
proof of Proposition 14, with one difference: one has to use the more
general version of Lemma 9 in [BeHa–08] which is mentioned at the
bottom of page 866 of this article.

For the converse implication, we assume now that B has a Γ-P-
faithful irreducible ζ-representation σ. The group S has a faithful
irreducible (unitary) representation, say ρ, such that ρ(x) /∈ T for all
x ∈ S, x 6= e, namely ρ is P-faithful; see the proof of Lemma 13 in
[BeHa–08] (this Lemma 13 contains a hypothesis ”A abelian”, but it is
redundant for the part of the proof we need here). The tensor product
σ ⊗ ρ is an irreducible ζ-representation of N . Since σ is Γ-P-faithful,
it follows from Lemma 12 of [BeHa–08] that σ ⊗ ρ is Γ-P-faithful. �

6. End of proof of Theorem 4

Let us first recall the definition of induction for projective represen-
tations, from Section 4 in [Mack–58].
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Let Γ be a group, ζ ∈ Z2(Γ,T) a multiplier, H a subgroup of Γ,
and σ : H −→ U(K) a ζ-representation. Let H be the Hilbert space of
mappings f : Γ −→ K with6 the two following properties:

◦ f(hx) = ζ(h, x) σ(h)(f(x)) for all x ∈ Γ and h ∈ H,
◦

∑
x∈Γ\H ‖f(x)‖2 < ∞.

The ζ-representation IndΓ
H(σ) of Γ is the multiplier representation of Γ

in H defined by

(22)
(
IndΓ

H(σ) (x) f
)
)(y) = f(yx)

for all x, y ∈ Γ.
It can be checked (see [Mack–58], Pages 273-4) that the represen-

tation
(
IndΓ

H(σ)
)0

of Γ(ζ) associated to IndΓ
H(σ) is the representation

Ind
Γ(ζ)
H(ζ)(σ

0) induced by the representation σ0 from H(ζ) to Γ(ζ).

The last claim of Theorem 4 follows from the next proposition.

Proposition 16. Let Γ be a countable group and let ζ ∈ Z2(Γ,T). Let
(Cj)j∈J and (Nj)j∈J be as just before Lemma 13, with N = Γ. Assume
that the abelianised group Nab

j is finite for all j ∈ J such that the

restriction to Nj of ζ is in B2(Nj,T).7

Let σ be a ζ-representation of the minisocle MS(Γ). Set π :=
indΓ

MS(Γ)(σ) and let

(23) π =

∫ ⊕

Ω

πωdµ(ω)

be a direct integral decomposition of π in irreducible ζ-representations
of Γ.

If σ is irreducible and Γ-P-faithful, then πω is P-faithful for almost
all ω ∈ Ω.

Proof. As for Proposition 14, the strategy is to reduce the proof to
the case of ordinary representations, and to use this time Lemma 10 of
[BeHa–08]. We write M for MS(Γ).

By hypothesis and by Lemma 11, we can choose a countable sub-
group A be a T containing the sets ζ(Γ × Γ) and Xζ(Nj)(x) for every
j ∈ J and every x ∈ Nj. We consider the corresponding extension Γ(ζ)
of Γ. Denote by π0 and π0

ω the representations of Γ(ζ) correspond-
ing to the ζ-representations π and πω of Γ, and similarly σ0 for the
representation of M(ζ) corresponding to the ζ-representation σ of M .

6We use H\Γ, rather than Γ/H as in [BeHa–08], which provides easier formulas.
7This assumption holds whenever Γ has Property (Fab).
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We have

π0 = ind
Γ(ζ)
M(ζ)σ

0 =

∫ ⊕

Ω

π0
ωdµ(ω).

In view of Lemma 13 applied to N = Γ, it suffices to show that π0
ω is

P-faithful for almost all ω.
Since σ is Γ-P-faithful, we have that σ0 is Γ-faithful (again by Lemma

13). It will follow from Lemma 10 in [BeHa–08] that π0
ω is faithful for

almost all ω provided we show that M(ζ) ∩ L 6= {e}, for every finite
foot L in Γ(ζ).

In order to check this condition, let L be finite foot in Γ(ζ). We
claim that L ⊂ M(ζ). Indeed, recall that, set-theoretically, we have
Γ(ζ) = A × Γ and M(ζ) = A × M ; thus, for any (t, y) ∈ L with
(t, y) 6= e, we have y ∈ M(= MS(Γ)), and therefore (t, y) ∈ M(ζ). �

7. Capable and incapable groups
Proof of Proposition 2

In Proposition 2, Claims (i) and (ii) are respectively Corollary 2.3
and part of Corollary 2.2 of [BeFS–79]. Claim (iii) is a consequence of
Claim (i), in a formulation and with a proof shown to us by Graham
Ellis [Ellis], see below. Corollary 3 is an immediate consequence of
Theorem 1 and Proposition 2.

Proof of Claim (iii) in Proposition 2. For a central extension

{e} → A → Γ → Γ/A → {e},

the Ganea extension of the Hochschild-Serre exact sequence in homol-
ogy with trivial coefficients Z is

A ⊗Z Γab −→ H2(Γ,Z) −→ H2(Γ/A,Z) −→
A −→ H1(Γ,Z) −→ H1(Γ/A,Z) −→ {0}

(see for example [EcHS–72]). If Γ is perfect (so that Γab = {0}), this
reduces to

{0} −→ H2(Γ,Z) −→ H2(Γ/A,Z) −→ A −→ {0}

and it follows from the definition of the epicentre of Γ that Z∗(Γ) =
Z(Γ). Thus Claim (iii) is a straightforward consequence of Claim (i)
of Proposition 2. �

It is well-known that any cyclic group C 6= {e} is incapable. Indeed,
suppose ab absurdo that C = ∆/Z(∆). Choose a generator s of C and
a preimage t of s in ∆; any δ ∈ ∆ can be written as δ = ztj for some
z ∈ Z(∆) and j ∈ Z, and two elements of this kind commute with
each other, so that ∆ is abelian, hence Z(∆) = ∆, incompatible with
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C 6= {e}. The next lemma, which appears on Page 137 of [Hall–40],
rests on an elaboration of the same argument.

Lemma 17. Let Γ be a group containing an element s0 6= e such that
the set

{s ∈ Γ | there exists n ∈ Z with sn = s0}

(where n can depend on s) generates Γ. Then Γ is incapable.

Proof. It suffices to show that, given any central extension

{e} −→ A −→ ∆
π

−→ Γ −→ {e},

s0 has a preimage t0 in ∆ which is central.
Let δ ∈ ∆. There exists

s1, . . . , sk ∈ Γ and j1, . . . , jk, n1, . . . , nk ∈ Z

such that

π(δ) = sj1
1 · · · sjk

k and sn1

1 = · · · = snk

k = s0.

For i = 0, . . . , k, choose a preimage ti of si in ∆. There exist a, a1, . . . , ak ∈
A with

δ = atj11 · · · tjk

k and ait
ni

i = t0 for i = 1, . . . , k.

It follows that t0 commutes with ti for i = 1, . . . , k, and thus that t0
commutes with δ, as was to be shown. �

Claims (i) to (v) of the following proposition are straightforward
consequences of Lemma 17, and the last claim follows from Theorem
1.

Proposition 18. The following groups are incapable:

(i) cyclic groups, quasicyclic groups Z(p∞), and the groups Z [1/m]
for all integers m ≥ 2;

(ii) finite abelian groups Z/d1Z × · · · × Z/dmZ,
(where n ≥ 2, d1, . . . , dm ≥ 2, d1|d2| · · · |dm)
with dm−1 < dm;

(iii) subgroups of Q;
(iv) SL2(Z) = 〈s, t | s2 = t3 is central of order 2〉;
(v) 〈s, t | sm = tn and (sm)k = 1〉 for m, n ≥ 1, k ≥ 2,

as well as 〈s, t | sm = tn〉.

In particular, these groups do not afford any irreducible P-faithful
projective representations.
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Remarks. About (i): for any prime p, the quasicyclic group Z(p∞)
is the subgroup of T of roots of 1 of order some power of p; equiva-
lently, Z(p∞) is the quotient Qp/Zp of the p-adic numbers by the p-adic
integers.

About (iii): there is a classification of the subgroups of Q, which is
is standard; see for example Chapter 10 of [Rotm–95].

About (iv), let us recall that SL2(Z) is generated by a square root(
0 1

−1 0

)
and a cubic root

(
0 −1
1 1

)
of the central matrix

(
−1 0

0 −1

)
.

Next, since SL2(Z) = 〈s, t | s2 = t3, s4 = 1〉 has deficiency ≥ 0 and
finite abelianisation (indeed SL2(Z)ab ≈ Z/12Z), it follows from Philip
Hall’s Inequality8 that H2(SL2(Z),Z) = {0}.

Similarly, H2(PSL2(Z),Z) = {0}. This follows alternatively from
the formula Hn(Γ1 ∗ Γ2,Z) ≈ Hn(Γ1,Z) ⊕ Hn(Γ2,Z) for n ≥ 1, see
Corollary 6.2.10 in [Weib–94]. But PSL2(Z) is capable, since its centre
is trivial.

About (v): the group SL2(Z) is of course a particular case of groups
in (v); if m and n are coprime and at least 2, the group 〈s, t | sm = tn〉
is a torus knot group.

8. On abelian groups

The next proposition rests on a construction which appears in many
places, including [Mack–49] and [Weil–64]. It is part of the Stone–von
Neumann–Mackey Theorem, see the beginning of [MuNN–91].

Let L be an abelian group, written multiplicatively. Consider the
group X(L) = Hom(L,T) of characters of L, with the topology of the
simple convergence, which makes it a locally compact abelian group.
By Pontryagin duality, we can (and do) identify L to the group of
continuous characters on X(L). Consider also a dense subgroup M of
X(L) and the direct product group L × M . The mapping

ζ : (L × M) × (L × M) −→ T, ((ℓ, m), (ℓ′, m′)) 7−→ m′(ℓ)

is a multiplier on L × M . Let A be a subgroup of T containing the
image of ζ. By definition, the corresponding generalised Heisenberg
group is

HA
L,M = A × L × M

8Namely: for a finitely presented group Γ, the deficiency of Γ is bounded by the
difference dimQ((Γ)ab ⊗Z Q) − s(H2(Γ,Z)), where s(H) stands for the minimum
number of generators of the group H; see e.g. Lemma 1.2 in [Epst–61]. Recall also
that the deficiency of a finite presentation of a group is the number of its generators
minus the number of its relations, and the deficiency of a finitely presented group
the maximum of the deficiencies of its finite presentations.
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with product defined by

(z, ℓ, m) (z′, ℓ′, m′) = (zz′ℓ(m′) , ℓℓ′ , mm′).

It is routine to check that the centre of HA
L,M is A.

Proposition 19. Any abelian group of the form L×M , with M dense
in X(L) as above, affords a projective representation which is irre-
ducible and P-faithful.

Proof. Let us sketch the definition and some properties of the “Stone–
von Neumann–Mackey representation” of HA

L,M on ℓ2(L); the latter is a

Hilbert space, with scalar product defined by 〈ξ | η〉 =
∑

ℓ∈L ξ(ℓ)η(ℓ).
For (z, ℓ, m) ∈ HA

L,M and ξ ∈ ℓ2(L), set

(R(z, ℓ, m)ξ)(x) = zm(x)ξ(xℓ) for all x ∈ L.

It can be checked that R(z, ℓ, m) is a unitary operator on H = ℓ2(L)
and that

R : HA
L,M −→ U(H)

is a representation of HA
L,M on H.

The space H has a natural orthonormal basis (δu)u∈L. It is easy to
check that

R(z, ℓ, m)δu = zm(uℓ−1)δuℓ−1 ,

so that the representation R is faithful. Observe that, for all u ∈ L and
m ∈ M , the vector δu is an eigenvector of R(1, 1, m) with eigenvalue
m(u). If

Vu = {ξ ∈ H | R(1, 1, m)ξ = m(u)ξ for all m ∈ M},

then Vu = Cδu is an eigenspace of dimension 1 and H =
⊕

u∈L Vu

(Hilbert sum).
Let now S ∈ L(H) be an operator commuting with R(1, 1, m) for

all m ∈ M . Since M is dense in X(L), for every u, v ∈ L with u 6= v,
there exists m ∈ M such that m(u) 6= m(v). As is easily checked, this
implies that S is diagonal with respect to the basis (δu)u∈L, namely that
there exist complex numbers su such that S(δu) = suδu for all u ∈ M .
Suppose moreover that S commutes with R(1, ℓ, 1) for all ℓ ∈ L; since
R(1, ℓ, 1)δu = δuℓ−1 , we have su = suℓ−1 for all u, ℓ ∈ L. Thus S is a
scalar multiple of the identity operator. It follows from Schur’s lemma
that the representation R is irreducible.

The representation R of HA
L,M provides a projective representation

of L × M which is irreducible and P-faithful. �

In particular, the following groups afford projective representations
which are irreducible and P-faithful:
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◦ Zn for any n ≥ 2, as Zn−1 is a dense subgroup of X(Z) ≈ T.
◦ Z(p∞) × Z, as Z is a dense subgroup of X(Z(p∞)) ≈ Zp. For

the latter isomorphism, see e.g. [Bour–67], chap. 2, § 1, no. 9,
cor. 4 of prop. 12; Z(p∞) is as just after Proposition 18.

◦ Qn for any n ≥ 2. Indeed, let us check this for n = 2, the
general case being entirely similar. The group X(Q) can be
identified with A/ϕ(Q); here A is the group of adeles of Q and
ϕ : Q −→ A is the diagonal embedding of Q in A (recall that
ϕ(Q) is discrete and cocompact in A). More precisely, let χ0

be a non-trivial character of A with χ0|ϕ(Q) = 1. Then the
mapping

Φ : A −→ X(Q), a 7−→ (q 7→ χ0(aϕ(q)))

factorizes to an isomorphism A/ϕ(Q) → X(Q) (see Chapter 3
in [GGPS–90]). Fix a0 ∈ A with a0 /∈ ϕ(Q) and define a group
homomorphism

f : Q −→ X(Q), f(q) = Φ(a0ϕ(q)).

Then f is injective since a0ϕ(q) /∈ ϕ(Q) for all q ∈ Q∗. We
claim that the range of f is dense. Indeed, assume that this
is not the case. By Pontryagin duality, there exists q0 ∈ Q∗

such that f(q)(ϕ(q0)) = 1 for all q ∈ Q. This means that
χ0(a0ϕ(q0q)) = 1 for all q ∈ Q, that is, Φ(a0ϕ(q0)) is the trivial
character of Q. This is a contradiction, since a0ϕ(q0) /∈ ϕ(Q).

Note that Proposition 19 carries over to dense subgroups of groups of
the form B × X(B), with B a locally compact abelian group.

The case of finite groups is covered by a result of Frucht [Fruc–31].
For a modern exposition (and improvements9), see Page 166 of [BeZh–98].

Proposition 20 (Frucht). For a finite abelian group Γ, the two fol-
lowing properties are equivalent:

(i) Γ affords a projective representation which is irreducible and
P-faithful;

(ii) there exists a (finite abelian) group L such that Γ is isomorphic
to the direct sum L × L.

9Any finite abelian group affords two irreducible projective representations of
which the direct sum is P-faithful. For a characterisation of those finite groups
which have a faithful linear representation which is a direct sum of k irreducible
representations, see Page 245, and indeed all of Chapter 9, in [BeZh–98].
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Observation, from [Sury–08]. Consider a prime p, the “Heisenberg
group” H below, and its noncyclic centre Z(H):

H =




1 Fp Fp2

0 1 Fp2

0 0 1


 ⊃ Z(H) =




1 0 Fp2

0 1 0
0 0 1


 ≈ Fp2 ≈ Fp ⊕ Fp

(where the last ≈ indicates of course an isomorphism of additive groups,
not of rings!). The quotient H/Z(H) ≈ Fp ⊕ Fp2 is an abelian group
of which the order p is not a square, and therefore which does not have
the properties of Proposition 20, but which is however a capable group.

Recall (from just after Proposition 19) that Z3 affords a projective
representation which is irreducible and P-faithful, and compare with
Claim (ii) of Proposition 20.

9. Final remarks

In some sense, what follows goes back for finite groups to papers by
Schur, from 1904 and 1907. For the general case, see Sections V.5 and
V.6 in [Stam–73], [EcHS–72], and [Kerv–70].

A stem cover of a group Γ is a group Γ̃ given with a surjection p onto

Γ such that ker(p) is central in Γ̃, contained in [Γ̃, Γ̃], and isomorphic
to H2(Γ,Z). Any group has a stem cover. The isomorphism type of

Γ̃ is uniquely determined in case Γ is perfect, but not in general. For
example, the dihedral group of order 8 and the quaternion group both

qualify for Γ̃ if Γ is the Vierergruppe.
To check the existence of stem covers, consider H2(Γ) := H2(Γ,Z)

as a trivial Γ-module, the short exact sequence

{0} → Ext(Γab, H2(Γ)) → H2(Γ, H2(Γ)) → Hom(H2(Γ), H2(Γ)) → {0}

of the universal coefficient theorem in cohomology, and a multiplier ζ
in Z2(Γ, H2(Γ)) of which the cohomology class ζ is mapped onto the
identity homomorphism of H2(Γ) to itself. Then the corresponding
central extension

{0} −→ H2(Γ) −→ Γ̃
p

−→ Γ −→ {1},

in other words the central extension of characteristic class ζ, is a stem
cover of Γ. Stem covers of Γ are classified (as central extensions of
Γ by H2(Γ)) by the group Ext(Γab, H2(Γ,Z)); see Proposition V.5.3 of
[Stam–73], and Theorem 2.2 of [EcHS–72]. In particular, if Γ is perfect,
it has a unique stem cover, also called its universal central extension.
If Γ is finite, its stem covers are also called its Schur representation
groups.
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Let p : Γ̃ −→ Γ be a stem cover. For any central extension

{0} −→ A −→ ∆̃
q

−→ ∆ −→ {1}

with divisible kernel A (more generally with A such that Ext(Γab, A) =
{0}) and for any homomorphism ρ : Γ −→ ∆, there exists a homomor-

phism ρ0 : Γ̃ −→ ∆̃ such that ρ(p(γ̃)) = q(ρ0(γ̃)) for all γ̃ ∈ Γ̃; see
Proposition V.5.5 of [Stam–73]. In particular, for a Hilbert space H
and a homomorphism π : Γ −→ PU(H), there exists a unitary rep-

resentation π0 : Γ̃ −→ U(H) such that π(p(γ̃)) = pH(π0(γ̃)) for all

γ̃ ∈ Γ̃.
Observe that, if Γ is countable, H2(Γ) is countable (this follows for

example from the Schur-Hopf formula H2(Γ) = R∩ [F, F ]/[F, R] where

Γ = F/R with F free), so that Γ̃ is also countable.

It would be interesting to understand, say for the proof of Theorem
4, if and how one could use the stem cover(s) of Γ instead of the groups
Γ(ζ) which appear in Section 4.
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C.P. 64, CH–1211 Genève 4.
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