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Abstract

Most of statistical procedures consist in estimating parameters by minimizing (or maximizing) some
criterion, a minimizing parameter is also called in the statistical literature M-estimator, [4]. So to com-
pute an M-estimator consists in finding a global minimum. Depending on the statistical problem and
the available information, the criterion to minimize may be more or less complicated: non convex, no
gradient, non smooth etc... moreover generally only evaluations of the criterion are reachable. Thus, it
can be difficult in practice to compute a M-estimator. We propose a new procedure to compute a global
minimum, using a stochastic algorithm to take advantage of various smooth versions of the criterion.
We will call it S2Dyn for Stochastic & Smooth Dynamic algorithm.
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1 Introduction

Let H : Θ −→ R be some mapping, or criterion function, where Θ = R
k. Moreover, we assume that H

has a unique global minimum θ over Θ noted θ̂. Hence the problem is to compute

θ̂ = Argmin
θ∈Θ

H(θ) .(1)

A classical example is the maximum likelihood estimator where H takes the form

H(θ) =

n∑

i=1

log(pθ(Yi)) ,

where Y1, ..., Yn are i.i.d random variables drawn from a distribution Q and {pθ, θ ∈ Θ} is some family
of density functions. In the case of a gaussian family of mean µ = θ and variance σ2 = 1, the function
H becomes (see Figure 1(a))

H(θ) =

n∑

i=1

(Yi − θ)2 + C ,

where C is a constant independent of θ. Here, one computes

θ̂ = Argmin
θ∈Θ

n∑

i=1

(Yi − θ)2 =
1

n

n∑

i=1

Yi .

There are also cases where a simple Newton algorithm is enough to compute θ̂. However, the function
H can be complicated, for instance if it is the result of a "complex" statistical modeling. Indeed, let us
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consider the estimators resulting in the statistical procedures introduced in the work of N. Rachdi et al.
[7] :

θ̂ = Argmin
θ∈Θ

n∑

i=1

Ψ




m∑

j=1

ρ̃F (h(Xj ,θ)) , Yi


(2)

where Y1, ..., Yn are i.i.d random variables drawn from a distribution Q, X1, ...,Xm are i.i.d random
variables drawn from a distribution Px, F is some feature space, Ψ : F → L1(Q) is a F-contrast,
ρ̃F : Y → F is some weight function and h is a computer code. Here, the function H is

H(θ) =
n∑

i=1

Ψ




m∑

j=1

ρ̃F (h(Xj ,θ)) , Yi


 .

For instance, let us consider the case of the log-contrast Ψ(ρ, y) := − log(ρ(y)) and the weight function

ρ̃F (y)(·) :=
1√
2π b

e(
· −y

b
)2 with a bandwidth b. The bandwidth b, in fact bθ, is computed from the sample

h(Xj ,θ), j = 1, ...,m for θ ∈ Θ, by Silverman’s rule-of-thumb :

bθ = 1.06m−1/5 σ̂θ ,

where σ̂θ is the empirical standard deviation of the sample h(Xj ,θ), j = 1, ...,m.
Finally H becomes

H(θ) = −

n∑

i=1

log




m∑

j=1

e(h(Xj ,θ)−Yi)
2/b2

θ


+ C,(3)

where C is a constant independent of θ .

Let us recall that h is a computer code, viewed as a black-box 3, which represents a physical phenomenon.
Typically, h gives solutions of differential equations etc... The computation of θ̂ is given by

θ̂ = Argmin
θ∈Θ

−
n∑

i=1

log




m∑

j=1

e(h(Xj ,θ)−Yi)
2/b2

θ


 .(4)

We should take into account two important issues. First, the function can be highly non-convex (with
many local minima), second we don’t have the analytical expression of the gradient. Figure 1(b) shows
an example in dimension one of function H resulting of this modeling.

2 Smoothness and stochastic algorithm

In this section, we attempt to overcome irregularities (many critical points) or non-smoothness of the
function H by making a convolution with some appropriate function, and we will see how naturally
appears a stochastic algorithm.
The smoothness method is taken from [6] where the main idea is to minimize a modified function
smoother than H while controlling the degree of smoothness, instead of minimizing directly H. How-
ever, when the modified function is a convolution of the criterion H with some function, one has to
compute multi-dimensional integrals. This limits, in general, the use of such method in high dimensions.
Moreover, in many applications, H is not analytically known, but only computable, which make the
computation of a smooth version of H intractable. In this paper we propose optimization procedures
based on stochastic algorithms to compute the minimizer, which in any case overcomes the computation
of multi-dimensional integrals to get a smooth version of H.

Let gσ2 σ > 0, the normal probability density function (p.d.f.) with variance σ2.
Let us denote by Hσ the convolution of H and gσ2

Hσ(θ) :=

∫

Θ

H(θ − w) gσ2(w)dw, σ > 0 .(5)

3black-box: function known only through its input and output values
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(a) (b)

Figure 1: (a) Function H for the mean of a gaussian with known variance. (b) Function H for a one
dimensional complex statistical modeling.

By noting that gσ(·) =
1
σk g(

·
σ ), we show the following basic lemma.

Lemma 2.1. Let C(Θ) be the space of all continuous functions on Θ.
If H ∈ C(Θ), then

∀θ ∈ Θ , Hσ(θ) −→
σ→0

H(θ) .

If H is integrable, then
∀θ ∈ Θ , Hσ(θ) −→

σ→+∞
0 .

The previous lemma shows the smoothing control of the function H by the transformation (5).

Remark 2.1. The convolution with the p.d.f gσ can be generalized to any other p.d.f. f on R
k . by

defining

fσ(·) =
1

σk
f
( ·

σ

)
,

Let us consider the following function as an academic example

H(θ) = θ2 + a sin(bθ) ,(6)

with a > 0 and b > 0. It is easy to show that

Hσ(θ) = θ2 + a sin(bθ) e−(b σ)2/2 + σ2 .(7)

Remark 2.2. Notice that we have Hσ(θ) −→
σ→0

H(θ) but not Hσ(θ) −→
σ→+∞

0 since for large σ > 0,

H(θ) ≈ θ2 + σ2, which is a very smooth function.

Figure 2 shows the behavior of the function Hσ (with a = 1 and b = 6) with respect to the parameter
σ .

Now the challenge is to compute the minimizer of Hσ which would be, a priori, more tractable than
the minimizer of H. However, Hσ(θ) requires the knowledge of H which is supposed to be unknown
analytically. Also, the computation of Hσ(θ) needs to integrate on Θ ∈ R

k which can be difficult in
general, especially if k is large. The following remark is the key of this work.
Notice that

Hσ(θ) =

∫

Θ

H(θ − w) gσ2(w)dw = EWσ∼g
σ2

(H(θ −W σ)) ,(8)
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Figure 2: Illustration of the transformation (7) for different values of σ, with a = 1 and b = 6.

where W σ ∼ gσ2 means that W σ is a random variable with p.d.f. gσ2 . To use classical notation from
the stochastic algorithms literature, we will denote

H(θ − w) = H(θ, w) .

By the display (8), i.e Hσ(θ) = EWσ∼g
σ2

(H(θ,Wσ)), we propose to use stochastic algorithms to
compute the minimizer of Hσ. Given a sequence of random variables (W σ

t )t≥1 i.i.d from the distribution
gσ2 , and sequences of real numbers (γt)t≥0, (δt)t≥0 decreasing to zero (both may depend on σ), we
form the following Kiefer-Wolfowitz algorithms ( [1] p. 53 ) for each σ > 0:

(KW )





θσ
0 ∈ Θ

(
∇̂t+1H(θσ

t )
)
l
=

H(θσ
t + δt+1e

l,Wσ
t+1)−H(θσ

t − δt+1e
l,Wσ

t+1)

2 δt+1

θσ
t+1 = θσ

t − γt+1 ∇̂t+1H(θσ
t )

(9)

where (el)l=1,...,k is the canonical basis of R
k. Let us notice that we use a single sequence (W σ

t )t≥1

and not a two independent sequences (W σ
t )t≥1 and (W̃ σ

t )t≥1 as the Kiefer-Wolfowitz algorithms are
classically introduced. Of course a simple adaptation would produce a SPSA algorithm, but this is not
a key point in this article. We recall the seminal result of Kiefer&Wolfowitz:

Theorem 2.1. Classical Kiefer-Wolfowitz theorem (see Proposition 1.4.28 in [2])
Let f : R → R be a function defined as f(x) = E(U(x)) where U(·) is some random function. Let us

define the iterative Kiefer-Wolfowitz procedure as follows

xt+1 = xt − γt+1
U(xt + δt+1)− U(xt − δt+1)

δt+1
,

for some sequences (γt)t and (δt)t decreasing to zero as t → +∞. If the three assumptions are satisfied
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•
∑

t≥0

γt = +∞,
∑

t≥0

(
γt

δt

)2

< +∞ (H1).

• E(U2(x)) ≤ K(1 + x2) for some constant K

• f has a unique global minimum noted x∗, is twice differentiable and strictly convex such that

|f
′′

(x)| ≤ K(1 + |x|) ,

then xt −→
t→+∞

x∗ almost surely (a.s).

Remark 2.3. Let us consider the (KW) algorithm in (9). Suppose that Hσ ∈ C2(Θ) and ∇2Hσ is Lips-
chitz and positive definite, and that the sequences γ = (γt)t≥0, δ = (δt)t≥0 decreasing to zero satisfy H1.

Then, for all σ > 0

θσ
t −→

t→+∞
θ̂σ := Argmin

θ∈Θ
Hσ(θ) (a.s.) .

3 Stochastic & Smooth Dynamic algorithm.

We are not interested in finding the global minimer of Hσ but that of H. InTo this purpose let us
consider the previous (KW) algorithm (9) with the parameter σ depending on t. Let us denote by
σ := (σt)t≥0, γ := (γt)t≥0, and δ := (δt)t≥0 three sequences of real numbers decreasing to zero. We
propose the following S2Dyn algorithm.

Algorithm 1 S2Dyn algorithm

Require: σ : t 7→ σt, γ, δ, θ0, ǫ, Tdyn

generate independent W1, ...,WTdyn
with Wt ∼ gσt

while ‖∇̂t+1H(θt)‖ > ǫ & t ≤ Tdyn do

(
∇̂t+1H(θt)

)
l
=

H(θt + δt+1e
l,Wt+1)−H(θt − δt+1e

l,Wt+1)

2 δt+1

θt+1 = θt − γt+1 ∇̂t+1H(θt)

end while

return θt

Remark 3.1. The term of Dynamic comes from the fact that the function Hσt
changes in time, con-

verging toward the "true" function H.

The function σ : t 7→ σt will be called smoothing function and we will see in the next section that its
behavior is crucial for the convergence of our algorithm.

Remark 3.2. The stochastic process {θt, t ≥ 0} provided by the Algorithm 1 is a Markov Chain.

4 Simulated examples.

In this section, we test our algorithm on the 1D function (6) (with a = 1 and b = 6), on the 2D
Rosenbrock function and on some particular multi-optima function. In all what follows we will consider
the following parameters:

ǫ = 10−5, Tdyn = 3500, ∆t = 5.10−2.
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4.1 1D example.

H(θ) = θ2 + sin(6θ) .

H has a unique global minimum at θ = −0.2424938 .

Figure 3: test function H(θ) = θ2 + sin(6θ).

In order to be in the practical conditions mentioned in the introduction, see (2) and (4), we suppose
that we don’t have at disposal the gradient of H, because H is a black box, and that we cannot compute
Hσ (which is in fact given by (7)).

Let us consider the following sequences: γt =
10−1

t
and δt =

10−1

t0.4
(notice that these sequences satisfy

conditions of Theorem 2.1).

We present the evolution of θt versus t at 10 different starting points θ0, for three smoothing functions.

In Figure 4, we consider the trivial smoothing function σt = 0 for all t ∈ [0, Tdyn], i.e there is no dynamic
and Hσ=0 = H . It amounts to local methods (we see that θt converges to the nearest minimum).
In Figure 5 and Figure 6 we consider two others smoothing functions, where the first function decreases
rapidly and the other one decreases slowly. It appears that for a suitable function σ (which does not
decrease too fast), the process {θt, t ∈ [0, Tdyn]} converges (in some sense) to the minimum for all
starting points (Figure 6 right).

4.2 2D examples.

Rosenbrock function.

Now, let us consider the Rosenbrock function

H(θ1, θ2) = (θ1 − 1)2 + 100 (θ2 − θ21)
2 .

H has a unique global minimum at (θ1, θ2) = (1, 1) .

We use the S2Dyn algorithm with the following sequences: γt =
1

103 + t0.6
and δt =

10−2

t0.4
. The ob-

tained minimum value is (θ1, θ2)min = (0.9856077, 0.9713646) and the Rosenbrock function evaluated
at this point is Hmin = 2.07× 10−4 .

Figure 8 shows the smoothing function used in the algorithm (8a) and the graph of convergence (8b).
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Figure 4: Convergence of the S2Dyn algorithm vs. behaviour of (decreasing rate of) the smoothness
function σ, taken equal to 0. The graph on the right represents the convergence of the S2Dyn for 10
initial points.

Figure 5: Convergence of the S2Dyn algorithm vs. behaviour of (decreasing rate of) the smoothness
function σ, which decreases "rapidly". The graph on the right represents the convergence of the S2Dyn

for 10 initial points.
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Figure 6: Convergence of the S2Dyn algorithm vs. behaviour of (decreasing rate of) the smoothness
function σ, which decreases "slowly". The graph on the right represents the convergence of the S2Dyn

for 10 initial points.

Figure 7: Rosenbrock function

(a) (b)

Figure 8: (a) Smoothing function. (b) S2Dyn algorithm applied to the Rosenbrock function.
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Multi-optima function.

Let us consider the function

H(θ1, θ2) =
sin(3θ1)

θ1 − 3
+

sin(5θ2)

θ2 + 5
+ 0.6 θ22 − 0.3 θ1 ,

for θ1 ∈ [−1.5, 1.5] and θ2 ∈ [−1, 1.5] . (See Figure 9).

(a) (b)

Figure 9: (a) Plot of the multi-optima function. (b) Contour visualization.

In order to highlight the “global” aspect of our method, we have chosen arbitrarily 3 initial points from
which we have run the S2Dyn algorithm (see Figure 10(b)). The sequences (γt)t≥0 and (δt)t≥0 are the

same as in the previous example (Rosenbrock function), i.e γt =
1

103 + t0.6
and δt =

10−2

t0.4
. Again we

considered 3 smoothing functions given Figure 10(a) .

(a) (b)

Figure 10: (a) Plot of the smoothing functions used. (b) Initial points chosen for the optimisations.
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(a) (b)

(c)

Figure 11: (a) Algorithm convergence using the smoothing function in “dotted” line. (b) Algorithm con-
vergence using the smoothing function in “dashed” line. (c) Algorithm convergence using the smoothing
function in “solid” line.

Figure 11 shows the results obtained by running the S2Dyn algorithm at the 3 initial points and by
considering 3 different smoothing functions. We clearly see the crucial role of the smoothing function. In
particular, we may notice that the smoothing functions in Figure 10(a) have roughly the same “shape”
and only differ from their initial value σ(0). Hence, one can say that the convergence results given in
Figure 11 depend on the initial value σ(0), for some given shape of the smoothing function.
Now, let us investigate for instance what happens when fixing σ(0) and varying the shape. Figure
12 shows a simulation by considering three smoothing functions which have the same value at t = 0,
σ(0) = 0.5, and with different shapes.
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(a) (b)

Figure 12: (a) Smoothing functions. (b) Algorithm convergence.

5 About the convergence of the algorithm.

The S2Dyn algorithm writes :

(10) ∀l, 1 ≤ l ≤ k, θlt+1 = θlt − γt+1

H(θt + δt+1e
l,W

σt+1

t+1 )−H(θt − δt+1e
l,W

σt+1

t+1 )

2δt+1

We will use the framework of the Kushner & Clark theorem (see [5]) to analyze its behavior. We set:

H(θt + δt+1e
l,W

σt+1

t+1 )−H(θt − δt+1e
l,W

σt+1

t+1 )

2δt+1
= ∇H l(θt) + ηlt+1 .

The notation ∇H l means that we consider the l-th component of ∇H. We have :

H(θt + δt+1e
l,W

σt+1

t+1 )−H(θt − δt+1e
l,W

σt+1

t+1 )

2δt+1
= ∇H l(θt,W

σt+1

t+1 )+
δt+1

4
(∇2H l,l(ξt,1,W

σt+1

t+1 )−∇2H l,l(ξt,2,W
σt+1

t+1 )),

where ξt,1 and ξt,2 belongs to (θt− δt+1e
l,θt+ δt+1e

l), and the notation ∇2Hi,j stands for the element
of the Hessian matrix ∇2H at the i-th row and j-th column.

Let us assume that for all θ ∈ Θ:

E∇H l(θ,W
σt+1

t+1 ) = ∇H l
σt+1

(θ) , l = 1, . . . , k.

So that setting ∇H l(θt,W
σt+1

t+1 ) − ∇H l
σt+1

(θt) = εlt+1, we have E(εlt+1|Ft) = 0 where Ft is the σ-field
generated by (W σ1

1 , . . . ,W σt

t ).

We have obtained the decomposition ηlt+1 = εlt+1 + rlt+1, with :

rlt+1 = ∇H l
σt+1

(θt)−∇H l(θt) +
δt+1

4
(∇2H l,l(ξt,1,W

σt+1

t+1 )−∇2H l,l(ξt,2,W
σt+1

t+1 )).

Thus, denoting ǫt+1 = (ε1t+1, . . . , ε
k
t+1)

T , and rt+1 = (r1t+1, . . . , r
k
t+1)

T the algorithm now writes:

(11) θt+1 = θt − γt+1(∇H(θ) + ǫt+1 + rt+1).
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We use the classical assumptions required on H and the positive steps γ and δ for the convergence of a
stochastic gradient algorithm, whose our algorithm is a perturbation.

Assumption H

H1.

∞∑

1

γt = ∞;

∞∑

1

(
γt

δt
)2 < ∞; lim

t→∞
γt

δ2t
= 0;

H2. H is of class C2; H ≥ 0; lim
‖θ‖→∞

H(θ) = ∞; ∇H and ∇2H are lipschitz with constant L; it exists

C such that ‖∇H(θ)‖2 ≤ C(1 +H(θ)).

It remains to control the two perturbations ǫ and r. One can easily check that it exists two positive
constants A, B such that

E(‖εt+1‖
2|Ft) ≤ Aσ2

t+1 and ‖rt+1‖ ≤ B (σt+1 + δ2t+1) .

As σt and δt tend to 0, rt+1 tends to 0.
Thus we are in position to apply a theorem of convergence of stochastic gradient algorithm (see [1], [3]).

Theorem 5.1. Assume assumption H holds. Then a.s. H(θt) converges and

∞∑

t=1

γt‖∇H(θt)‖
2 < ∞.

The main consequence is that θt is a.s. bounded. So we may apply the O.D.E. method of Kushner &
Clark [5]:

Theorem 5.2. Under the previous assumption H and if ∇H has isolated zeros, then θt a.s. converges
toward a θ∗ such that ∇H(θ∗) = 0.

Unfortunately, as σt tends to 0 we cannot claim that θ∗ is a global minimum of H.
To understand what happens, we make an assumption on the functions Hσ, σ > 0.

Assumption A
Assume that there exist two finite sequences σ0 > σ1 > . . . > σN = 0 and θ0,θ1, . . . ,θN such that : θ0

is the unique and global minimum of Hσ0
, θ0 belongs to the basin of attraction of θ1 which is a local

minimum of Hσ1
, more generally θj−1 belongs to the basin of attraction of θj which is a local minimum

of Hσj
, and θN is the global minimum of H.

This means that we may find a "cascade" of (local) minima of Hσj
that leads to the global minimum

of H via a succession of basins of attractions.

Then we may have the following heuristic reasoning: if we run the algorithm with σ0 a long enough
time, θt approches θ0 (uniqueness of the minimum of Hσ0

), thus it belongs to the basin of attraction
of θ1. Now we change σ0 into σ1. As γt is small enough θt stays in this basin, so by Kushner & Clark
lemma it converges to θ1, so it stays in a basin of attraction of θ2. Now we change σ1 into σ2 and so
on. We may expect that if we run the algorithm with a slowly decreasing sequence σt taking values
σj , 0 ≤ j ≤ N , θt will converge to θN .

6 Conclusion

Here we have presented an attempt to find the global minimum of a "complex" function via a sequence
of smoothings.
The point is that to compute a smoothed version of the function to minimize is in general far too
difficult. So we proposed to avoid this difficulty by introducing the smoothing as the effect of a stochastic
approximation scheme.
The simple examples we tested are convincing, nevertheless we are far from having a practical charac-
terisation of functions at which this method may be applied. This will be the topic of a future work.
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