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Abstract

Most of statistical procedures consist on estimating parameters by minimizing (or
maximizing) some criterion. A minimizing parameter is also called in the literature
M-estimator, [2|. Depending on the statistical problem and the available information,
the criterion may be more or less complicated: non convex, no gradient, non smooth
etc... Thus, it can be difficult in practice to compute a M-estimator. We propose a new
algorithm to compute the parameters, mixing stochastic algorithms and smoothness
technics. We will call it S2Dyn for Stochastic & Smooth Dynamic algorithm.

1 Introduction

Let H : © — R be some mapping, or criterion function, where © is a convex and compact
set of R¥. Moreover, we assume that H has a unique global minimum @ over © noted 6,
hence the problem is to compute

6 = Argmin H() . (1)
6cO

A classical example is the mazimum likelihood estimator where H takes the form

H(8) = Zlog(po(Yi))-

where Y1, ..., Y, are i.i.d random variables drawn from a distribution @) and {pg, 8 € ©}
is some family of density functions. In the case of a gaussian family of mean y = 6 and
variance 02 = 1, the function H becomes simply (see figure 1(a))

!Institut de Mathématiques de Toulouse - EADS Innovation Works, 12 rue Pasteur, 92152 Suresnes
2Université Paris Descartes, 45 rue des saints péres, 75006 Paris



HO)=) (Yi-0)+C,
i=1
where C' is some constant independent of 8. Here, one computes

0= ArgmmZY 0)* ZY

0co T

There are also cases where a simple Newton algorithm is enough to compute 0. However,
the function H can be complicated, for instance if it is the result of a "complex" statis-
tical modeling. Indeed, let consider the estimators resulting in the statistical procedures
introduce in the work of Rachdi et al. [4] :

0= Argmin Z v (Z pr(h Yi> (2)

6co i—1

where Y7, ..., Y, are i.i.d random variables drawn from a distribution @), F is some feature
space, ¥ : F — Ly(Q) is a F-contrast, pr : ) — F is some weight function and A is a
computer code. Here, the function H is

->v (Z Fr(h(X,.8)): n) .

In this paper we consider the case of the log-contrast W(p;y) := —log(p(y)) and the weight
function pr(y)(-) = \/;?b e5*)” with a bandwidth b. The bandwidth b, in fact be, is
computed from the sample h(X;,0), j = 1,...,m for 8 € ©, by the Silverman’s rule-of-
thumb :

be = 1.06m™° 64,

where g is the empirical standard deviation of the sample h(X;,8), j =1,...,m.
Finally H becomes

=— > log (Z e(h(xf"”—m?/b%) +C, (3)
i=1 j=1

where C' is some constant independent of 0 .

Recall that h is a computer code, viewed as a black-boz3, simulating a physical phenomenon.
Typically, h gives solutions of differential equations etc... That implies two important things
in order to investigate an algorithm for computing

0= Argmin — Zlog (Z e((X3,6)= /b2> : (4)

6co

3black-box: function known only through its input and output values
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smooth criterion (basic modeling) unsmooth criterion (complex modeling)

(a) (b)

Figure 1: (a) Function H for the mean of a gaussian with known variance. (b) Function H
for a one dimensional complex statistical modeling.

First, the function can be highly non-convex (with many local minima), second we don’t
have the analytical expression of the gradient. The figure (1b) shows an example of function
H resulting of this modeling.

2 Smoothness and stochastic algorithm

In this section, we attempt to overcome irregularities or unsmoothness of the function H, by
making a convolution by some appropriate function, and we will see how naturally appears
a stochastic algorithm.

The smoothness method is taken from [3] where the main idea is that instead of minimizing
directly H, it is to minimize a modified function, smoother than H while controlling the
degree of smoothness. However, when the modified function is a convolution of the criterion
H with some function, one has to compute multi-dimensional integrals. That makes, in
general, not possible the method in high dimension. Moreover, in many applications H is
not analytically known, only computable. In this paper we propose optimization procedures
based on stochastic algorithms to compute the minimizer, which in any case overcome the
computation of the multi-dimensional integrals.

Let gs be the probability density function of a centered random variable of R¥, and ¥
be the diagonal matrix (k x k) diag(o?,...,0%). For simplicity, suppose that 0% = o7, [ =
1,...,k, where ¢ > 0, and denote by gs = g,2. Denote by Ag the Lebesgue measure on ©
and denote by L;(Ae) the space of all integrable functions under the measure \g.



H,(0) := /@H(@ —w) go2(w)dw, o >0, (5)

which are the convolution of H and g,2.

Lemma 2.1. Let C(©) be the space of all continuous functions on ©.
If H € C(©), then
VO, H,(0)— H(O).

o—0

If H € Li(No), then
VeeoO, H,(0) — 0.

o—+00

The previous lemma shows the smoothing control of the function H by the transformation

(5)-

Let consider the following function as an academic example

H(0) = 0* + asin(b0), (6)

for some constants a > 0 and b > 0. It is easy to show that

H,(0) = 6%+ asin(b@) e /2 4 52 (7)

Remark 2.1. Notice that we have H,(0) — H(0) but not H,(6) — 0 (H ¢ Li(Xe)).

o—-+00

However, for large o > 0, H(0) ~ 6* + o2 that is very smooth.

The figure (2) shows the behaviour of the function H, (with a = 1 and b = 6) with the
parameter o .

Now the challenge is to compute the minimizer of H, which would be, a priori, more
tractable than those of H. However, to compute H,(0) requires the knowledge of H that
is suppose not known analytically. Also, the computation of H,(0) needs to integrating on
© € R” that can be difficult in general, especially if & is large. The following remark is the
motivation of this work.

Notice that

1,(0) = [ H(0 = ) gelu) = By, (0= W7)) ®

where W7 ~ g,2 means that W is a random variable distributed from the density g,2. For
notational simplicity, we will denote abusively

H(O0 —w)=H(0,w).
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—— true criterion ( sigma =0
- smoothed criterion { sigma = 0.2) A
smoothed criterion { sigma = 0.5) i)

Figure 2: Illustration of the transformation (7) for different values of o, with a = 1 and
b=6.

By the display (8), i.e Hy(0) = Ewo~gy , (H(6,W7)), we propose to use stochastic al-
gorithms to compute (approximate) the minimizer of H,. Given a sequence of random
variables (W/);>1 ii.d from the distribution g,2, and sequences of real numbers (V;):>0,
(0¢)¢>0 decreasing to zero (both may depend on o), we form the following Kiefer-Wolfowitz
algorithms ( [1] p. 53 ) for each o > 0:

0] €O
~ o . H(O? + (5t€l, th) — H(O? — (Stel, th)
awy { (VD) = 25, (9)

9150+1 = 9? = Vt+1 ﬁtH(etJ)

where <€l)l:1,.,.7k is the canonical basis of RF.

Theorem 2.1. Kiefer- Wolfowitz Algorithm convergence

Let consider the (KW) algorithm in (9). Suppose that H, € C*(©) and V?H, is Lipschitz
and positive definite, and that the sequences v = (Vt)i>0, 0 = (0)i>0 decreasing to zero
satisfy

° Z% = +00

>0



. Z(%)2<+oo.

>0 N\t

Then, for all o > 0

07 T 07 = Argmin H,(0) almost surely
—Tee 6co

3 Construction of the S?Dyn algorithm

3.1 Sequential approach
The method consists on using sequentially the algorithm (KW) in (9).

Algorithm 1 Sequential method
Require: {0y >0, > ... > 0,01 > 0, =0}, 7, d, 07°, Ty
Construct the sequence Tj11 =1} + Tseq, 1 €{0,...,q— 1}, Ty =0
for ¢ from 0 to ¢ do
generate independent Wy, ..., Wz ~with Wi ~ g,
for ¢ from 0 to T,., — 1 do

(@tH(egi))l _ H(O7 +6,¢, W;gfl)z—atﬂ(egi e
07, = 07 — Yoiq1 Verr H(OT)
end for
o = or.,
end for

return 67!
seq

Remark 3.1. Notice that the number of iterations T., could be considered depending on
the smoothing parameter o, for instance Tg, decreases with o would mean that we allow
more iterations for non smooth functions.

This sequential point of view can be extended to a dynamic one where the parameter o
depends on the time ¢, satisfying oy P 0.
——400

3.2 Stochastic & Smooth Dynamic algorithm

Now we consider the (KW) algorithm (9) with parameter o depending on ¢. Let denote by
0= (0¢)t>0, 7 = (M)1>0, and d := (d;)>0 sequences of real numbers decreasing to zero. We
propose the following S?Dyn algorithm.



Algorithm 2 S?Dyn algorithm
Require: o :t— oy, 7, 0, Oo, Tiyn

generate independent Wy, ..., Wr, =~ with Wi ~ g,
for ¢ from 0 to Ty, — 1 do

~ H(O, + 6.6, Wyy1) — H(0, — e, W,
(th(Ot)>l: ( t t t+1) ( t t t+1)

20y
011 =0 — Y1 §tH(0t)

end for

return 07,

Remark 3.2. The term of Dynamic would mean that along the time the function H,,
changes, converging toward the "true" function H.

Notice that the Sequential method (Algorithm 1) is a particular case of the Dynamic one
(Algorithm 2). Indeed, let consider the sequences {og > o1 > ... > 0,01 > 0, = 0} and
(T1)o<i<q—1 such that T, = 0 and Tj4; = 1} + Ty, Hence, the sequential algorithm is
equivalent to the dynamic algorithm by taking

q—1
o= Vg (t)or.
=0

Moreover, we have that Ty, = ¢ T, -
The function o : t — o, will be called smoothing function and we will see in the next section
that its behaviour is crucial for the convergence our algorithm.

Remark 3.3. The stochastic process {0;,t > 0} provided by the Algorithm 2 is a Markov
Chain.

4 Simulation study

In this section, we test our algorithm on the 1D function (6) (with @ = 1 and b = 6), and
on the 2D Rosenbrock function.

4.1 1D example
H(0) = 6> +sin(60) .

H has a unique global minimum at 8 = —0.2424938 .
In order to be in the practical conditions mentioned in the introduction, see (2) and (4),
we suppose that we do not dispose of the gradient of H and that we can not compute H,
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Test function
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Figure 3: test function H(0) = 62 + sin(6 6).

(which is given by (7)).

Now let consider the S?Dyn algorithm with the following configurations.

Let the "time" be Ty, = 1500 with time step At = 5.1072. Then, consider the following
. 1071 1071

sequences (or functions): v, = ; and &, = o

conditions of Theorem (2.1)).

(notice that these sequences satisfy

The figure (4) presents the evolution of 6, in ¢ at different starting points, for three smoothing
functions. In the figure (4a), we consider the trivial smoothing function o, = 0 for all
t € [0, Tyyn), e.g there is no dynamic during the time, H,_o = H and it amounts to local
methods (we see that 6, converges to the nearest minimum).

In the figures (4b) and (4c) we consider two others smoothing functions, the first decreases
rapidly (b), and the other one decreases slowly (¢). It appears that for a suitable function
o (that not decreases too fast), the process {0;, t € [0, Ty,,]} converges (in some sense) to
the minimum for any starting points (figure (4c) right).
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Figure 4: Convergence of the S?2Dyn algorithm

smoothness function o.

vs. behaviour of (decreasing rate of) the




4.2 2D example

Now, let consider the Rosenbrock function
H(01,05) = (6; — 1)* +100 (6, — 67) .
H has a unique global minimum at (6;,6) = (1,1).
Rosenbrock function
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Figure 5: Rosenbrock function

We use the S?Dyn algorithm with the following sequences: 7; =

102
$0-4 ’

+ 10

1
05 and §; =

For Ty,, = 3300 and a time step At = 5.1072%, the obtained minimum value is

(01, 02) min = (0.9856077,0.9713646) and the Rosenbrock function evaluated at this point is

Hpin = 2.07 x 107

The figure (6) shows the smoothing function used in the algorithm (6a) and the graph of

convergence (6b).
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Figure 6: (a) Smoothing function. (b) S?Dyn algorithm applied to Rosenbrock function.
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