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Abstract

The von Bertalanffy growth curve has been commonly used for modeling ani-
mal growth (particularly fish). Both deterministic and stochastic models exist in
association with this curve, the latter allowing for the inclusion of fluctuations or
disturbances that might exist in the system under consideration which are not al-
ways quantifiable or may even be unknown. This curve is mainly used for modeling
the length variable whereas a generalized version, including a new parameter b ≥ 1,
allows for modeling both length and weight for some animal species in both isometric
(b = 3) and allometric (b �= 3) situations.

In this paper a stochastic model related to the generalized von Bertalanffy growth
curve is proposed. This model allows to investigate the time evolution of growth
variables associated both with individual behaviors and mean population behavior.
Also, with the purpose of fitting the above mentioned model to real data and so
be able to forecast and analyze particular characteristics, we study the maximum
likelihood estimation of the parameters of the model. In addition, and regarding
the numerical problems posed by solving the likelihood equations, a strategy is
developed for obtaining initial solutions for the usual numerical procedures. Such
strategy is validated by means of simulated examples. Finally, an application to real
data of mean weight of swordfish is presented.
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1 Introduction

Von Bertalanffy [19] introduced an equation to study the growth of individuals
belonging to several types of animal populations. As most growth models,
it comes from an adaptation of the Verhulst logistic growth by assuming a
maximal value of the growth variable (which might eventually be attained),
and considering the growth rate as proportional to the difference between
maximal and current value. It is currently the most common model used by
fishery biologists to study growth in fish and its interpretations, such as fish
population dynamics and the effects of fishery regulations on the catch.

The von Bertalanffy growth curve is

L(t) = L∞
[
1− e−k(t−a)

]
; t ≥ a; k > 0, (1)

where L∞ is the upper bound for the variable under study, that can only be
reached after infinity time and k is the curvature parameter, or von Bertalanffy
growth rate) that determines the speed with which the fish attains L∞. As
regards the parameter a, sometimes named the initial condition parameter,
it determines the time at which the fish has a size equal to zero and could
be negative (in the biological literature is common to note this parameters as
t0, but we have used a in order to avoid confusion with the notation usually
employed for the initial instant in the context of stochastic processes). From
a biological point of view, this question is meaningless because growth in
the embryonic stage usually does not fit the von Bertalanffy growth pattern.
Nevertheless, it is important to note that fish sufficiently aged to be exploited,
as for consumption, show a trend modeled by the von Bertalanffy curve. The
embryonic stage has then no interest in this context.

A general expression for the von Bertalanffy curve, also called “generalized
von Bertalanffy growth curve” (see Garćıa-Rodŕıguez et al. [5] and references
therein), is

B(t) = B∞
[
1− e−k(t−a)

]b
; t ≥ a; k > 0; b ≥ 1, (2)

where the parameter b can be known or unknown. For example, the value b = 1
(curve (1)) is used when the variable under study is the length. However when
focusing on the weight, and taking into account the existing relation between
the weight and the length, the value b = 3 is associated with the isometric

growth, whereas the case b �= 3 is related to the allometric growth.

Curves (1) and (2) provide appropriate deterministic models to describe the
growth (in length or weight) of fish and others animals. The study of proce-
dures in order to determine the parameters of such curves for fitting real data
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has been widely considered. For example, Rafail [15] developed a procedure
based on a straight-line relationship between the natural logarithms of growth
increments per unit of age against age as the independent variable.

Nevertheless, such models do not include variability among individuals of the
same age, or environmental variability (fluctuations or disturbances that might
exist in the system under consideration).

In order to take these variations into account, several stochastic models have
been considered in the literature. The first type of model, according to the
classification provided by Russo et al. [17], are those described by a stochas-
tic differential equation, obtained by including a noise term in the ordinary
differential equation of the respective deterministic model.

In this context, and as concerns the Bertalanffy growth model, Lv and Picth-
ford [14] have recently considered three stochastic models, associated with the
curve (1). Said models are built from stochastic differential equations with
identical von Bertalanffy deterministic parts and different stochastic terms,
to show, among other points, that stochasticity can have positive impact on
fish recruitment. Gudmundsson’s [6] criticism of such models is that the so-
lution for these differential equations may not be strictly increasing. From
this point of view, the aforementioned models may not be appropriate for the
study of some growth variables, like length, that are not subject to decreasing
(Weatherly and Gill [21]).

Such defect, real from a theoretical point of view, is practically diluted in
practice. In the practical application of this type of models, the noise term has
a moderate magnitude (see Gutiérrez et al [9] in the context of Gompertz-type
growth). This feature makes the sample paths of the resulting processes show
von Bertalanffy-like behavior patterns, except for the presence of small random
fluctuations. In addition, if the resulting stochastic model verifies that its mean
function is a von Bertalanffy growth curve, the use of the model for fitting and
predicting is fully justified. On the other hand, such defect disappears if the
stochastic model is associated with the von Bertalanffy generalized curve. This
allows for the study of weight-to-age (generalizing the case for length-to-age)
since the evolution of the animal’s weight in time is not necessarily a strictly
increasing function.

The second type of stochastic models are those that assume that the param-
eters of the von Bertalanffy curve are different for each member of the pop-
ulation and are thus considered random variables with a certain probability
distribution.

Among the authors that deal with this second type of models, we must empha-
size the one by Cheng and Kuk [3], that considered the parameters of the model
as random effects following a trivariate normal distribution. More recently,
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Tóvar-Ávila et al. [18] considered a reparametrization of the von Bertalanffy
growth rate using three different probability distribution functions: Weibull,
gamma and log-normal. Such models show an increasing behavior and con-
sider individual variations, but are limited by the fact that they do not account
for environmental variations, caused by multiple factors which are not always
quantifiable or may even be unknown.

Russo et al. [17], in order to overcome the flaws of the two types of mod-
els already mentioned, introduced a type of stochastic models related to the
von Bertalanffy curve as a solution for stochastic equations that include a
subordinator (a class of strictly increasing stochastic processes which make
the solution process of the stochastic equation also increasing). Such models
account for both individual and environmental sources of randomness.

In practical situations, the use of a stochastic model for fitting, making fore-
casts or drawing conclusions about the particular growth of the individuals of
a population or about the mean population growth, requires the estimation of
the unknown parameters of the model.

As a first approach along this line, some authors, such as Kimura [11], have
studied likelihood methods under the assumption of independent and normally
distributed errors using classic nonlinear least square methods. Later, Wang
[20] introduced unbiased estimating functions for a class of growth models that
incorporate stochastic components and explanatory variables. More recently,
Hart and Chute [10] introduced a novel linear mixed-effects method for esti-
mating von Bertalanffy growth parameters from growth increment data that
lack explicit age information. In Cheng and Kuk [3] the problem of estimat-
ing the parameters of their already mentioned model is considered (see also
Laslett et al. [13] for a discussion of the results).

Russo et al [17] also dealt with the problem of parameter estimation based
on the probability distributions of the growth variable in each of the observed
time instants.

Nevertheless, in the case of models described by stochastic processes that
are a solution of stochastic differential equations, an efficient estimation of
parameters must be based on data that provide information of the evolution
of variables along time (sample paths). Thus such estimation must be based
on data which can be of two types:

• Data related to the time evolution of the variable of interest (length, weight,
...) for each individual of a sample of the population.

• Data relative to the characteristic of interest taken at different time instants
from recapture. In this case, data belong to different individuals. This is the
most usual case, since measuring growth variables for the same individual
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at successive time instants can be time-consuming and expensive. For this
reason, it is common to consider a single sample path composed of the mean
of the recapture data in each time instant.

In the first case, and using several sample paths, it is possible to estimate a
model related to the particular growth of individuals, whereas in the second
case, and from a single sample path, the estimated model is associated with
the mean population growth.

Thus, the aim of this article is twofold. Firstly, the introduction of a stochastic
model (specifically a diffusion process) to model behavior patterns associated
with the generalized von Bertalanffy curve (2) that allows the consideration
of both length and weight for some animal species. To this end, the model
is obtained by applying the methodology developed by Gutiérrez et al. [9] in
the context of gompertzian growth: from the deterministic equation, whose
solution is the curve of interest, a stochastic component is introduced as well
as the condition that the mean function of the resulting diffusion process be
a curve of the type (2) (that fits well the sample data and can be used for
forecasting purposes) is imposed. The building of the model as well as the
study of some of its characteristics (probability distribution of the process,
mean, mode and quantile functions) is presented in sections 2 and 3. For
point predictions the mean and the mode functions can be used, whereas
for interval predictions, the quantile functions provide intervals containing
the growth variable of the process, for each time, with a specific probability.
Furthermore, the consideration of a diffusion process in this context will allow
the study of time variables, such as first-passage-times, associated with von
Bertalanffy type growth models.

Secondly, since the purpose of model is to fit and forecast real data, the next
objective is the estimation of the model. In section 4 an inferential study of the
parameters of the process is carried out (particularly their maximum likelihood
estimation) on the basis of discrete sampling (in both cases, by considering
one or several sample paths). In addition, and regarding the numerical prob-
lems posed by solving the likelihood equations, in subsection 4.1 a strategy is
developed for obtaining initial solutions in order to apply the usual numeri-
cal procedures. Such strategy is validated by means of simulated examples in
section 5. Finally, in section 6 the possibilities of the new stochastic model, rel-
ative to fit, forecasting and first-passage-times, are illustrated by means of an
application to real data of mean weight of swordfish in Southeastern Pacific.
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2 The generalized von Bertalanffy diffusion process

Before introducing the diffusion process, we will obtain an equivalent expres-
sion for the generalized von Bertalanffy curve (2), more suitable for our pur-
pose. We will consider that the observations of the variable under study are
made from a time instant t0 ≥ 0, with x0 > 0 the observed value at t0 . With
this realistic hypothesis in mind, and taking into account (2), we deduce that
a < t0, since this function is increasing and verifies B(a) = 0. On the other
hand, as we suppose B(t0) = x0, and denoting c = eka, we conclude that

B∞ =
x0

(1− ce−kt0)b , (3)

from where

B(t) = x0

(
1− ce−kt

1− ce−kt0

)b

, t ≥ t0 >
ln c

k
; k > 0; b ≥ 1. (4)

Now we introduce the new diffusion process related to the curve (4). To this
end, we follow the methodology considered in Gutiérrez et al. [9] in which
several methods are presented in order to introduce a diffusion process in the
context of gompertzian growth. Specifically, we look for a process in which
the solution of the Fokker-Planck equation, without noise, is such a curve. In
addition, the resulting process must verify that the mean function conditioned
on the initial value, E[X(t)|X(t0) = x0], coincides with (4), which is specially
useful for the purposes of forecasting.

Following the same scheme presented there, let us consider the first order
equation verified by the transition probability density of the process, f ≡
f(x, t|x0, t0),

∂f

∂t
= − bck

ekt − c

∂

∂x
[xf ] , x > 0, t ≥ t0

with the initial condition limt→t0f(x, t|x0, t0) = δ(x− x0). Its solution is

f(x, t|x0, t0) = δ

⎛⎝x− x0

(
1− ce−kt

1− ce−kt0

)b
⎞⎠ ,

which implies that the population under consideration increases according
to (4). Now, we consider the Fokker-Planck equation of the homogeneous

6



Acc
ep

te
d m

an
usc

rip
t 

lognormal diffusion process with infinitesimal moments A1(x) = mx and
A2(x) = σ2x2 (m, σ > 0),

∂f

∂t
= − ∂

∂x
[mxf ] +

σ2

2

∂2

∂x2
[x2f ], x > 0, t ≥ t0,

and modify the infinitesimal mean by multiplying it by the term bck/
(
ekt − c

)
.

Thus, we obtain

∂f

∂t
= − bck

ekt − c

∂

∂x
[xf ] +

σ2

2

∂2

∂x2
[x2f ], x > 0, t ≥ t0, (5)

that is, the forward equation of a new diffusion process with infinitesimal
moments

A1(x, t) =
bck

ekt − c
x (6)

A2(x, t) =σ2x2 .

It is obvious that the solution (5), when σ2 vanishes, is the curve (4).

Alternatively, the process can be obtained from the Langevin equation

dX(t)

dt
=

bck

ekt − c
X(t) + X(t)σW (t), (7)

where W (t) denotes the standard Wiener process The derivation of (7) can be
achieved from the deterministic growth equation

dx(t)

dt
=

bck

ekt − c
x(t), x(t0) = x0, (8)

which can be seen as a generalization of the malthusian growth model with a
deterministic fertility depending on the time, r(t) = bck/

(
ekt − c

)
, and replac-

ing this fertility with r(t) + σW (t). Moreover, equation (7) has an important
meaning in terms of how the population increases. In fact, this equation can
be expressed in the form

dX(t)

dt
= mX(t)[1− ϕ(X(t), t)],

where ϕ(x, t) = 1− bck/
(
ekt − c

)
− (1/m) σW (t) is the well-known regulation

function (see Capocelli and Ricciardi [2]) that, over time, introduces several
changes into m, the growth rate of the Malthusian model.
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By rewriting (7) in the usual form for stochastic differential equations, that is

dX(t) =
bck

ekt − c
X(t)dt + σX(t)dW (t), (9)

its solution is a non-homogeneous diffusion process {X(t); t � t0} taking values
on R

+ and with infinitesimal moments

A1(x, t) =h(t)x (10)

A2(x, t) =σ2x2,

where h(t) = bck/
(
ekt − c

)
or h(t) = bck/

(
ekt − c

)
+ σ2/2 according to

whether the Itô or the Stratonovich integral is used to solve it, respectively.
In addition, it is not difficult to show that the mean function, conditioned on
the initial value x0, is

E [X(t)|X(t0) = x0] = x0 exp

⎛⎝ t∫
t0

h(s)ds

⎞⎠

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0

(
1− ce−kt

1− ce−kt0

)b

for the Itô solution

x0

(
1− ce−kt

1− ce−kt0

)b

exp
(

σ2

2
(t− t0)

)
for the Stratonovich solution.

(11)

From (11), and taking into account our objectives, the usefulness of the model
to fit and forecasting purposes, the Itô solution must be chosen (note that in
the case of the Stratonovich solution, the mean is not even a bounded curve),
so we introduce a new von Bertalanffy-type diffusion process associated with
the curve (4) as the diffusion process {X(t); t � t0} defined on R

+ and with
infinitesimal moments given by (6).

Finally, another way to develop this process, in the line shown by Albano and
Giorno [1] in the Gompertzian case, is based on the discretization of (8) and
then its randomization (see Appendix A for more details).

In short, the diffusion process presented is a stochastic model associated with
the generalized von Bertalanffy curve (2), or its rewriting as (4), which ac-
counts for both individual and environmental variability. Its main advantages
are:

• Unlike other existing stochastic models, related to the von Bertalanffy curve
(1) and useful to study the length of some animal species, the model under
discussion allows to study both length and weight.
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• Its mean function is a generalized von Bertalanffy curve, which justifies it
use for the fitting and prediction of real data with such a behavior pattern.

In addition, one of the advantages of using this sort of model for the study of
dynamic phenomena is that it allows to consider some questions about their
evolution through time variables. For instance, the study of time variables as
the time an animal takes to reach the minimum size at which it can be sold
for consumption, or the time a population takes to reach a certain size, can be
of great interest. Problems like these may be solved by obtaining the density
function of the first-passage-time through a constant boundary. The applica-
tion developed in section 6 deals with a problem of this type, illustrating the
model’s usage for this end.

3 Probability distribution and some characteristics of the process

The probability distribution of the process, determined by the finite-dimensional
distributions, can be obtained from the theory of stochastic differential equa-
tions, as solution of (9), or employing the theory of partial differential equa-
tions from the forward equation, (5), and the Kolmogorov or backward equa-
tion

∂f

∂t0
+

bck

ekt0 − c
x0

∂f

∂x0
+

σ2

2
x2

0

∂2f

∂x2
0

= 0, x0 > 0, t ≥ t0.

In [8] both approaches have been developed in the context of the lognormal
diffusion process with exogenous factors, of which the von Bertalanffy process
is a particular case. In this case, the transition probability density function of
the process is

f(x, t|y, s)=
1

x
√

2πσ2(t− s)

× exp

⎛⎜⎝−1

2

[
ln
(

x
y

)
− b ln

(
1−ce−kt

1−ce−ks

)
+ σ2

2
(t− s)

]2
(t− s)σ2

⎞⎟⎠ , t > s,(12)

which corresponds to a lognormal distribution, that is,

[X(t)|X(s) = y] ∼ Λ

[
ln y + b ln

(
1− ce−kt

1− ce−ks

)
− σ2

2
(t− s); (t− s)σ2

]
.(13)

Because of the Markovian property of the process, from (13) and the ini-
tial distribution, we can calculate the finite-dimensional distributions. In this

9



Acc
ep

te
d m

an
usc

rip
t 

case, we consider two initial distributions: a degenerate distribution, that is,
P [X(t0) = x0] = 1, and a lognormal distribution, X(t0) ∼ Λ(μ0, σ

2
0), these

choices ensuring that the finite-dimensional distributions are lognormal. We
must remark that the former choice can be seen as a particular case of the
second considering σ0 = 0 and μ0 = ln(x0). Moreover, the degenerate initial
distribution is the real situation when only a sample path is available, whereas
the lognormal case requires several trajectories. In any case, the random vector
(X(t1), . . . , X(tn)) follows an n−dimensional lognormal distribution Λn(μ, Σ),
where

μi = μ0 + b ln

(
1− ce−kti

1− ce−kt0

)
− σ2

2
(ti − t0), i = 1, . . . , n,

and

Σij = σ2
0 + σ2(Min{ti, tj} − t0), i, j = 1, . . . , n.

We now describe the main characteristics of the process, focussing particularly
on the three most commonly employed in practice, especially for forecasting
purposes. These characteristics are the mean function (which by the structure
of the model is a type (2) curve, and thus particularly appropriate for fitting
and predicting), the mode function (that provides, for each time, the most
probable value of the growth variable) and the quantile functions (which allow
to make predictions through intervals that contain the growth variable for each
time, with a specific probability). Its expressions can be formulated jointly for
the two initial distributions under consideration:

• Mean function

m(t) = E[X(t)] = E[X(t0)]
(

1−ce−kt

1−ce−kt0

)b
, t ≥ t0.

• Mode function

Mo(t) = Mode[X(t)] = Mode[X(t0)]
(

1−ce−kt

1−ce−kt0

)b
exp

(
−3

2
σ2(t− t0)

)
, t ≥ t0.

• Quantile function

Cα(t) = α− quantile[X(t)] = α− quantile[X(t0)]

(
1− ce−kt

1− ce−kt0

)b

× exp

(
−σ2

2
(t− t0) + z1−α

[√
σ2(t− t0) + V ar[ln(X(t0))]

−
√

V ar[ln(X(t0))]
])

, t ≥ t0,

where z1−α is the α-th quantile of a standard normal distribution.

10
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Furthermore, and from (13), the conditioned versions of these functions can
be also obtained (see [8] in the general case).

• Conditional Mean function

m(t|s) = E[X(t)|X(s) = xs] = xs

(
1−ce−kt

1−ce−ks

)b
, t > s.

• Conditional Mode function

Mo(t|s) = Mode[X(t)|X(s) = xs] = xs

(
1−ce−kt

1−ce−ks

)b
exp

(
−3

2
σ2(t− s)

)
, t > s.

• Conditional Quantile function

Cα(t|s) = α− quantile[X(t)|X(s) = xs] = xs

(
1− ce−kt

1− ce−ks

)b

× exp

(
−σ2

2
(t− s) + z1−α

√
σ2(t− s)

)
, t > s.

4 Inference on the model

As we have noted above, the mean function of the process is a von Bertalanffy
curve of the type (4). Therefore the mean function, as well as its conditional
version, E[X(t)|X(s) = xs], t > s, can be useful for making predictions with
this model. For this reason, let us examine in this section its maximum likeli-
hood (ML) estimation. First, we obtain the ML estimators of the parameters of
the model and then that of the mean function, as well as the other parametric
functions abovementioned.

Let us consider a discrete sampling of the process, based on d sample paths,
for times tij , (i = 1, . . . , d, j = 1, . . . , ni) with ti1 = t1, i = 1, . . . , d. That is,
we observe variables X(tij), the values of which, {xij}i=1,...,d;j=1,...,ni

, make up
the sample for the inferential study.

The likelihood function depends on the choice of the initial distribution. When

P [X(t1) = x1] = 1, this function is Lxij
(b, c, k, σ2) =

d∏
i=1

ni∏
j=2

f(xij, tij |xi,j−1, ti,j−1),

where b, c, k and σ2 are the parameters to be estimated. If X(t1) ∼ Λ(μ1, σ
2
1)

the likelihood is Lxij
(μ1, σ

2
1, b, c, k, σ2) =

d∏
i=1

fX(t1)(xi1)
ni∏

j=2

f(xij , tij|xi,j−1, ti,j−1).

In the second case there are two additional parameters that must be included
in the estimation procedure. Nevertheless, the estimations of μ1 and σ2

1 depend
only on the initial values and do not influence the estimation of the other
parameters. Hence, the ML estimators of b, c, k and σ2 are the same in both
cases.
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Henceforth, we will consider the case when the initial distribution is lognor-
mal, because this situation gives full meaning to the model in relation to the
comments made above.

In this case (see Appendix B for a more detailed development) by maximizing
the likelihood function it can be derived that the ML estimates of μ1 and σ2

1

are

μ̂1 =
1

d

d∑
i=1

ln xi1, and σ̂2
1 =

1

d

d∑
i=1

(ln xi1 − μ̂1)
2,

while the ML estimates for D = 1/c and A = e−k result of the solution of
the system of equations (B.11) for the particular case of equally spaced data,
that is tij − ti,j−1 = h, i = 1, . . . , d; j = 2, . . . , ni. This system has no explicit
solution and must be dealt with by numerical methods. Once these estimates

are obtained, the corresponding for b and σ2 are b̂ = bÂ,D̂ and σ̂2 = σ2
Â,D̂

from

(B.9). Finally, the ML estimate of any parametric function expressed in terms
of b, c, k and σ2, as for example the mean function, is calculated by applying
Zehna’s theorem.

4.1 Numerical aspects

The system of equations (B.11) is quite complex, which makes its resolution
difficult, especially when the sample is large. For this reason, it is necessary
to make use of numerical procedures, most of which need an initial solution
to be applied.

In order to obtain a good initial solution, we propose some alternatives based
on the sample information provided by the observed trajectories of the process.
In this line, we will distinguish several cases depending on the parameter b
and will use some expressions derived from the curve.

Firstly, and taking into account that A = e−k and D = 1/c, from (4) we have

x0

B∞
=

(
1− At0

D

)b

,

from where

D =
At0

1−
(

x0

B∞

)1/b
· (14)

12
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On the other hand, the inflection occurs at

tI =
ln(bc)

k
=

ln(D/b)

ln A
,

so

A =

(
b

(
1−

(
x0

B∞

)1/b
))1/(t0−tI )

. (15)

Now, we will distinguish the cases in which b is known and unknown. In each
case we will consider two situations according to the inflection time being
visualized or not.

• b known.
� Firstly, let us suppose that tI > t0 (i.e. b > ek t0/c). In such a case, and

since
(
1− 1

b

)b
is the quotient between the value of the curve at tI and the

upper bound, we can approximate tI , for each trajectory, taking the first

time instant at which the sample path exceeds xi,∞

(
1− 1

b

)b
, where xi,∞ is

the upper bound for the i-th trajectory (i = 1, . . . , d), and, finally, consider
the mean of these values. Obviously, this procedure can be applied if the
limit value is known, at least in a approximate form. In this sense, usually
the last value xi,ni

of each trajectory is taken as xi,∞.
Once tI is approached, the initial values for A and D are obtained from

(14) and (15), respectively. To this end, the value x0/B∞ is approached
by considering the mean of the values xi1/xi,ni

, i = 1, . . . , d.
� If b = 1 or ln(c)/k < tI ≤ t0 (i.e., 1 < b ≤ ek t0/c), the inflection time

cannot be guessed from the observation of the sample paths. Nevertheless,
expression (14) provides a relationship between A and D, or equivalently
between k and c, concretely c = αekt0 where α = 1 − (x0/B∞)1/b. From
this expression the curve remains

B(t) = B∞
(
1− αe−k(t−t0)

)b

and presents only an unknown parameter, k. We propose, for each sample
path, to calculate k from a least square fit to the previous curve. For this,
the value x0/B∞ is approached in the same way described in the previous
case, whereas B∞ is approached by means of the values xi,ni

, i = 1, . . . , d.
Finally, the initial value for A is the exponential of the mean of these
estimations.

• b unknown.
� If for each sample path the inflection time can be visualized, or guessed,

we propose to find an initial value for b as follows: firstly, we calculate an
approximate value for the time at which the inflection occurs, for exam-
ple by examining the sample paths, and taking the mean of the values

13
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xi,tIi
/xi,∞, namely xI , where tIi

and xi,∞ are, respectively, the inflection
time and the upper bound for the i-th sample path (approached by the
last value of the trajectory). Once this value is obtained, the initial one
for b is the solution of the equation

xI =
(
1− 1

b

)b

.

After calculating the initial value for b, the corresponding for A and D
are obtained from (14) and (15) respectively, taking into account the same
remarks made before.

� If the inflection point cannot be visualized from the sample paths, that
is ln(c)/k ≤ tI ≤ t0, we propose a slight modification of the previous
procedure which is based on the increasing behavior of the von Bertalanffy
curve. In fact, in such a case, and for b > 1, the following relation holds

(
1− 1

b

)b

=
f(tI)

B∞
≤ x0

B∞
·

Thus, and in an approximate form, we can consider that
(
1− 1

b

)b
< xb,

where xb = Meani=1,...,dxi,1/xi,ni
. Furthermore,

(
1− 1

b

)b
is a strictly in-

creasing function verifying
(
1− 1

b

)b
< e−1, ∀b ≥ 1, from which we can

establish the following strategy in order to take an initial value for b in
this situation:
	 If xb < e−1, then the solution of the equation xb =

(
1− 1

b

)b
pro-

vides an upper bound for b, namely b1. In such a case, we propose
to consider an initial value for b randomly chosen from an uniform
distribution in the interval (1, b1).

	 If xb ≥ e−1, then the previous equation has no solution, so we propose
to consider b = 1 as initial value.

Once the value of b is obtained, we proceed as in the case when b is known.

5 Simulation study

In this section we present several examples in order to validate the estimation
procedure previously developed, together with the strategy showed for estab-
lishing the initial solution of the system of equations that must be solved. To
this end, we have simulated sample paths from the von Bertalanffy diffusion
process following the algorithm derived from the numerical solution of the
stochastic differential equation associated with the process (see Kloeden et al.
[12]). In our case, the algorithm is

14
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xn+1 = xn

⎡⎣1 + h

(
bck

ek tn − c
− σ2

2

)
+

h2

2

⎛⎝(bck2)
(
bc− ek tn

)
(ek tn − c)2 − σ2bck

ek tn − c
+

σ4

4

⎞⎠
+ σ

(
1 +

hbck

ek tn − c
− hσ2

2

)(
1 +

σ

2
Z1n

)
Z1n +

σ3

6
Z3

1n +
σ4

24
Z4

1n

]
,

for n = 0, . . . , N − 1, where N is the number of simulated values, h is the
integration step, xn = X(tn) and Z1n is a normal variable of zero mean and
variance h.

We have considered four cases in which d = 100 sample paths have been
simulated. Each trajectory has been simulated with 301 data starting at t0 = 0,
taking h = 0.1 as the integration step and an initial lognormal distribution
Λ(3, 0.2). Table 1 shows the values of the others parameters of the process,
together with the theoretical inflection time instant. Note that in only in the
first example the inflection time instant can be guessed.

Table 1
Parameters chosen for the simulation of the sample paths

Example b c k σ tI

1 2 0.8 0.2 0.01 2.35

2 1 0.6 0.5 0.01 -1.02

3 1.3 0.7 0.4 0.01 -0.23

4 3 0.2 0.3 0.01 -1.70

In order to make the subsequent inference we have considered, in each case,
31 data with tij − ti,j−1 = 1, i = 1, . . . , 100, j = 1, . . . , 31. The graphics in
Figure 1 show the mean of the simulated sample paths for each case.

As concerns the estimation procedure, each of the examples has been treated
considering the case b known and unknown.

• For example 1 (in which the inflection occurs inside the considered time
interval), if b is known, the procedure aforementioned leads to 2.5 as ap-
proximate value or the inflection time (the true value is 2.35). We must note
that the time instants considered are discrete; for this reason, when a time

instant is found in which the value xi,∞

(
1− 1

b

)b
is exceeded, we have con-

sidered as the inflection time the mean between this time and the previous.
Finally, from (14) and (15) we have obtained the initial values for A and
D and, therefore, those for c and k. In addition, the value x0/B∞ has been
approximated by 0.04042, whereas the true value is 0.04.

In the case b unknown, we have considered tI = 3 as the inflection time.
From this value, and following the procedure described above, we have ob-
tained b0 = 1.22789, and then the others initial values as we have previously
remarked. Table 2 summarizes the results obtained for this example. In the

15



Acc
ep

te
d m

an
usc

rip
t 

Figure 1. Mean of the simulated sample paths

Example 1 Example 2

Example 3 Example 4

last case, the choice of tI is arbitrary and it is based on the visualization
of the sample paths. For this reason we have considered other possible val-
ues for tI and compared the results with the previous one. Specifically, the
values tI = 2, 4 have been also considered without changes in the estimated
values (see table 3).

• For example 2 we must remark that the inflection cannot be guessed (in
fact, there is not inflection in the model since b = 1). In this example,
the initial solution coincides in both cases, that is, when b is known and
unknown because of the value obtained for xb is 0.40121 > e−1. Therefore,
when b is unknown, the procedure described leads to consider b = 1, from
which follows that the initial solution for k (and then for A) and D is the
same. Obviously, the final estimation of the parameters does not coincide in
both cases since the likelihood equations differ. Table 4 contain the results
for this example.

• As example 3 concerns, we have another situation in which the inflection

16



Acc
ep

te
d m

an
usc

rip
t 

Table 2
Initial and estimated values for example 1

b known b unknown

Parameter True value Initial solution Estimated value Initial solution Estimated value

b 2 1.22789 1.97997

c 0.8 0.79894 0.79994 0.92668 0.80339

k 0.2 0.18747 0.20024 0.04305 0.19847

σ 0.01 0.00991 0.00991

Table 3
Sensibility analysis for example 1 (b unknown).

tI b0 c0 k0 b c k σ

2 1.09777 0.94621 0.01899 1.97997 0.80339 0.19847 0.00991

4 1.49086 0.88375 0.06894 1.97997 0.80339 0.19847 0.00991

Table 4
Initial and estimated values for example 2

b known b unknown

Parameter True value Initial solution Estimated value Initial solution Estimated value

b 1 1 1.00201

c 0.6 0.59878 0.60125 0.59878 0.60428

k 0.5 0.50850 0.49515 0.50850 0.49354

σ 0.01 0.00996 0.01011

exists but can not be seen. In this case we must remark that when b is un-
known, its initial value is calculated by solving the equation xb =

(
1− 1

b

)b

since xb is now 0.20807 < e−1. Thus, this equation has only one solution,
b1 = 1.59925, which is an upper bound for b. Later, we have taken a random
value in the interval (1, b1) as the initial value for b (Table 5 includes the
results). Finally, the procedure for taking the initial value for b leads to
consider a sensibility analysis of the results. To this end, we have consid-
ered other random values in the interval in order to validate the procedure
followed (see table 6). However, no differences have been found, so the esti-
mation of the parameters is robust to the choice of b.

• The last example shows another situation in which the inflection exists
but occurs before t0, so it can not be seen. The difference between this
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Table 5
Initial and estimated values for example 3

b known b unknown

Parameter True value Initial solution Estimated value Initial solution Estimated value

b 1.3 1.37891 1.30028

c 0.7 0.70107 0.70075 0.67968 0.70067

k 0.4 0.39513 0.39842 0.40180 0.39847

σ 0.01 0.01017 0.01017

Table 6
Sensibility analysis for example 3 (b unknown).

b0 c0 k0 b c k σ

1.11985 0.75385 0.85843 1.30028 0.70067 0.39847 0.01017

1.17977 0.73568 0.73702 1.30028 0.70067 0.39847 0.01017

1.2397 0.71813 0.62710 1.30028 0.70067 0.39847 0.01017

1.29962 0.70118 0.52597 1.30028 0.70067 0.39847 0.01017

1.35955 0.68484 0.43135 1.30028 0.70067 0.39847 0.01017

1.41947 0.66909 0.34097 1.30028 0.70067 0.39847 0.01017

1.4794 0.65393 0.25291 1.30028 0.70067 0.39847 0.01017

1.53932 0.63934 0.17442 1.30028 0.70067 0.39847 0.01017

example and the previous is that, in this case, when b is considered unknown
xb = 0.51208 > e−1 and then we take b0 = 1 as the initial value for b. Please
observe that, unlike in example 2, the initial values are different according
to b being known or unknown. The results are included in Table 7.

Table 7
Initial and estimated values for example 4

b known b unknown

Parameter True value Initial solution Estimated value Initial solution Estimated value

b 3 1 3.10916

c 0.2 0.19995 0.19998 0.40073 0.19361

k 0.3 0.29958 0.30198 0.26639 0.30305

σ 0.01 0.00980 0.00980
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6 Application to real data

The following application is based on the studies developed by J. Chong and
M. Aguayo [4] on some aspects related to the swordfish age and growth in the
Southeastern Pacific. Specifically, we have considered data about the mean
weight to age in both sexes, as shown in Figure 2.

Figure 2. Mean weight to age for swordfish in both sexes.

Table 8 shows the estimated values of the parameters of the model, together
with the initial solution obtained by means of the strategy proposed before.

Table 8
Estimation of the parameters of the model using all swordfish data.

Parameter Initial solution Estimated value

b 4.2379 3.0631

c 0.5901 0.7305

k 0.1833 0.1451

σ 0.0003

Since the model considered verifies that E[X(t)|X(t0) = x0] is a generalized
von Bertalanffy curve, it is obvious that a good fit to the data will be provided
by the function E[X(t)|X(t1) = x1], where t1 is the first observation time
instant and x1 is the initial value of the sample path. Nevertheless, and with
the aim of obtaining a best fit to the observed data, in practice it is usual to
consider the values E[X(ti)|X(ti−1) = xi−1], i = 1, . . . , 17, where xi−1 is the
observed value at ti−1.
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Figure 3 shows the observed values, the estimation of the E[X(t)|X(t1) = x1]
function and the estimation of the E[X(ti)|X(ti−1) = xi−1] values (joined by
a solid line for better visualization), i = 1, . . . , 17.

Figure 3. Observed values and estimations of the trend function and the
E[X(ti)|X(ti−1) = xi−1] values, i = 1, . . . , 17.

To illustrate the predictive capability of the model, maximum likelihood esti-
mates for the parameters using data for the age 1 to 16 were calculated, and
we predicted the value for 17. The estimates of the parameters, and the initial
solution, are summarized in Table 9, whereas Table 10 shows the observed
values at age 17, point prediction given by the estimation of the mean and
mode of X(17)|X(16) = x16, as well as an interval prediction provided by the
estimation of 0.025 and 0.975 quantiles of the variable above.

Table 9
Estimation of the parameters of the model without the last data.

Parameter Initial solution Estimated value

b 5.2573 3.0589

c 0.5067 0.7310

k 0.1959 0.1450

σ 0.0003

Table 10
Observed and predicted values for the mean weight of swordfish at 17-th year.

Observed Estimated Estimated Estimated

value conditional mean conditional mode conditional quantiles

333.2 333.331 333.445 (333.092,333.571)

One advantage of using growth stochastic models, like the one shown here,
is the possibility of studying some questions related to their evolution, such
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as the achievement of a certain value or a change in a behavior pattern. For
example, the time an animal takes to reach the minimum size at which it can
be sold for consumption, or the time a population takes to reach a certain size,
can be of great interest and can be formulated as a problem of first-passage-
time through a constant boundary S, that is the time variable

TS,x1
=Inf

t≥t1

{t : X(t) > S|X(t1) = x1}

for which its probability density function must be calculated. In order to illus-
trate this question, we have considered two boundaries, S = 300 and S = 350.
For the first case the value S is achieved inside the time interval considered,
whereas the second will be attained later (the estimated upper bound for the
model is 405.755).

As regards the obtaining of the probability density function, it is the solution
of a Volterra integral equation of the second kind that must be solved by
numerical procedures since a closed-form solution is not available in this case
(see [7]). To this end we have employed the methodology developed in [16].
Figure (4) shows the probability density functions for the two cases considered
for which, moreover, we can point out that the means of the variables first-
passage-time through the constant S are 14.138 and 18.903, respectively.

(a) (b)

Figure 4. First-passage probability densities for the weight of the swordfish through
a constant boundary: (a) S = 300; (b) S = 350.

7 Conclusions

A new stochastic diffusion model has been presented for the modeling of animal
growth with a behavior that fits a von Bertalanffy growth pattern. The main
innovation from other existing models (see [6], [14], [17]) is that it allows
for modeling both length and weight for some animal species in isometric and
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allometric situations. This is done by considering a generalized von Bertalanffy
growth curve including a parameter b ≥ 1, and whose particular case with
b = 1 is the one considered in previous stochastic models.

The new model is a diffusion process determined by the solution of a differ-
ential stochastic equation, which can be obtained by including a noise term
in the ordinary differential equation associated with the respective determin-
istic model. Thus, and in the absence of noise, the growth variable increases
according to (2) and the sample paths of the process show such behavior pat-
terns (according to a generalized von Bertalanffy curve), save for the presence
of random disturbances (whose magnitude depends on that of the noise). In
addition, the fact that the mean function of the process is also a type (2)
curve, makes the model particularly interesting for real data applications with
fitting and forecasting purposes.

In addition to the mean function, other parametric functions prove useful
for fitting and forecasting aims. In the case of point fitting and prediction,
the mode function provides, for each time, the most probable value for the
growth variable. For interval predictions, through consideration of the per-
centile function, intervals containing the growth variable for each time (with
a specific probability), can be obtained.

Once the diffusion process has been defined, the maximum likelihood estima-
tion of its parameters is done (and, consequently, that of the parametrical
functions of interest). However, the likelihood equations obtained do not have
an explicit solution and classical numerical procedures are required. The con-
vergence of such procedures may depend on the choice of good initial solutions.
For this reason, one of the contributions of the present paper is a proposal for
a strategy for the search of such initial solutions in several potential situations.
The cases of b known and unknown have been considered and also, in order to
use the information on the characteristics of the model provided by the sample
data, we have distinguished two possibilities regarding the visualization of the
inflection point in the sample paths. Such strategy is validated by means of
simulated examples that consider all the situations described.

Finally, one of the main advantages of the use of stochastic models is, in
addition to its fitting and forecasting capabilities, the chance to study time
variables that affect the growth process. In an application to real data of mean
weight of swordfish, the capability of the model for fitting and predicting is
shown, as well as for studying time variables of interest like the first-passage-
time through constant boundaries.
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A Appendix A

Another way to develop the diffusion process proposed in this paper is in the
line shown by Albano and Giorno [1]. The procedure is based on the discrete
version of (8),

x(n+1)τ − xnτ =
bck

eknτ − c
τxnτ , n = 0, 1, . . . (A.1)

that approaches (8) when n →∞ and τ → 0, with nτ = t.

Now we introduce random environment as follows: the relative intrinsic change
bckτ/

(
eknτ − c

)
in the interval [nτ, (n+1)τ), n = 0, 1, . . . can bee seen as the

mean value of a sequence of independent (not identically distributed) Bernoulli
variables, Znτ , n = 0, 1, . . ., verifying

P
(
Znτ = σ

√
τ
)

=
1

2
+

bck
√

τ

2 (eknτ − c)σ
,

P
(
Znτ = −σ

√
τ
)

=
1

2
− bck

√
τ

2 (eknτ − c) σ
,

where σ > 0 is a constant that evaluates the width of the environmental
fluctuations. Furthermore, the moments of Znτ are

E [Znτ ] =
bck

eknτ − c
τ, E

[
Z2

nτ

]
= σ2τ, E

[
Z2+p

nτ

]
= o(τ), p ∈ N.

In this way, we randomize the model by replacing in the term bckτ/
(
eknτ − c

)
by Znτ (A.1), thus obtaining

X(n+1)τ −Xnτ = ZnτXnτ , n = 0, 1, . . .

The increments X(n+1)τ −Xnτ conditional upon Xnτ = x are
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1

τ
E
[
X(n+1)τ −Xnτ |Xnτ = x

]
=

bck

eknτ − c
x,

1

τ
E
[(

X(n+1)τ −Xnτ

)2 |Xnτ = x
]

= σ2x2,

1

τ
E
[(

X(n+1)τ −Xnτ

)2+p |Xnτ = x
]

=
x2

τ
o(τ), ∀p ∈ N, (A.2)

in such a way that when τ approaches zero and n → ∞, when the condition
nτ = t, then Xnτ converges to the diffusion process with infinitesimal moments
provided by (6).

B Appendix B

The transition p.d.f. (12) can be rewritten as

f(xij , tij | xi,j−1, ti,j−1) =
1

xij

√
2πσ2(tij − ti,j−1)

× exp

⎛⎜⎝−1

2

[
ln
(

xij

xi,j−1

)
− b ln

(
D−Atij

D−Ati,j−1

)
+ σ2

2
(tij − ti,j−1)

]2
(tij − ti,j−1)σ2

⎞⎟⎠ ,

where D = 1/c and A = e−k. Denoting n =
d∑

i=1

ni, the log-likelihood function

of the sample is

ln Lxij
( μ1, σ

2
1, A, D, b, σ2) = −n

2
ln(2π)− d

2
ln σ2

1 −
n− d

2
ln σ2 −

d∑
i=1

ln xi1

− 1

2σ2
1

d∑
i=1

[ln xi1 − μ1]
2 −

d∑
i=1

ni∑
j=2

ln xij − 1

2

d∑
i=1

ni∑
j=2

ln(tij − ti,j−1)

− 1

2

d∑
i=1

ni∑
j=2

[ln
(

xij

xi,j−1

)
− b ln

(
D−Atij

D−Ati,j−1

)
+ σ2

2
(tij − ti,j−1)]

2

(tij − ti,j−1)σ2
,

from which the ML estimates of μ1 and σ2
1 are

μ̂1 =
1

d

d∑
i=1

ln xi1, and σ̂2
1 =

1

d

d∑
i=1

(ln xi1 − μ̂1)
2,

whereas the corresponding to A, b, D and σ2 follow from the solution of the
system of equations
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d∑
i=1

ni∑
j=2

ln
(

xij

xi,j−1

)
− b ln

(
D−Atij

D−Ati,j−1

)
+ σ2

2
(tij − ti,j−1)

tij − ti,j−1

×ti,j−1A
ti,j−1−1 (D −Atij )− ti,jA

ti,j−1 (D − Ati,j−1)

(D − Atij ) (D − Ati,j−1)
= 0, (B.1)

d∑
i=1

ni∑
j=2

ln
(

xij

xi,j−1

)
− b ln

(
D−Atij

D−Ati,j−1

)
+ σ2

2
(tij − ti,j−1)

tij − ti,j−1

× ln

(
D −Atij

D − Ati,j−1

)
= 0, (B.2)

d∑
i=1

ni∑
j=2

ln
(

xij

xi,j−1

)
− b ln

(
D−Atij

D−Ati,j−1

)
+ σ2

2
(tij − ti,j−1)

tij − ti,j−1

× Atij − Ati,j−1

(D −Atij ) (D − Ati,j−1)
= 0, (B.3)

σ4
d∑

i=1

ni∑
j=2

(tij − ti,j−1) + 4σ2(n− d)− 4
d∑

i=1

ni∑
j=2

ln2
(

xij

xi,j−1

)
tij − ti,j−1

−4b2
d∑

i=1

ni∑
j=2

ln2
(

D−Atij

D−Ati,j−1

)
tij − ti,j−1

+ 8b
d∑

i=1

ni∑
j=2

ln
(

xij

xi,j−1

)
ln
(

D−Atij

D−Ati,j−1

)
tij − ti,j−1

= 0.(B.4)

This system of equations does not have an explicit solution, so numerical
procedures are required to find it. In the particular case tij − ti,j−1 = h,
i = 1, . . . , d; j = 2, . . . , ni, equations (B.1) to (B.4) remain

D(1− Ah)
(
2XA,D

2,∗ − 2bXA,D
3,∗ + σ2 h XA,D

1,∗

)
+hAh−1

(
2W A,D

2 − 2bW A,D
3 + σ2 h W A,D

1

)
= 0, (B.5)

σ2hY A,D
1 − 2bY A,D

3 + 2Y A,D
2 = 0, (B.6)

σ2hXA,D
1 − 2bXA,D

3 + 2XA,D
2 = 0, (B.7)

σ4h2(n− d) + 4σ2h(n− d)− 4b2Y A,D
3 + 8bY A,D

2 − 4Z = 0, (B.8)

where, and denoting SA,D
ij = (D − Atij ) (D −Ati,j−1) and TA,D

ij = ln
(

D−Atij

D−Ati,j−1

)
,
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XA,D
1 =

d∑
i=1

ni∑
j=2

Ati,j−1

SA,D
ij

, XA,D
2 =

d∑
i=1

ni∑
j=2

Ati,j−1

SA,D
ij

ln

(
xij

xi,j−1

)
,

XA,D
3 =

d∑
i=1

ni∑
j=2

Ati,j−1

SA,D
ij

TA,D
ij , Y A,D

1 =
d∑

i=1

ni∑
j=2

TA,D
ij ,

Y A,D
2 =

d∑
i=1

ni∑
j=2

TA,D
ij ln

(
xij

xi,j−1

)
, Y A,D

3 =
d∑

i=1

ni∑
j=2

(
TA,D

ij

)2
,

XA,D
1,∗ =

d∑
i=1

ni∑
j=2

ti,j−1A
ti,j−1

SA,D
ij

, XA,D
2,∗ =

d∑
i=1

ni∑
j=2

ti,j−1A
ti,j−1

SA,D
ij

ln

(
xij

xi,j−1

)
,

XA,D
3,∗ =

d∑
i=1

ni∑
j=2

ti,j−1A
ti,j−1

SA,D
ij

TA,D
ij , W A,D

1 =
d∑

i=1

ni∑
j=2

A2ti,j−1

SA,D
ij

,

W A,D
2 =

d∑
i=1

ni∑
j=2

A2ti,j−1

SA,D
ij

ln

(
xij

xi,j−1

)
, W A,D

3 =
d∑

i=1

ni∑
j=2

A2ti,j−1

SA,D
ij

TA,D
ij

and Z =
d∑

i=1

ni∑
j=2

ln2

(
xij

xi,j−1

)
.

After some algebra, from equations (B.6) and (B.7), we obtain

bA,D =
XA,D

2 Y A,D
1 −XA,D

1 Y A,D
2

XA,D
3 Y A,D

1 −XA,D
1 Y A,D

3

and σ2
A,D =

2CA,D

h
, (B.9)

where

CA,D =
XA,D

2 Y A,D
3 −XA,D

3 Y A,D
2

XA,D
3 Y A,D

1 −XA,D
1 Y A,D

3

. (B.10)

Replacing these expressions in (B.5) and (B.8) the following system of equa-
tions appears

D(1− Ah)
(
XA,D

2,∗ − bA,DXA,D
3,∗ + CA,DXA,D

1,∗

)
+hAh−1

(
W A,D

2 − bA,DW A,D
3 + CA,DW A,D

1

)
= 0, (B.11)

(n− d)
(
CA,D

)2
+ 2(n− d)CA,D −

(
bA,D

)2
Y A,D

3 + 2bA,DY A,D
2 − Z = 0.

As we pointed out in the introduction, in some cases the parameter b is known.
For example, in the study of the length of fish b is equal to one, whereas in
the case of weight in isometric growth b = 3. In such a case, that is, when b
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is known, the equation (B.6) disappears, (B.10) turns into

CA,D =
bXA,D

3 −XA,D
2

XA,D
1

,

whereas in the system of equations (B.11) the expression bA,D must be changed
to b.
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