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Abstract8

Conjugation is an important mechanism involved in the transfer of resistance9

between bacteria. In this article a stochastic differential equation based10

model consisting of a continuous time state equation and a discrete time11

measurement equation is introduced to model growth and conjugation of12

two Enterococcus faecium strains in a rich exhaustible media. The model13

contains a new expression for a substrate dependent conjugation rate. A14

Maximum Likelihood based method is used to estimate the model parame-15

ters. Different models including different noise structure for the system and16

observations are compared using a likelihood-ratio test and Akaike’s informa-17

tion criterion. Experiments indicating conjugation on the agar plates select-18

ing for transconjugants motivates the introduction of an extended model, for19

which conjugation on the agar plate is described in the measurement equa-20

tion. This model is compared to the model without plate conjugation. The21

modelling approach described in this article can be applied generally when22

modelling dynamical systems.23
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1. Introduction26

Development and spread of antimicrobial resistance in bacterial popu-27

lations is of increasing concern, as it can lead to major difficulties for the28

treatment of diseases. A first step in the direction of solving this prob-29

lem is to gain a better understanding of the spread of resistance, and here30

conjugation plays a major role. Conjugation is one of several mechanisms31

of horizontal gene transfer by which plasmids coding for e.g. antimicrobial32

resistance can be transferred between bacteria. The use of mathematical33

modelling to describe the dynamics of plasmid spread and persistence was34

first introduced by Levin et al. (1979) and since then many studies have35

been made to improve the model framework and parameter estimation and36

to incorporate more accurate expressions for the plasmid dynamics (Slater37

et al., 2008). Most studies have used ordinary differential equations, ODE38

(Levin et al., 1979; Freter et al., 1983; Clewlow et al., 1990; MacDonald et al.,39

1992; Willms et al., 2006), or ordinary difference equations (Knudsen et al.,40

1988; Sudarshana and Knudsen, 2006) as the modelling framework. This41

approach can be discussed since a part of the complexity of conjugation,42

e.g. dependence on the surrounding environment, is not included in these43

models. A way of overcoming this problem is to use a stochastic modelling44

approach where the randomness accounts for those processes not included in45
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the model. Some efforts have been made to include randomness in plasmid46

models (Joyce et al., 2005; De Gelder et al., 2007; Ponciano et al., 2007).47

Common for these studies is that they use discrete-time models, which is48

a good approximation at low bacteria densities, but not at higher densities49

where growth and conjugation is a continuous process. Joyce et al. (2005)50

gives a first and second order moment representation of their model which51

requires a derivation of the means and variances. Thus, it is not easy to52

transfer the method to other models. In the study by Ponciano et al. (2007)53

one of the model parameters is implemented as a normal distributed random54

variable. This paper presents a generic modelling framework first described55

by Kristensen et al. (2004a), which is based on stochastic differential equa-56

tions, SDE. The SDE is connected to data through a state-space formulation57

consisting of continuous-time state equations (the SDE) and discrete-time58

observation equations. The applied state-space approach is in fact a con-59

tinuous time Hidden Markov Model. The state-space formulation opens up60

for strong statistical tools for estimating model parameters and for inference61

concerning the best model (Kristensen et al., 2004a). State-space modelling62

has also been used in previous plasmid studies (De Gelder et al., 2004, 2007;63

Ponciano et al., 2007), but our approach differs by enabling continuous-time64

state equations in combination with discrete-time observations. The state-65

space model enables a simultaneous estimation of the growth and conjugation66

parameters, whereby the bacterial growth is accounted for when estimating67

the conjugation rate. This is an improvement from previous studies, where68
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the donor and recipient concentrations were introduced as a mean value of69

two measurements taken over time (Knudsen et al., 1988; Sudarshana and70

Knudsen, 2006) or the experiment was constructed such that bacterial growth71

could be neglected (MacDonald et al., 1992).72

In this article the SDE based state-space modelling framework is applied73

to analyze data from an in vitro experiment for conjugation between two74

Enterococcus faecium species growing in a batch exhaustable media. This75

experiment was made in order to study the transferability of vancomycin76

resistance in E. faecium. To describe the experimental system a conjugation77

model of bacteria growing in a broth exhaustible media is introduced, which78

is an expansion of previous models. Several authors (Levin and Stewart,79

1980; Freter et al., 1983; Knudsen et al., 1988; Clewlow et al., 1990; Top80

et al., 1992; Willms et al., 2006; Sudarshana and Knudsen, 2006) have mod-81

elled conjugation events with the mass action model proposed by Levin et al.82

(1979). The mass action model states that the appearance of transconjugants83

is proportional to the product of the donor and recipient concentrations. We84

will introduce a new expression for the conjugation rate in an exhaustible85

media for which the proportionality constant of the mass action model is86

substrate dependent. An inference study is made to reduce the SDE model87

to its minimum form. A further extension of the model is made to treat ad-88

equately a methodological problem: the finding that conjugation continues89

on the agar plates selecting for transconjugants. In that case the observed90

transconjugants are a combination of transconjugants stemming from the91
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conjugation process in the flask and conjugation occurring on the selective92

plates. The models with and without conjugation on the selective plates are93

compared in order to examine which model best describes data.94

2. Experimental methods95

A conjugation experiment was made in order to study the transferabil-96

ity of vancomycin resistance in Enterococcus faecium. As recipient the E.97

faecium reference strain BM4105RF was used. This strain is resistant to98

rifampicin (MIC > 25 μg/ml) and fusidic acid (MIC > 25 μg/ml) due to99

chromosomally located mutations. As donor, the E. faecium A17sv1 (Has-100

man and Aarestrup, 2002) was used. This strain is resistant to erythromycin101

(MIC > 16 μg/ml) and vancomycin (MIC > 32 μg/ml) due to the presence of102

the erm(B) gene and Tn1546 transposon (carrying the vanA-gene cluster),103

respectively, located on a conjugative plasmid.104

The conjugation experiment was performed in liquid Brain-Heart Infusion105

(BHI) media (Oxoid). Bacterial counting was performed on BHI agar plates106

supplemented with the following antibiotics when appropriate: rifampicin 25107

μg/ml, fusidic acid (25 μg/ml), erythromycin (16 μg/ml) and vancomycin108

(32 μg/ml).109

2.1. Conjugation experiment110

Over night blood agar cultures of the two strains grown at 37◦C were111

inoculated in BHI media supplemented with the appropriate antibiotics as112
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described above. From these, 100 μl of each culture was transferred to fresh113

tubes containing 10 ml preheated BHI media without antibiotics supple-114

mentation. When these cultures reached late exponential growth (OD500 of115

0.3-0.5), the number of cells in each culture was adjusted to the same amount116

and 1.5 ml of each was transferred to 100 ml preheated (37◦C) BHI media117

in an 250 ml Erlenmeyer flask. The flask was placed in a shaking incubator118

(125 rpm) at 37◦C. Four 1 ml samples were taken immediately after the cells119

were added (t=0) as well as 1.50, 2.80, 3.00, 3.40, 3.80, 4.00, 4.40, 4.80, 5.00,120

5.50, 6.00, 6.30 and 7.00 hours after the cells were mixed. One of the four121

1 ml samples was used to measure the OD500 of the culture. The remaining122

three samples were diluted ten-fold until 10−7. From here, 100 μl of each123

dilution (where appropriate) was plated onto sets of plates containing BHI124

agar supplemented with either of the following: 1) Recipient plates contain-125

ing 25 μg/ml rifampicin + 25 μg/ml fusidic acid, 2) Donor plates contain-126

ing 16 μg/ml erythromycin + 32 μg/ml vancomycin, and 3) transconjugant127

plates containing 25 μg/ml rifampicin + 25 μg/ml fusidic acid +16 μg/ml128

erythromycin + 32 μg/ml vancomycin. All plates were incubated 48 hours129

and the colony forming units, CFU, were counted. From these numbers the130

bacterial concentration in the flask was calculated.131

2.2. Calculating bacterial concentration132

The concentrations of the different bacteria populations in the flask can133

be determined from the plate count by a generalized linear model approach,134
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assuming that the CFU count for each plate is Poisson distributed with an135

offset corresponding to the given dilution. If, for any given observation time136

tk, Njk is the count number j with dilution nj , then the expected CFU count137

E(Njk) can be modelled with the generalized linear model138

E(Njk) = λjk = nj exp(βk) , Njk ∼ Poisson(λjk) (1)

log(λjk) = log(nj) + βk . (2)

Fitting the model to data gives an estimate for the coefficient βk and hereby139

an estimate of the bacterial concentration Yk = exp(βk) in the flask at time,140

tk. The variance σ2
Y,k of the estimated concentration at time tk can be deter-141

mined from the variance of β as142

σ2
Y,k = Var[exp(βk)] = (exp(βk)Var[β])2 . (3)

The concentrations Yk calculated in this way are the observations to be used143

for the modelling procedure described in the reminder of this article. The144

command glmfit in Matlab is used for fitting the generalized linear model145

(see Appendix A).146

3. Model formulation147

The modelling framework used in this study is a continuous-discrete time148

state-space model consisting of a continuous time state equation (the SDE)149

and a discrete time observation equation. The model has the general form150
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(Kristensen et al., 2004b)151

dXt = f(X t, ut, t, θ)dt + σ(ut, t, θ)dωt , (4)

Y k = h(Xk, uk, tk, θ) + ek , (5)

where (4) is the SDE and (5) is the observation equation. X t is a n-152

dimensional vector of state variables and Y k is a l-dimensional vector of153

observations. The observations are obtained at discrete times tk with the154

observation noise being ek ∈ N(0,Σk). θ is a vector of unknown parameters155

and u is a vector of input variables, i.e. variables which can be observed and156

have an influence on the system dynamics. The functions f and h can be157

linear as well as nonlinear functions. {ωt} is a standard Wiener process rep-158

resenting sources of noise in the system. The first part on the right-hand side159

of the SDE (4) is called the drift term and the second part is called the dif-160

fusion term. The stochastic state-space model (4)-(5) has several advantages161

compared to deterministic models. For instance, the state-space approach162

separates the residual noise into system noise and observation noise, where163

the system noise is used to e.g. compensate for those biological processes164

not explicitly described by the model. The deterministic model often leads165

to autocorrelated residuals, which is not a problem with the SDE. Using the166

SDE based model also paves the way for strong statistical tools to estimate167

model parameters and make inferences.168
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3.1. The drift term - Model for conjugation169

In this study we apply the state-space modelling framework on a model170

for conjugation. The first step of the modelling procedure is to formulate171

the drift part of the SDE based on microbiological knowledge of the sys-172

tem. A sketch of the conjugation dynamics is given by the flow diagram173

in Figure 1, where D is the donor, R the recipient, and T the transconju-174

gant concentrations. The flow diagram shows how recipients can be turned

Figure 1: Flow diagram showing the structure of the conjugation models. The donor D

can by encounter of a recipient R transfer a plasmid coding for resistance to the recipient.
The recipient hereby is turned into a transconjugant T , which expresses the same antibiotic
resistances as both the donor and the recipient.

175

into transconjugants with a rate dependent on the concentration of donor176

and recipient. In earlier studies (MacDonald et al., 1992; Knudsen et al.,177

1988; Sudarshana and Knudsen, 2006) the substrate concentration and/or178

donor and recipient concentrations were kept constant in the experiments179

and were thus held constant in the model. In order to better approximate180

in vivo situations, these constraints were not applied to our E. faecium con-181

jugation experiment, and thus all three populations as well as the substrate182

content must be included as state variables in the model. The drift term183
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corresponding to the model shown in Figure 1 is184

f(X t, θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μD(S)D

μR(S)R− γ(S)DR

μT (S)T + γ(S)DR

−η(μD(S)D + μR(S)R + μT (S)T )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where μi(S) is the growth rate for the bacteria population i (D, R or T ), and185

γ(S) is the conjugation rate. X = [D, R, T, S] are the model state variables186

and θ = [vD, vR, vT , κD, κR, κT , γmax, κc, η] are the parameters for the model.187

The substrate, S, is simulated as a normalized variable with an initial value188

of 1. The amount of substrate in the solution decreases as it is utilized for189

bacterial growth. The parameter η is the amount of normalized substrate190

used for each cell division.191

Bacterial growth continues until the substrate is exhausted, and the station-192

ary state has been reached. The growth rate can be modelled with the well193

known Monod relation (Monod, 1949)194

μi(S) =
viS

κi + S
, S ∈ [0, 1] , (7)

where S is the substrate concentration, vi is the maximum growth rate and195

κi is the substrate concentration when the growth rate is half of its maximum196

value. Both parameters are specific for a given bacteria population i.197

The conjugation event depends on the probability of an encounter between198

10



Acc
ep

te
d m

an
usc

rip
t 

donor and recipient. In the original mass action model the conjugation rate199

γ was introduced as a constant parameter. Several authors (Knudsen et al.,200

1988; Andrup et al., 1998; Andrup and Andersen, 1999; Ponciano et al., 2007)201

have discussed this assumption. Levin et al. (1979) showed that the mass202

action model presents a good estimation of the transconjugant population203

during exponential growth and under chemostatic conditions, but the model204

fails to describe the occurrences of transconjugants during the lag phase205

and at the onset of stationary phase. MacDonald et al. (1992) suggested206

that the conjugation rate depends on the substrate content and stated that207

conjugation can not occur without the presence of nutrition. However, to208

our knowledge this substrate dependence has not before been implemented209

in a mathematical model for conjugation. We suggest a nonlinear substrate210

dependent expression to model the conjugation rate211

γ(S) =
γmaxS

κc + S
, S ∈ [0, 1]. (8)

This expression is similar to the Michaelis-Menten equation for enzyme ki-212

netics and to the Monod relation. This expression is chosen as it forces the213

conjugation rate to reach a maximum value γmax when the substrate con-214

centration is abundant, and it turns to zero as the substrate is depleted.215

Depending on the value of κc the conjugation rate will decrease concurrent216

with or after the decrease in the bacterial growth rate.217

Some assumptions are applied to keep the conjugation model simple. (i)218
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Transconjugants can function as donors transferring a plasmid to a recipient,219

but this is not described by the model. It is assumed reasonable to omit it for220

the E. faecium data set used in this study, as the concentration of transcon-221

jugants is very low compared to the donor concentration, and therefore does222

not contribute significantly to conjugation. (ii) The delay on 10-15 min that223

has been found (Andrup et al., 1998) between two conjugation events for224

the same donor is assumed to be insignificant. During the experiment there225

is always a large number of donors not involved in a conjugation event and226

thus ready to start the conjugation by encounter of a recipient. Therefore227

the delay is disregarded. (iii) It is assumed that the maximum growth rate228

of the transconjugants is either the same as the maximum growth rate for the229

recipient or smaller due to a fitness cost of the plasmid, i.e. vT = vR(1− α),230

where α ∈ [0, 1[. An inference study will be made to test if α = 0.231

3.2. The diffusion term232

Depending on the system which is modelled it can be adequate to im-233

plement additive system noise, i.e. noise independent on the state variables,234

or multiplicative system noise, i.e. where the noise depends on the state235

variables. The choice of the system noise depends on assumption about the236

system modelled. Tier and Floyd (1981) have described how different as-237

sumption of a biological process can lead to either demographic stochasticity238

(where the variance is proportional to the state variable) or environmen-239

tal stochasticity (where the variance is proportional to the state variable240
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squared). In our system the noise is implemented as multiplicative (environ-241

mental) noise, as the random fluctuations affect the whole population and242

not only the growth process. For instance the mass action model has shown243

to be good during exponential growth but not during lag-phase and station-244

ary phase. Therefore multiplicative noise can be implemented to account245

for those processes not well described by the model. The method used for246

evaluating the likelihood function (Kristensen et al., 2004b) requires that the247

diffusion term is independent of the state variables. Therefore, instead of the248

state variables D, R and T , the input vectors uD, uR and uT , which contains249

observations for the three states, are inserted as a scaling for the standard250

deviation. The noise term is251

σm
c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σDuD 0 0 0

0 σRuR 0 0

0 0 σT uT 0

−ησDuD −ησRuR −ησT uT σS

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where an increment in donor, recipient or transconjugant concentration lower252

the substrate content in order to keep the mass balance, and σS is introduced253

in order to ensure stability and is fixed to a small value.254

An additive noise term σa
c is also introduced to compare with the multiplica-255

tive noise. This is done, as it is not sure that the data set is sufficient to256

make a good prediction of the system noise, and therefore a simplification of257
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the noise structure can be an advantage. The additive noise term is258

σa
c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σD 0 0 0

0 σR 0 0

0 0 σT 0

−ησD −ησR −ησT σS

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

3.3. Observation equation259

The observation equation relates observations to the state variables. In260

that way the state variables do not need to be measured directly and it261

is not necessary to have observations related to all state variables. In this262

study three of the state variables (donor, recipient and transconjugant) are263

observed. The concentration for the donor, recipient and transconjugant has264

been calculated from the CFU count as described in Section 2.2. We will265

refer to this as the observed concentration. The observation equation, when266

only conjugation in the broth media is considered, is267

⎡
⎢⎢⎢⎢⎣
Y1

Y2

Y3

⎤
⎥⎥⎥⎥⎦

k

=

⎡
⎢⎢⎢⎢⎣
D

R

T

⎤
⎥⎥⎥⎥⎦

k

+ ek , ek ∈ N(0,Σk) . (11)

The model with this observation equation is called the Broth model.268

In addition to plasmid transfer in the broth, we have found that conjugation269

can occur on the transconjugant plates. This is a surprising result as antibi-270
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otics on the agar plate are traditionally considered to stop the conjugation271

process. However we have performed several experiments (data not shown),272

which have revealed that conjugation does also occur on the transconjugant273

plates. As the experiment is made to measure conjugation in the broth me-274

dia we wish to separate conjugation on the plate from that in the flask. The275

following set of ODE’s is suggested to model conjugation on the plate for276

each observation time k277

dDpk

dt
= −λDpk , (12)

dRpk

dt
= −λRpk − γpDpkRpk , (13)

dTpk

dt
= γpDpkRpk . (14)

The initial values for the concentration of donor, Dpk, and recipient, Rpk,278

on the plate correspond to the concentrations in the flask at the time for279

the observation. Due to antibiotics on the plate, the donors and recipients280

die with a death rate λ and even though substrate is present in abundant281

amounts it is assumed that the donor and recipient bacteria can not grow.282

The recipients which receives a plasmid on the agar plate (and thus become283

a transconjugants) become resistant to all the antibiotics present and can284

therefore grow and form colonies on the plate. The plate conjugation rate γp285

is assumed to be independent off the substrate content as the substrate will286

not be depleted before the conjugation process stops.287

The plate conjugation is modelled by finding the analytical solution for the288
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ODE and inserting the solution in the observation equation for transconju-289

gants Eq. (11). As the number of recipients receiving a plasmid on the plate290

is small, the last term in Eq. (13) can be disregarded. The equation to be291

solved is thus292

dTpk

dt
= γpDpk(t)Rpk(t) , (15)

where293

Dpk(t) = Dk0 exp(−λt) , (16)

Rpk(t) = Rk0 exp(−λt) . (17)

The solution is294

Tpk =
γp

2λ
Dk0Rk0(1− exp(−2λt)) , (18)

which for t →∞ is295

Tpk =
γp

2λ
Dk0Rk0 . (19)

The limit for t → ∞ can be considered since the CFU count is made after296

12-24 hours, whereafter conjugation on the plate is very unlikely to occur297

due to death of the donor and recipients. Estimating both γp and λ would298

be an over-parametrization of the model. Therefore γp/λ is replaced by the299
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parameter γ′p. Inserting the result into Eq. (11) leads to the observation300

equation for the so-called Broth-plate model301

⎡
⎢⎢⎢⎢⎣

Y1

Y2

Y3

⎤
⎥⎥⎥⎥⎦

k

=

⎡
⎢⎢⎢⎢⎣

D

R

T +
γ′

p

2
DR

⎤
⎥⎥⎥⎥⎦

k

+ ek , ek ∈ N(0,Σ) . (20)

3.4. Observation noise302

Three different covariance matrices for the observation equation are im-303

plemented and compared304

Additive:305

Σa
k =

⎡
⎢⎢⎢⎢⎣
s2
1 0 0

0 s2
2 0

0 0 s2
3

⎤
⎥⎥⎥⎥⎦ (21)

Proportional:
306

Σ
p
k =

⎡
⎢⎢⎢⎢⎣
s2
4σ

2
D,k 0 0

0 s2
5σ

2
R,k 0

0 0 s2
6σ

2
T,k

⎤
⎥⎥⎥⎥⎦ (22)

Additive+Proportional:
307

Σ
a,p
k =

⎡
⎢⎢⎢⎢⎣
s2
1 + s2

4σ
2
D,k 0 0

0 s2
2 + s2

5σ
2
R,k 0

0 0 s2
3 + s2

6σ
2
T,k

⎤
⎥⎥⎥⎥⎦ (23)
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Hence, the observations Y1, Y2 and Y3 are assumed to be uncorrelated in all308

cases. The variances σ2
R,k, σ2

R,k and σ2
T,k are estimates from Eq. (3) at time tk.309

The most simple noise form is the additive noise, but it is only reasonable, if310

the variance of the observations is independent of the observations. If this is311

not the case one alternative is to transform the data to stabilize the variance.312

In this article instead a proportional noise term is suggested, which include313

the estimated variance of the observations. Additionally a covariance matrix314

is considered with both additive and proportional noise.315

3.5. Statistical methods316

The modelling procedure consist of several steps of parameter estimations317

and goodness of fit statistics. First the Broth model and Broth-plate models318

are reduced separately, i.e. the likelihood function is optimized for differ-319

ent implementation of the system noise, observation noise and drift term.320

The best fit for the Broth and Broth-plate models are found applying good-321

ness of fit statistics based on a ML approach. The inference study is made322

using a likelihood-ratio test and Akaike Information Criterion, AIC. After323

reducing the Broth and Broth-plate models they are compared, again us-324

ing a likelihood-ratio test and AIC. Following the parameter estimation the325

models are simulated in Matlab, by implementing a numerical Euler method326

as described by Higham (2001).327
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3.5.1. Parameter estimation328

A ML estimation method is used to determine the SDE model parameters.329

The parameters are found as those maximizing the likelihood function330

L(θ;YN) =

(
N∏

k=1

p(Y k|Yk−1, θ)

)
p(Y 0|θ) (24)

for the sequence of observations YN = [Y N , Y N−1, . . ., Y 1, Y 0]. The con-331

ditional probability densities p are approximated by gaussian densities mo-332

tivated by the fact that the SDE (4) is driven by a Wiener process having333

gaussian increments, i.e.334

p(Y k|Yk−1, θ) =
exp

(
−1

2
εT

k (Σyy

k|k−1
)−1εk

)
√

det
(
Σ

yy

k|k−1

) (√
2π
)l (25)

where335

Σ
yy

k|k−1
= Var[Y k|Yk−1, θ] , (26)

εk = Y k − Ŷ k|k−1 , and (27)

Ŷ k|k−1 = E[Y |Yk−1, θ] . (28)

The conditional mean Ŷ k|k−1 and covariance Σ
yy

k|k−1
in the likelihood function336

(24) and (25) can be estimated recursively by means of the Extended Kalman337

Filter (Kristensen et al., 2004b). In this study we use the software CTSM, from338

which the parameter estimation, correlation of the parameter estimates and339

the log-likelihood values are obtained. CTSM can be downloaded from the340
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webpage: http://www2.imm.dtu.dk/∼ctsm/, from where a user manual is341

also available. CTSM is easy to use as it has a built in graphical user interface.342

Recently an implementation of the method has also been made in R (Klim343

et al., 2009).344

3.5.2. Goodness of fit statistics345

Nested models are compared with a likelihood ratio test statistics given346

by347

−2 log Λ = 2 (
(θ)− 
(θ0)) , (29)

where the test statistics −2 log Λ is asymptotically χ2 distributed with de-348

grees of freedom equal to the difference in dimensions between the two mod-349

els. 
(θ) = log(L(θ;YN)) and 
(θ0) = log(L(θ0;YN)) are the log-likelihood350

values of the model and the submodel, respectively. The inference study is351

also performed with AIC, which is given by352

AIC = −2
(θ) + 2k , (30)

where k is the number of parameters in the model and 
(θ) is the log-353

likelihood value of the model. When comparing models the preferred model354

is the one with the lowest AIC value.355
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4. Results and discussion356

The conjugation experiment continued for 7 h, during which samples were357

taken from the broth mixture approximately every 20 min and plated on se-358

lective agar plates. The CFUs were counted, and the bacterial concentrations359

in the broth were determined by a generalized linear model approach. The360

experimental results can be seen in Figure 2.
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Figure 2: Data from the conjugation experiment with E. faecium growing in broth culture.

361

4.1. Inference study362

Log-likelihood values for the Broth model and the Broth-plate model363

tested with respect to the state noise, the observation noise, and finally the364

drift term is summarized in Table 1. When estimating the model parameters365

only biological plausible parameter intervals are considered. The multiplica-366

tive system noise term (9) is tested against additive system noise (10), and367

it is found that there is no significant difference. We therefore continue the368

study for both the Broth and Broth-plate model with additive system noise.369
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Table 1: Log-likelihood values, p-values and AIC for different versions of the Broth model
and Broth-plate model. The nested models listed below each other are tested with the
likelihood-ratio test and the p-value for the comparison is listed in the line of the smallest
of the two models tested. The proportional and additive observation noise structures are
both tested against the proportional+additive noise term.

Broth model Broth-plate model


(θ̂) p-value AIC 
(θ̂) p-value AIC
System noise:
Multiplicative -299.04 - 638.08 -298.05 - 634.09
Additive -299.19 - 634.38 -298.05 - 634.09
Additive (σ = σD = σR = σT ) -299.19 0.9999 630.38 -298.05 0.9999 630.09
Observation noise:
Proportional+additive -299.19 - 630.38 -298.05 - 630.09
Proportional -300.52 0.4467 627.04 -299.47 0.4162 626.94
Additive -312.67 0.0006 651.34 -311.43 0.0007 650.86
Drift term:
α = 0 -300.52 0.9969 625.04 -299.47 0.9695 624.94
κT = κR -300.59 0.7014 623.19 -299.53 0.7232 623.06

It would be interesting to investigate the system noise structure with a ML370

estimation based on the particle filter (Ionides et al., 2006), for which the371

multiplicative noise can be implemented directly dependent on the state vari-372

able. We will leave this for a future study. The additive system noise is well373

modelled with σ = σD = σR = σT for both the Broth and Broth-plate mod-374

els.375

Both the proportional observation noise and the additive observation noise376

can be tested against the proportional+additive observation noise using a377

likelihood-ratio test. The model with additive observation noise is seen to378

perform significantly worse than the proportional+additive noise model (p-379

value = 0.0006 and p-value = 0.0007), whereas data is well modelled with380
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proportional observation noise (p-value = 0.4467 and p-value = 0.4162). All381

the observation noise covariance matrices can be compared using AIC, from382

which it is also found that data is best modelled with proportional obser-383

vation noise. This result is as expected, as the variance of the observations384

increases for higher CFU counts, which is best captured by proportional385

noise.386

With this noise structure the two hypothesis α = 0 and κT = κR are tested.387

We fail to reject both hypothesis as the p-values are high (between 0.7014388

and 0.9969).389

The best description of data for each of the models is thus a model with ad-390

ditive system noise where the standard deviation is the same for D, R and T .391

The observation noise should be modelled as proportional noise and growth392

for the transconjugants and recipients can be modelled with the same set of393

parameters.394

The reduced Broth and Broth-plate models can be compared with the likelihood-395

ratio test, as they are nested models with the Broth-plate model containing396

one additional parameter (γ′p) compared to the Broth model. The test statis-397

tics for this test is 2.12, which gives a p-value of 0.1451. This is not significant398

on ordinary level and thus the smaller Broth model should be chosen. How-399

ever, this conclusion is based on very few datapoints, and it might change if400

more data was available.401
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Figure 3: The donor and recipient concentration over time as simulated by the Broth and
Broth-plate models plotted together with data values.

4.2. Parameters402

The result of the ML parameter estimation for the reduced Broth and403

Broth-plate models is shown in Table 2, and the results of simulations with404

these parameters are plotted in Figure 3 and 4.405

The conjugation rate is estimated to 2.008 · 10−12 (CFU/μl)−1h−1 for the406

Broth-plate model and 4.913 · 10−12 (CFU/μl)−1h−1 for the Broth model.407

Thus, the choice of model influence the estimate of the conjugation rate.408

The value of κc (10−16−10−15) is low compared to the κ value for the growth409

of the bacteria (10−3 − 10−2). This means that the mass action model γDR410

in this conjugation experiment gives a good description of conjugation until411

the substrate is depleted. As a consequence of the low κc value the model412

predicts conjugation to continue after the growth of the bacteria has reached413

stationary phase. By comparing the simulations of the donor and recipient414

concentrations Figure 3 with simulation of the transconjugant concentration415
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Figure 4: The transconjugant concentration plotted together with simulations of the Broth
and Broth-plate models. For the Broth model the mean of the simulated transconjugant
concentration and its confidence interval, as estimated by CTSM, is shown. For each model
one example of the SDE simulation made in Matlab is plotted.

Figure 4 we see that new transconjugants appear until approximately one416

hour after initiation of the stationary growth phase.417

When calculating the bacterial concentration from the CFU count it was418

assumed that the data was Poisson distributed, and thus that the variance419

equals the mean. If this was indeed the case each of the parameters σ2
4, σ2

5 ,420

and σ2
6 should equal one. In this case σ2

4 is around 14 and σ2
5 and σ2

6 are around421
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Table 2: The result of the ML parameter estimation for the Broth model and the Broth-
plate model.

Parameter Broth model (SD) Broth-plate model

(SD)
vD [h−1] 1.678 (0.113) 1.787 (0.092)
vR = vT [h−1] 1.216 (0.028) 1.261 (0.035)
κD 0.052 (0.047) 0.110 (0.047)
κR = κT 0.0034 (0.0032) 0.0364 (0.0199)
η 1.128·10−6 (0.079 · 10−6) 1.112·10−6 (0.087·10−6)
κc 4.201·10−16 (3.966 · 10−16) 5.583·10−15 (8.811·10−15)
γmax [(CFU/μl)−1h−1] 4.913·10−12 (0.636·10−12) 2.008·10−12 (0.699·10−12)
γ′p [(CFU//μl)−1] 0 - 4.096·10−12 (1.630·10−12)
σ 4.010 · 10−10 (2.828 · 10−10) 1.128 · 10−11 (2.488 · 10−11)
σ4 13.815 (5.349) 14.862 (5.575)
σ5 3.507 (1.212) 3.572 (1.304)
σ6 3.150 (1.422) 3.184 (1.280)

3. This means that the data is over-dispersed, and this over-dispersion is ac-422

counted for by σ2
4 , σ2

5 , and σ2
6 . These parameters are in Poisson regression423

also refeered to as dispersion parameters. Several authors have found asym-424

metric likelihood profiles (Dennis et al., 2006; Ionides et al., 2006; Ponciano425

et al., 2007; King et al., 2008) in state-space models for dynamical biolog-426

ical systems (e.g. bird growth, plasmid persistence and cholera pandemic).427

In order to check the likelihood structure for our conjugation model, the428

profile-likelihood is calculated for vD and γmax. The profile likelihoods seen429

in Figure 5 are calculated by optimizing the likelihood function for fixed val-430

ues of the parameter of interest. The 95% confidence interval (CI) plotted431

is the region of parameter values for which the profile log-likelihood value is432

larger than 
(θ)max−c/2, where 
(θ)max is the maximum log-likelihood value433
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and c is defined by Prob[χ2(1) < c] = 0.95. The profile likelihoods are indeed434

asymmetric, which also in 3 out of 4 cases leads to asymmetric CI’s. This is435

as expected due to the small number of observations. Furthermore it is seen436

that the profile likelihood CI is generally wider than the CI calculated by437

CTSM. However, this difference is not very large and we therefore believe that438

it has no or only a limited influence on the inference study performed. It439

should be noted that the observation noise seems to increase when the profile440

likelihood value is decreasing. This indicates that the observation noise (and441

not as expected the system noise) explains the difference between observa-442

tions and the model. This is due to the few observations, which makes it443

difficult to adequately separate observation and system noise as discussed by444

Dennis et al. (2006).445

In addition to the samples directly plated on the transconjugant plates, also446

10 times concentrated samples were plated for the first six time points, where447

transconjugant concentration in the flask was low. However, an expected 100448

times increase in conjugation on the plate compared to the non-concentrated449

sample was not observed. The reason for this is not clear. The sample is450

centrifuged in order to make a concentrated sample, this might change the451

ability for the donor and recipient to conjugate on the plate which could be452

one explanation. Further experiments should be performed to support the453

finding of conjugation under antibiotic pressure on the selective agar plate.454
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Figure 5: Profile likelihood (full line and circles) and approximate 95% confidence interval
for vD and γmax. The cross marks the estimated parameter value. The dotted lines in the
top plots give the standard deviation s4.
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5. Conclusions455

The proposed SDE based state-space model is shown to successfully model456

conjugation in a broth exhaustible media. The suggested substrate depen-457

dent expression for the conjugation rate satisfactory model the conjugation458

process, which stops as the substrate is depleted. The ML based framework459

for estimating model parameters combined with likelihood-ratio tests and460

AIC for inference studies provides strong tools for model improvements. It461

is shown that the stochasticity of the observations is best modelled as pro-462

portional noise.463

The methodological problem of conjugation occurring on the transconjugant464

plates motivates the development of the Broth-plate model, which includes465

plate conjugation in the observation equation, whereby the plate conjuga-466

tion can be separated from conjugation in the broth media. However, for the467

given data the Broth-plate model does not perform significantly better than468

the Broth-model.469
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A. Generalized linear model estimation474

For any given observation time tk, the concentration Yk in the flask of a475

given bacteria population can be found from the following Matlab code:476

477

% Create a vector N k with the CFU counts at478

% time t k, e.g.479

N k = [94, 152, 8, 5, 1, 3];480

481

% Create a vector n with the dilution for each482

% of the observations N k at time t k, e.g483

n = [0.1, 0.1, 0.01, 0.01, 0.001, 0.001];484

485

x0 = ones(length(N k),1);486

X = log(n);487

488

% Estimating the parameter, beta, the489

% deviance of the estimation, dev, and the490

% statistics for the test (including491

% standard deviation).492

493

[beta,dev,stat] = glmfit(x0,N k,...494

'poisson','link','log',...495

'offset',X,'constant','off');496

497

% The concentration at time t k is498

Y k = exp(beta);499
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500

% The standard deviation at time t k is501

sigma Yk = Y k*stat.se;502

503
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