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dDepartamento de Matemáticas, Facultad de Ciencias, Universidad de Chile,
Casilla 653, Santiago, Chile

Abstract
The major insight in Robert Rosen’s view of a living organism as an (M, R)-

system was the realization that an organism must be “closed to efficient causa-
tion”, which means that the catalysts needed for its operation must be generated
internally. This aspect is not controversial, but there has been confusion and mis-
understanding about the logic Rosen used to achieve this closure. In addition,
his corollary that an organism is not a mechanism and cannot have simulable
models has led to much argument, most of it mathematical in nature and difficult
to appreciate. Here we examine some of the mathematical arguments and clarify
the conditions for closure.

1 Introduction

Studies of artificial life depend heavily on efforts to set up and simulate models of
living organisms in the computer. According to Robert Rosen (1991), however, a living
organism is not a machine, and it so cannot have a computer-simulable model. Not
surprisingly, his conclusion has stimulated an intense argument among computer sci-
entists, mathematicians and biologists (Landauer and Bellman, 2002; McMullin, 2004;
Wells, 2006; Chu and Ho, 2006; 2007a;b; Louie, 2007; Wolkenhauer, 2007; Wolkenhauer
and Hofmeyr, 2007; Mossio et al., 2009), because if it is valid it imposes a formidable
barrier to modern theories of computation in a topic that is as central to our scientific
endeavour as it is to the nature of living systems. It is important to emphasize at
the outset that Rosen did not argue that artificial life was impossible1, but only that

∗The authors are listed in a random order, and correspondence may be addressed to any of them.
1His most widely read book, Life Itself (Rosen, 1991), is subtitled A Comprehensive Inquiry into the

Nature, Origin, and Fabrication of Life.
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organisms are “closed to efficient causation” and that this essential property excludes
any possibility of simulable models.
The numerous new papers cited above that deal with the issue of computability

make it necessary to examine the controversy. We are convinced that full understand-
ing of Rosen’s work requires study of more than just the well known closure diagram
in Life Itself (Fig. 10C.6 of Rosen (1991); Fig. 1a below). His argument against com-
putability requires a detailed analysis of metabolic closure as set out in a series of
papers spanning 15 years (Rosen, 1958a;b; 1959; 1966; 1971; 1973). Progress in the
matter of computability requires a thorough knowledge of the conceptual steps that
Rosen took in this regard (for example the distinction that he made between simulation
and modelling), and not just the summary encapsulated by the diagram.
A recent analysis in terms of λ-calculus and the theory of computer programming

(Mossio et al., 2009) led to the opposite conclusion, that a system closed to efficient
causation can certainly have computable models. The authors pointed out the ap-
parent contradiction that autopoiesis (Maturana and Varela, 1980), which has strong
underlying similarities with Rosen’s theory (Letelier et al., 2003), including closure to
efficient causation, is claimed to have computable models (McMullin, 2004). Moreover,
it is not obvious that the examples of (M,R)-systems that we have proposed (Lete-
lier et al., 2005a; 2006; Cornish-Bowden et al., 2007; Cornish-Bowden and Cárdenas,
2007) cannot be simulated. Other criticisms of Rosen’s analysis also deserve to be an-
swered, as they affect his insights in relation to closure, which we regard as essential
for understanding living systems.
How does the existence, or not, of computable models of living organisms affect

other aspects of the study of life? According to Chemero and Turvey (2008), “little
rides on whether genuine artificial life is possible”, and we agree: the existence of
simulable models of living organisms has less importance than Rosen’s essential in-
sight, that organisms must be closed to efficient cause and hence metabolically closed.
However, the argument about simulability will certainly continue: the work of many
groups, including those attempting to develop life in silico, depends on the assumption
that computer simulation of living systems is in principle possible, and any claims
that it is not possible can expect to meet vehement opposition.
We believe that the way forward, both for getting a better understanding of life and

for deciding whether it can have simulable models, will require Rosen’s abstract and
mathematical ideas to be brought into much closer correspondence with biological
reality. Future models need not only to reflect the mathematics accurately but they
must also be biochemically reasonable.

2 Closure to efficient cause

Closure to efficient cause, illustrated in Fig. 1, is central to Rosen’s view of life, and
we shall briefly resume what it means. Rosen drew the diagram, for example in
Fig. 10C.6 of Rosen (1991), as in Fig. 1a. Cottam et al. (2007), have argued that the
underlying logic is symmetrical and can be better illustrated with a symmetrical figure-
of-eight layout, as in Fig. 1b. Their arrangement is visually appealing but it suggests a
misleading parallelism between efficient and material causation, and in any case, as we
note below, material causation must be asymmetrical if thermodynamic requirements

2



Acc
ep

te
d m

an
usc

rip
t 

Material cause
(transformation)

f

A  �

Efficient cause
(catalysis) 

f

A

 

�Metabolism 

 B

Replacement
(“repair”) 

Organizational 
invariance

(“replication”) 

  B

  f

A �

 B

a b c

d

Fig. 1. The diagram is based on Fig. 10C.6 of Rosen (1991), shown (a) in the unsymmetrical
way used by Rosen, (b) in the more symmetrical way suggested by Cottam et al. (2007),
and (c) in a way suggested by Goudsmit (2007) in which the representation of efficient causes
resembles normal practice in chemistry, with catalysts shown as acting on reactions rather than
on substrates. (d) In all three variants full arrows represent material causation, or chemical
transformation, whereas broken arrows show efficient causation, or catalysis. Rosen’s terms
“repair” and “replication” shown in parentheses for these last two processes are misleading,
as they have nothing to do with the ordinary uses of these words in modern biochemistry, for
example for DNA repair and DNA replication. Here we follow the terminology introduced
previously (Letelier et al., 2006).

are to be satisfied. In the third layout (Fig. 1c), suggested by Goudsmit (2007), the
distinction between efficient and material causation is represented in a way that is
much closer to normal practice in chemistry and biochemistry. The three layouts
do not imply three different schemes, but one scheme shown in three different but
completely equivalent ways.
Each version of Fig. 1 consists of three parts, each with a set of chemical transfor-

mations (material causation) and a set of catalysts (efficient causation). Metabolism is
the complete set of chemical transformations A → B, catalysed by a set of enzymes f .
Replacement (or “repair” in Rosen’s misleading terminology) is the resynthesis of the
set of catalysts f as necessitated by degradation, wear and tear, and growth, catalysed
by a replacement system Φ. Organizational invariance (“replication” in Rosen’s termi-
nology) is the process that enables an organism to maintain this replacement system,
as we discussed in more detail elsewhere (Letelier et al., 2006). Notice that it does not
correspond to cell reproduction or DNA replication.2
It is obvious that enzymes must be synthesized from the products of metabolism

and that this synthesis requires additional catalysts, so the arrows Φ ��� B → f

require no explanation, but it is less obvious why B should be the efficient cause of
the replacement enzymes. In fact the efficient cause is not B but a function β that
is related to B but is not the same as B. It might seem a priori that a separate set of

2This unfortunate terminology has misled some authors. For example, Mossio et al. (2009) wrote that
“Φ, as ‘replication function’, may be associated with nucleic acids.” There are actually two errors here, the
first possibly typographical but the other probably caused by Rosen’s terminology: Φ is responsible for
the “repair” function, not “replication”, and “replication” in Rosen’s sense is quite different from DNA
replication, etc. Throughout the present paper we follow the terminology we introduced previously
(Letelier et al., 2006), which we believe to be less confusing.
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Fig. 2. Different criteria of closure. As there are various ways in which a system can be
considered to be closed, it is important to distinguish between these. (a) Organisms are
open systems in the thermodynamic sense, and they obtain the energy they need for all
metabolic and motor functions by irreversibly converting nutrients into excreta; in the case
of the blood-stream form of the parasite Trypanosoma brucei illustrated this is a matter of
converting glucose into pyruvate. (b) On the other hand they are structurally closed, in
the sense that different individuals, for example in the bacterial population illustrated, are
separated from one another by physical barriers, and there is no doubt about where one ends
and another begins. (c) Closure to efficient causation does not refer to structural closure,
however, but to organizational closure: all catalysts needed for metabolism are themselves
products of metabolism.

enzymes would be needed, but this would imply infinite regress, whereas organisms
are not infinite. Rosen’s device for avoiding this infinite regress was to interpret
catalysis of the transformation f → Φ as a property β of the metabolic products B.
We have discussed the implications of this elsewhere (Letelier et al., 2006), but it is
important to emphasize at the outset that although β can be regarded as a property of B
it is not the same as B; this is a subtle point that continues to be widely misunderstood,
and we return to the topic in Section 8.
In Fig. 1 all catalysts are synthesized internally; none is produced by any external

agency. It is in this sense that the system is catalytically closed, or closed to efficient
cause in Rosen’s terms. There is no implication of material closure, however, and no
conflict with the thermodynamic requirement that a living organism be open to the
flux of matter, to allow metabolic energy to be extracted from food (Fig. 2a): A in Fig. 1
is understood to include molecules available from the environment, and likewise B to
include molecules that are excreted, but the distinction between external and internal
molecules is not explicit in the figure. In a third sense an organism is again closed,
as there is always a physical separation (membrane, cell wall, skin, etc.) between one
individual and another (Fig. 2b). This is important, and is emphasized in particular
in the theory of autopoiesis (Maturana and Varela, 1980), but Fig. 1 is concerned with
organizational closure (Fig. 2c), not with structural closure.

3 Analysis of closure in terms of hypersets

Hypersets are generalized sets in which the restriction that sets cannot be members of
themselves is relaxed. This restriction was made at the beginning of the 20th century
as a way of resolving Russell’s paradox and the problems of ambiguity that arise
when impredicative definitions are permitted, i.e. definitions that allow the entity
being defined to participate in its own definition. However, the impredicativity that
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is central to Rosen’s view of an organism does not prevent it from being logically
coherent (Kercel, 2007).
Chemero and Turvey (2006; 2008) have discussed the principle and usefulness of

hypersets, and have shown how simple graphs of hypersets allow one to recognize if
a system embodies circular definitions and is thus complex in Rosen’s sense. Mossio
et al. (2009) are critical of some of these authors’ arguments — both in relation to their
understanding of impredicativity and in the implications that impredicativity has for
computability — but they do not address other serious problems with these papers,
especially the misunderstanding of what catalysis is.
On the basis of their approach Chemero and Turvey (2006; 2008) conclude that

catalytic closure does not necessarily mean closure to efficient cause. As this conclu-
sion contradicts Rosen, it is important to understand that they arrived at it by means
of an idiosyncratic definition of catalytic closure: “a system is catalytically closed just
in case every product of the system is also a catalyst in the system” (Chemero and
Turvey, 2006). They attributed this definition to Kauffman (1993), but in fact it inverts
Kauffman’s own definition: “Catalytic ‘closure’ must be achieved and maintained.
That is, it must be the case that every member of the autocatalytic set has at least one
of the possible last steps3 in its formation catalyzed by some member of the set, and
that connected sequences of catalyzed reactions lead from the maintained food set to
all members of the autocatalytic set.”
According to Kauffman, therefore, catalytic closure requires every catalyst to be a

product of metabolism, whereas according to Chemero and Turvey it requires every
product of metabolism to be a catalyst. Kauffman’s definition agrees with related
ideas in (M,R)-systems (Rosen, 1991) and autopoiesis (Maturana and Varela, 1980).
As far as we are aware no one has previously suggested that it is a requirement for
life that every metabolic product be a catalyst, and examination of real metabolism in
real organisms reveals innumerable examples of products with no known functions
as catalysts.
In their more recent paper Chemero and Turvey (2008) define catalytic closure

in a more acceptable way, as we discuss below, so we need to examine whether the
problems in the previous one (Chemero and Turvey, 2006) arose from an unfortunate
choice of words, or whether they reflect a real failure of their analysis. This can be
determined by ignoring their words and examining the series of reactions they used
to illustrate them in their 2006 paper:

P + Q→ A, R + A → B, S + B → C, T + C → B

Their designation of A, B and C as catalysts in this system makes no sense if the pair
of symbols on the left-hand side of each process is interpreted as a pair of co-reactants
(see Fig. 3a). Instead, P + Q→ A, for example, apparently means a reaction P→ A
catalysed by Q. If so, a more conventional and intelligible way of symbolizing the
whole set of reactions is as follows:

P
Q→ A, R A→ B, S B→ C, T C→ B

3This unfortunate choice of wording could be taken to refer one of the steps near the end of a series
of steps, in which case one might wonder why only one of these steps needs to be catalysed. In fact it
refers to the possibility of parallel pathways to the same metabolite, and it requires that the final step
of at least one of these must be catalysed.
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Fig. 3. Models of Chemero and Turvey. (a) A natural interpretation (but probably not the one
intended) of the equations used by Chemero and Turvey (2006) to define their model. Note
that the model contains no catalysis, and it violates the law of conservation of matter, because
the B� C cycle is a bottomless pit into which all the reactants disappear, with nothing coming
out. (b) What we take to be the intended meaning of the equations of Chemero and Turvey
(2006). Full and broken arrows have the same meanings as in Fig. 1, and the plus signs simply
emphasize that each broken arrow represents a catalytic effect, not an inhibition. (c) The more
recent model of Chemero and Turvey (2008).

On this interpretation (Fig. 3b) their system satisfies their definition of catalytic closure
(every product is a catalyst), but not that of Kauffman (1993), because Q is a catalyst but
not a product of any reaction in the system. The fact that Q is not a system product is
essential to their argument, as it leads them to an artificial distinction between catalytic
closure and closure to efficient cause, and to say that “in general, catalytically closed
systems are not closed to efficient causation.” Their system, however, does not satisfy
any recognized criterion of catalytic closure (Rosen, 1991; Maturana and Varela, 1980;
Kauffman, 1993), so it provides no support for their contention that their analysis
“agrees with Chu and Ho (2006), who dispute Rosen’s purported proof that artificial
life is impossible.” In any case, Rosen did not claim to have provided a “proof that
artificial life is impossible”; on the contrary, as we noted in the Introduction, he
made an explicit distinction between the existence of simulable models of life and the
possibility of artificial life (Rosen, 1973).
The later paper (Chemero and Turvey, 2008) does not resolve the problems raised

by the first. Much of the text and illustrations are identical, but the part that is of most
concern to us here is different, albeit in a way that does not clarify their argument.
They no longer state that every product of metabolism must be a catalyst, but instead
that “when every product in a network of chemical reactions has a catalyst that is
also a product in the network, the network of reactions is a collectively autocatalytic
system”: this is closer to the definition given by Kauffman (1993). One may object
that catalysts are usually associated with reactions rather than with products, but this
is trivial compared with the objections that can be made to the previous statements.
The new discussion refers to a scheme that fails to make it clear which version of the
generalization is being illustrated, because now both catalysts are products, and both
products are catalysts:

R A→ B, S B→ A

As may be seen by drawing it as in Fig. 3c, this model does represent a collectively
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autocatalytic system, even though neither of the individual steps is autocatalytic.
Unfortunately the recent paper (Chemero and Turvey, 2008) makes no reference

to the earlier one, and so it is not clear whether the changes are corrections or just
different ways of expressing the same ideas. As it reaches essentially the same conclu-
sion, expressed in the same words, that the analysis “agrees with Chu and Ho (2006),
who dispute Rosen’s purported proof that artificial life is impossible,” it seems best
regarded as a re-expression of the original argument and not as a corrected one.
Chemero and Turvey (2007) have a related paper that appeared between the two

we have discussed. In it they define the following system of reactions:

P→ X, B + X → Y + D, 2X + Y → 3X, Y → F

and comment that “the second and third steps are autocatalytic. X reacts with B
to produce Y and Y is a catalyst for production of more X”. Again, however, the
meanings of the symbols and words are obscure and in addition it is difficult to make
chemical sense of the individual reactions (especially 2X + Y → 3X). As far as one can
tell they have simply written a series of four equations without paying any attention
to chemical plausibility. On the one hand the + sign does seem to be used in the
conventional way to concatenate co-reactants; on the other hand the statement that Y
is a catalyst is true only if the second and third steps are regarded as a single process,
but not if they are treated separately, as the words seem to suggest. Unfortunately,
therefore, this paper is only of limited help for clarifying the other two. There is,
however, an important point illustrated by the idea of two or more reactions in a
sequence as a single process. Once there is a reactant for one step regenerated by
another step there is necessarily autocatalysis, as discussed by King (1977a) and as
implied by Cornish-Bowden and Cárdenas (2007).

4 Autocatalytic sets and autopoiesis

There is a fundamental difference between autocatalytic sets (Kauffman, 1993; 1986)
and autopoiesis (Maturana and Varela, 1980), and it is necessary to understand this
because of the implications of these approaches to the origin of life. For Kauffman an
autocatalytic set is inevitably a large set, with, as a minimum, thousands of elements
based on amino acids or RNA bases, because only large systems can have the statistical
properties needed for closure to become virtually inevitable. For example, if any one
molecule has a probability of 10−9 of catalysing a particular ligation or cleavage step
in the system,4 the probability of catalytic closure is very low unless there are at least
3 × 108 different kinds of molecules altogether. This number is greatly decreased, to
about 18000, if there is the same probability of catalysing exchange reactions as well
as ligation and cleavage, but it remains very large in comparison with the numbers
of elements usually imagined to be necessary for a minimal autopoietic system: al-
though Maturana and Varela may not have explicitly described their systems as small,
most of their discussion implies that autopoietic systems can be small enough to be
represented by models that are very small in Kauffman’s terms. They are thus much

4Orgel (2008) recently discussed the plausibility of this and other assumptions in Kauffman’s model.
His analysis is interesting and important, but it does not bear directly on the point we are making here.
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closer in spirit than Kauffman to most theories of the origin of life, and, indeed to
current ideas on the number of distinct entities that would be needed for a minimal
cell.
Although Kauffman (1993) concluded that autocatalytic sets had to be very large

sets, it is important to realize that this conclusion followed from his wish to assess the
likelihood that closure could arise out of purely chance properties of its component
elements. It does not follow necessarily from the definition of an autocatalytic set,
however, if one is not concerned with the statistical arguments, and, as we show later
(Section 9), a very small set can satisfy the definition.
Where do (M,R)-systems (Rosen, 1991) fit into this spectrum? Rosen’s discussion

was always expressed in terms so abstract that there is no particular implication about
how many elements an (M,R)-system needs to contain in order to be viable. In our
earlier studies we followed Morán et al. (1996) in implicitly assuming that an (M,R)-
system could be small enough to be represented by a model intelligible in chemical
terms, but that may not be what Rosen intended. However, our model was designed
to fix some of the ideas, and not to be a realistic model of an organism: in other words,
just as each of Rosen’s arrows represents a large number of parallel processes each of
the arrows in our model should be taken as an oversimplified image of a complicated
reality. In particular, proper energy management in an organism needs much more
than an overall process that is assumed to be irreversible.
It is important to notice that although Kauffman’s systems may be very large in

terms of the number of different molecules they contain, they are rather small in terms
of the number of different chemical types of molecule they contain. It is virtually
certain that an organism cannot consist of just a mixture of peptides, or a mixture of
nucleic acids.

5 Are autopoietic systems really computable?

As Letelier et al. (2003) pointed out, autopoietic systems share many features of (M,R)-
systems and can be regarded as a subset of (M,R)-systems. They are thus by impli-
cation closed to efficient causation, and should inherit the property of not having
computable models5. However, it has been claimed that autopoietic systems have
been modelled (McMullin, 2004),6 based on a simple simulation carried out by Varela
et al. (1974) and later reconstructed in a more modern computational context by Mc-
Mullin and Varela (1997). This model involves the following processes:

S + S→ L

L + L → L–L

L + L–L...→ L–L–L...

L → S + S

in which S is a molecule available from the environment and L–L... represents a
linear chain of any length that can turn back on itself to form a closed cycle. The first

5The important distinction between simulation and modelling is discussed in section 7.
6These claims appear to be accepted by Mossio et al. (2009) in their recent paper.
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reaction is assumed to occur only in a specific part of the space (inside the boundary
formed by a cyclic chain of L molecules, a two-dimensional representation of what
in a three-dimensional system would be a membrane). This inevitably means that
it is a catalysed reaction, because if it were spontaneous it would occur everywhere,
not just inside the boundary. The simplest expression of the model did not give the
expected results, because newly formed L–L... chains tended to clog the interior of the
system instead of integrating themselves into the boundary molecule. This was solved
in an ad hoc manner by introducing an unexplained inhibition to prevent premature
bonding between L molecules.
There are two points that need to be distinguished here: first whether the sim-

ulated systems were real autopoietic systems closed to efficient causation; second
whether they were models in Rosen’s sense, or simply simulations. So far as the first
point is concerned, they are valuable as illustrations of how cell membranes can in
principle result from sequential application of simple rules, but they were not simu-
lations of autopoietic systems, because the catalyst needed for the essential chemical
reaction was not generated by the system itself but was given from outside. McMullin
(2004) recognized this, saying that “this appears to violate the demand for closure in
the processes of production”. However, it does not merely “appear” to violate this
fundamental requirement; it does violate it. As the simulated system was not closed to
efficient causation it tells us nothing about whether systems that are closed to efficient
causation can have simulable models.
In his attempt to justify allowing exceptions to the requirement of closure, Mc-

Mullin (2004) commented further that “there must surely be some exceptions allowed
(specifically, covering the case of the S particles that are simply harvested from the
environment)”, in which the S particles correspond to the external molecules included
in our simple model of an (M,R)-system (see Fig. 6 below). There is a confusion here
between closure to material causation (which no one claims to be a property needed
for life) and closure to efficient causation, an explicit property of (M,R)-systems, and
at least an implicit one in autopoiesis.7 However, it is a confusion that is easy to fall
into, and deserves some explanation. It has been generally accepted since Schrödinger
(1944) characterized living organisms as “feeding on negative entropy” that they are
inevitably open systems, that maintain themselves indefinitely in states far from ther-
modynamic equilibrium by ingesting low-entropy food and excreting high-entropy
products. This thermodynamic requirement does not in any way conflict with the
organizational requirement that they be closed systems, because openness to material
causation is not opposed to closure to efficient causation (see Fig. 2).
Referring to the failure of the autopoietic model to include regeneration of the

catalyst, McMullin (2004) goes on to say that “more recent elaborations of this original
model have specifically allowed for production of the [catalyst] particles (Breyer et al.,
1998), so there is no fundamental difficulty here” (emphasis in the original). However,
later in the paper he admits that “full achievement of self-reproduction is not reported”
[in the simulations cited], so it is not clear how the argument is advanced. Although
Breyer et al. (1998) did define a model with regeneration of the catalyst, which may

7In two recent papers Fernando and Rowe (2007; 2008) discuss both organizational closure and ther-
modynamic considerations. Although they do not confuse the two concepts, they also do not distinguish
between them as explicitly as necessary to maintain them distinct.
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be represented as follows:

S K→ P, P K→ K, S K→ M, M + M→M–M

the simulation results that they present do not appear to have been obtained with
this model, but with a simpler one presented earlier in which there is no catalyst
regeneration. Nonetheless, we do not doubt that with further elaboration of the
computer code a genuine simulation of an autopoietic system could be achieved, and
in this limited sense we do not contest McMullin’s conclusion; however, it would still
not constitute a model in Rosen’s sense.
The model of Breyer et al. (1998) has a peculiarity that makes it difficult to regard

it as a plausible biochemical model. As one may see, the catalyst K acts on a single
substrate S to produce two different products (S K→ P, S K→ M). This type of behaviour
is common in catabolic processes, in which, for example, a proteolytic enzyme may
act at various different sites in a protein substrate, releasing a different product in
each case. However, we are concerned here with anabolic metabolism, for which we
know of no such examples. The model gives the impression that the catalyst was
included as an afterthought with no attempt to take biochemical reality into account.
Finally, it is worth noting that Zeleny (1995) has also denied that autopoiesis can

be modelled in the sort of way that McMullin and others have attempted, writing as
follows:

Approaches which sacrifice [the] essential individuality of components,
like the statistical systems of differential equations used in the traditional
systems sciences, cannot model autopoiesis. They are definitionally inca-
pable of treating autopoietic systems as social systems.

6 (M,R)-systems considered in terms of Cartesian
closed categories

In developing their abstract cell model of a living organism, Wolkenhauer and Hofmeyr
(2007) state, but do not prove, that the category needed for a mathematical model of a
self-organizing cell must be Cartesian closed. In essence this means that the category
behaves like the category of sets and mappings regarding the relationship between
functions of two variables and functions of one variable. It is well known, indeed,
that the graph of a function of two variables, such as f(x, y), can be regarded in a
global way as a “sheet” hovering over the (x, y) plane, or alternatively, as a family
of slices, for example slices parallel to the y axis. In algebraic terms, a two-variable
function

(x, y) �→ f(x, y)

may be described as a one-variable function:

x �→ fx : y �→ f(x, y)

where fx(y) = f(x, y), whose values fx are again one-variable functions, obtained
by fixing the value x of the first variable as a parameter. The graph of each partial
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function fx appears then as a vertical “slice” of the graph of the two-variable function
f , parallel to the y axis.
There are several similar statements in the paper about the necessity of Carte-

sian closure, but no proof, and in fact, it is not true: Cartesian closure may indeed
be sufficient to allow formulation of a mathematical model of self-organization, as
Wolkenhauer and Hofmeyr show by means of a rewording of Rosen’s own argument,
but it is not necessary, and the arithmetical example that we described previously
(Letelier et al., 2006) contradicts the claim that it is, as we discuss at the end of this
section.
In the case relevant here, we are led to consider concrete categories whose objects are

sets endowed with a structure and whose morphisms are simply “structure-preserving
mappings”. For example, the objects could be vector spaces with linear maps as
morphisms; or they could be groups, with group homomorphisms as morphisms;
or they could be ordered sets with monotone mappings, and so on. For this sort of
category to be Cartesian closed, it is necessary to know that the set AB of morphisms
from any object B to any object A may be endowed (in a “natural” way) with the
same sort of structure as the other objects in the category and that all maps involved
in the slicing procedure above are morphisms in the category. More precisely, if
f : X × Y → Z is a morphism, then the maps fx : Y → Z, for all x ∈ X and the map
x �→ fx, from X to ZY , are morphisms in the category, and also vice versa.
The problem with insistence on Cartesian closure is that it inevitably excludes

functions that ought to be acceptable. For example, let f be the familiar dot product
(x, y) �→ x · y in which x, y may be real numbers, or vectors in the plane or in 3-
dimensional space: the partial mappings fx are indeed linear8, and so is the mapping
x �→ fx, because of the distributive law for the product with respect to addition of
numbers. So the slicing maps

x �→ fx

with fx(y) = f(x, y), are linear, even though f : (x, y) �→ x · y is not linear but bilinear,
i.e. f(x, y) is linear in y if x is fixed, and is also linear in x if y is fixed. Here we notice
that the “natural” — and useful — property for the global function f of two variables
is bilinearity, not linearity. Similar consideration apply to abelian groups, the category
of our arithmetical example. Even though the category is not Cartesian closed, the
map (m, n) �→ mn, where m and n are integers modulo 12, or “hours”, is bi-additive,
and f , Φ and β (in Rosen’s symbols) are all additive functions, i.e. they are morphisms
of the category of abelian groups. It is in this sense that our simple mathematical
example (Letelier et al., 2006) is a counter-example to the assertion by Wolkenhauer
and Hofmeyr (2007) that the associated category of a mathematical model of a self-
organizing cell must be Cartesian closed.

8We use “linear” here in the mathematical sense: a function g is linear if g(u + v) = g(u) + g(v). In
physics g : u �→ 5 + u for u ∈ V = R would be regarded as linear, though in mathematics it is called an
affine function.
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7 Simulation and modelling

Simulating an organism and creating a model of an organism may appear to be the
same thing, and so it is important for discussing Rosen’s work to emphasize that
he attached clearly different meanings to these two ideas. There are two key issues
in the notion of simulation, the first of which is the possibility of developing by
means of a computer program a sequence of steps that behave identically to the phe-
nomenon to be simulated. In general this simulation could not give any information
about the structure of the phenomenon9. In computer science one would say that the
phenomenon of interest is simulable by a Turing machine (the most general form of
computing today). However, there is a second issue that is just as important, which
is to be able to obtain information about the structure of the phenomenon from the
simulation. This amounts to deciding which variables and parameters of the phe-
nomenon to keep and record, how much time the simulation will run, etc. These
variables and parameters can then give us the structural information we seek. For
Rosen the first of these is “simulation” whereas the second is “modelling”, and he
considers that for understanding the structure of phenomena the interesting things
are models. His attitude is, of course, that of a scientist rather than of an engineer,10
as he regards understanding things as more important than predicting how they will
behave. The notion of closure under efficient causation and his famous diagram (see
Fig. 1 below) are attempts to present a model of life in this sense, not just a simulation
of life.
The distinction between modelling and simulation can be clearly explained by a

diagram (Fig. 4). The boxes F1 and F2 represent (formal) systems, and the arrows φ

and μ indicate the notion of “entailment” in each of these systems. Then, the system F2

simulates the system F1 if there are encodings α (intuitively the notion of measurement
or encoding) and β (intuitively prediction or decoding) and an “inferential machinery”
μ such that the diagram commutes, that is,

φ = β ◦ μ ◦ α. (1)

Note that if the arrows α and β are computable and the entailment relation μ in F2

is computable, the predictions are computable, by combining their respective results.
This is exactly what happens with the idea of simulation in the sciences today.
However, the equation does not tell us much about the structure of μ. What is this

structure, and how does it relate to φ? This is not at all the concern of simulation,
because without any knowledge of this we can “predict” certain phenomena of F1

using it. A deeper level of understanding of the phenomena F1 occurs when we
9As a simple and familiar example, methods of numerical analysis such as orthogonal polynomials

are used in engineering applications to simulate with as much precision as desired the behaviour of a
mathematical function that has an unknown analytical form but for which numerical values are known at
many points. These methods are very valuable for making predictions about the numerical values of the
function at additional points, but they tell us nothing about the real functional relationship. In Rosen’s
terminology, therefore, orthogonal polynomials can simulate a phenomenon as precisely as desired, but
they do not model it.
10The distinction may be further illustrated by recalling the controversy two decades ago over whether

the kinetics of a multienzyme system were best represented in terms of equations that offered insight
into the real nature of the system (Kacser and Burns, 1973) or by ones that were effective for predicting
its behaviour under a range of conditions (Savageau, 1976). See Cornish-Bowden (1989).
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F1 F2

�

��

�

Decoding

Encoding

Fig. 4. Simulation. The diagram illustrates the relationship between two formalisms F1 and F2, and is
based on Fig. 3F.2 of Rosen (1991) and diagram (1) in section 4.9 of Louie (2009).

X

Y

�(X)

�(Y)

f g

�

�

F1 F2

Fig. 5. Modelling. The diagram in Fig. 4 is shown for a deeper level of understanding. The system of
F2 is a model (and not just a simulation) of that of F1 if the entailment structure g in F2 is related to
the entailment structure f in F1 by a known function, so g = α(f). The figure is based on diagram (3)
in section 4.9 of Louie (2009).

can “deduce” in some sense the structure of the arrow μ from the arrow φ and the
encodings. This is what Rosen (1991) calls a model, and Louie (2009) represents it as in
Fig. 5. In the notations of that diagram, a model has the more stringent condition that
the entailment notion in the formalism F2 is represented as a function (the key point
being that the structure of that function is known). Louie represents that relation by
the equation g = α(f).
The question is now whether Rosen’s model can be simulated by a computer.

Note that the computability of the function φ does not imply that the relation μ

is computable, that is that α applied over processes (α(f)) is computable. Even if
we assume that there is a mathematical expression of his ideas that is simulable by a
computer, this says nothing about whether we can get information about the structure
of the phenomenon simulated, for example if it stabilizes, if it terminates, etc. This is
what Rosen claims when stating that no model of closure to efficient causation could
be Turing-simulable.
There are several formalisms for specifying mathematical models, such as logic,

category theory and so on, and different authors and research groups have chosen dif-
ferent models for formalizing Rosen’s ideas. He himself sometimes used frameworks
similar to algebraic notations and sometimes category theory, but when discussing
computability he did not chose any particular framework. There are various equiv-
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alent formalisms for this, including Turing machines, recursive functions, universal
grammars, λ-calculus, rewrite systems and so on. All of them model the same class
of functions, namely recursive functions.
The question therefore arises naturally of which one is best suited for modelling

Rosen’s ideas on computability. Although he expressed his ideas in this area by
directly addressing the language of recursion theory, or of “sequential machines”, the
use of functions and the notion of efficient causation brings to mind the ideas behind
λ-calculus, namely the formalization of the notion of function and evaluation11. This
approach was suggested by Fontana and Buss (1996) a decade ago, and is actively
pursued in a recent paper of Mossio et al. (2009). The use of rewrite rules is another
attractive approach, which has been formalized in the area of artificial chemistry by,
for example, Dittrich et al. (2001).
It is important to keep in mind that all these formalisms are equivalent, in the

sense that there are translations among them, and all represent the same mathematical
object. That is why we think it is better to keep the discussion in the biological area at
the abstract level of computability, using the formalisms that better fit the particular
problems to be addressed.
The important question here is to define what is meant by the terms computable and

not computable in the context of Rosen’s ideas. He himself never used these terms in
his book Life Itself (Rosen, 1991), referring instead to machines, mechanisms and the
notion of simulation (by a machine). On p. 192 of his book he explains this important
idea as follows:

Thus, the word “simulable” becomes synonymous with “evaluable by a
Turing machine”. In the picturesque language of Turing machines, this
means the following: if f is simulable, then there is a Turing machine T

such that, for any word w in the domain of f , suitably inscribed on an
input tape to T , and for a suitably chosen initial state of T , the machine
will halt after a finite number of steps, with f(w) on its output tape.

Notice in particular Rosen’s words “the machine will halt after a finite number of
steps”, as this is the key to some of the argument about whether his conclusions are
correct. Obviously, if one drops the condition of halting after a finite number of steps
from the definition of computability then one may arrive at a different conclusion
from his.

8 Circularity and computer programming

8.1 Rosen’s analysis

The conclusion of Mossio et al. (2009) that (M,R)-systems can have computable models
is based on an analysis of the fundamental equations of (M,R)-systems in terms of the
theory of computer programming, specifically in terms of λ-calculus. Their analysis
omits an essential part of the argument, however, and arrives in consequence at a
result that we contest. As we discussed previously (Letelier et al., 2006) the summary
11Some authors use the word “application” for what we are calling evaluation, a term we find more

appropriate.
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of Rosen’s system shown in Fig. 1 can be expressed in mathematically much more
rigorous terms by a series of mappings,

A
f→ B

Φ→ Map(A, B)
β→ Map(B, Map(A, B))

and three equations, the first of which expresses the idea that all of metabolism has
an operator f as its efficient cause:

a
f�→ b, i.e. f(a) = b

In biological terms f can be regarded as the set of enzymes needed to catalyse the
reactions. The second equation shows that the efficient cause of the replacement of
enzymes necessitated by degradation, wear and tear, and growth is another operator
Φ:

b
Φ�→ f, i.e. Φ(b) = f

with the products of metabolism as material cause. To avoid infinite regress, main-
tenance of Φ needs to be achieved without introducing another layer of causation, and
Rosen’s suggestion was that the operator β needed for maintaining Φ could be ob-
tained by solving the equation Φ(b) = f for Φ. Indeed, if we assume that for each
possible f there is only one Φ that satisfies this equation, the operator β is then defined
simply by the condition

f
β�→ Φ, i.e. β(f) = Φ

In more abstract mathematical terms we may look upon the value Φ(b) of Φ at b as
the result of applying the operator evb, or “evaluation at b”, to the function Φ:

Φ(b) = evb(Φ)

In these terms we have evb(Φ) = f , and since the operator evb is by hypothesis invert-
ible, we get

Φ = (evb)−1(f)

So, finally our operator β is none other than the inverse (evb)−1 of the “evaluation at
b” operator evb.
The notion that b can be identified with β needs to be treated with care. As we have

just explained, invertibility of the evaluation operator (a very demanding condition in
normal situations) implies that knowledge of b should allow β to be obtained by the
following series of steps: first, b is used to define a function evb, and if this evaluation
at b is invertible we have that evb can be used to calculate (evb)−1, a far from trivial
task in general. However, if the conditions are fulfilled there is a bijection (one-to-one
correspondence) between b and (evb)−1 = β and we can write β = P (b), in which P

is a complex operator with the property that

P (b) = P (b̂) implies that b = b̂

It is therefore important to realize that “identification” does not signify “equality”
in this context. That is why we (Letelier et al., 2006) twice referred to identification
but not to equality. Nonetheless, it is unfortunate that we used the words “with
β equivalent to b” to mean “with a one-to-one relationship between β and b” after
equation 14 in that paper, as this was to invite exactly the sort of misunderstanding
that we were seeking to avoid. Perhaps the clearest statement would be that b can be
identified, via a one-to-one mapping, with β.
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8.2 Expression in terms of λ-calculus

After correctly noting that Φ = β(f), Mossio et al. (2009) continue by stating that
“Rosen makes the crucial observation that the infinite regress can be avoided by
introducing a circularity: β can be identified with B, which is already produced by
the system”12, and then write Φ = B(f). However, although Rosen’s own diagram
(cf. Fig. 1) could be taken to mean that β ≡ B it is clear from our analysis and from
Rosen’s own papers that this is not what he meant.
Writing their three equations in λ-calculus notation, they become as follows:

(fA) = B

(ΦB) = f

(Bf) = Φ

They then substituted the first and third equation into the second to get

((fA)f)(fA) = f

This is a fixed-point equation meaning that f is a fixed point of

G = λx.((xA)x(xA)

As the classical Curry fixed-point operator Y of λ-calculus provides a fixed point Y M

for any term M , in particular for our G, they conclude that they can take

f = Y G

to obtain a solution for Rosen’s equations.
Notice that this result implies that the entire system, not just B but also f and Φ,

is fully determined by A alone. This seems biologically bizarre, and is not in any way
implicit in Fig. 1. More important, the misidentification β ≡ B undermines the whole
approach, because without this it is not possible to arrive at a simple expression of
closure in terms of λ-calculus, which provides no convenient way to represent the
inverse of a term like B.

8.3 Self-referential equations

In the simple arithmetical example discussed below (Section 8.7), metabolic states are
just numbers modulo 12 and all admissible mappings are just scaling maps, and β

is the scaling map given by multiplication by b−1, not by b, and so the fixed point
equation for f above turns out to be no more than a tautology, f = f , in which f is
indeed a fixed point, but of the identity mapping!
This result is trivial, of course, so it is important to point out that the underlying

behaviour is not trivial. As we discussed previously (Letelier et al., 2005b), the funda-
mental property of living organisms can be represented by a self-referential equation,
also discussed by Mossio et al. (2009), of the following form:

f(f) = f

12Note that Mossio et al. (2009) use B for our b, which we (and Rosen) regard as an element of B.
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Written as a mathematical equation it appears puzzling, but the biological property
that it represents is more understandable:

molecules(molecules) = molecules

or
metabolism(metabolism) = metabolism

Thus metabolism can be regarded as a function that acts on metabolism to regenerate
metabolism.

8.4 Alternative mode of closure

Mossio et al. (2009) also discuss an alternative derivation of their result from the
version of his argument that Rosen (1991) gave on pages 238–241 of his book (i.e. before
reaching the more definitive analysis that he gave in pages 248–252). In effect, he
considered that the version of closure embodied in Fig. 1a is not the only possible
version, and one could also achieve closure in which a single term is the efficient
cause of two different objects. In the context of their discussion we agree with Mossio
et al. (2009) in their footnote 12 that “it would have been preferable for Rosen to
demonstrate his theorem on the diagram representing canonical (M,R)-systems; but
in the event, nothing hangs on this.” There are of course many ways of closing the
diagram, but arguing about which of these is best would be like the sterile theological
arguments over whether including the word filioque in the Nicene Creed is heretical
or not. Nonetheless, there is a serious point here: as we showed (Cornish-Bowden
et al., 2007), multifunctionality is an absolutely vital component of any system closed
to efficient cause, because closure cannot be achieved if each molecule fulfils one role
and one role only. Thus the playing of multiple roles is not in itself an objection to
the approach Rosen used in pages 238–241 of his book, though Mossio et al. (2009)
described it as “rather peculiar”. In fact, more and more experimental examples of
multifunctionality are being reported (Tipton et al., 2003; Sriram et al., 2005; Gancedo
and Flores, 2008).

8.5 Recursive cycle of programs

Mossio et al. (2009) continued by relating these ideas to the theory of computer pro-
gramming, in which one can set up a chain of programs such that a program Φ pro-
duces as output a program f , which produces as output a third program B, which
has output Φ. It will be evident, however, that this discussion, although interest-
ing, incorporates the misidentification β ≡ B, and thus does not invalidate Rosen’s
proof that an organism cannot have a simulable model. The non-identity of β with b

is, however, essential for understanding Rosen’s idea, and so we shall return to this
point below.
Even without the problem of the misidentification of β with b, the argument would

still not necessarily invalidate the proof, because Rosen insisted on the original defini-
tion of computability used by Turing (1936), including the condition that the simulation
program must terminate after a finite number of steps. However, although Mossio
et al. (2009) evoke programs that can be written with finite strings of signs, they do
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not show that the cycle of such programs is guaranteed to halt after a finite number
of operations. Their definition of computability is therefore weaker than Rosen’s and
does not affect his proof. Mossio et al. (2009) recognize this, of course, but they con-
sider the halting condition to be something “imposed by Rosen” rather than inherent
in the definition of computability. In other words they do not necessarily disagree
with Rosen, or, more recently, with Louie (2007), about the facts, but about whether
halting after a finite number of steps is essential to the definition.

8.6 Rosen’s analysis revisited

As the identification β ≡ b (where b ⊂ B) is common in many analyses of Rosen’s
work, it is necessary to return once more to his own argument in order to see that this
is an oversimplification that he avoided. He presented his idea in many publications,
with different notations and different degrees of rigour, and one cannot escape the
necessity to read these in depth to obtain a full understanding of his thinking. His
paper of 1966 (Rosen, 1966) is especially important, and the summary in his book
(Rosen, 1991) is not a complete account. Nonetheless, as it is the account most familiar
to most readers we point out that although his text on pp. 248–252 is very clear13 it
needs to be read in the knowledge that the three figures on the same pages (Figs.
10C.3, 10C.5 and 10C.6) are unclear, first because they encourage the misidentification
between β and B (in the figures) or with b (in the text), though the text makes it clear
that that was not intended, and because the definition of the types of arrows used is
inverted (silently, and presumably in error) between Figs. 10C.5 and 10C.6.
To clarify the relationship between β and b even further we need to refer to an-

other paper in the series (Rosen, 1971). There Rosen made a radical departure from
his previous purely algebraic approach, and formulated the problem in a way more
familiar to kinetically minded biochemists, with the following equations:

a + f
k1−→←−
k−1

fa

fa
k2−→ f(a) + f = b + f

b + Φ
k3−→←−
k−3

Φb

Φb
k4−→ Φ(b) + Φ = f + Φ

Later in the paper he supplemented these with a further set of equations:

b
k4−→←−
k−4

β

13Here Rosen used the symbol b̂ for the evaluation at b, which is more often symbolized (as above) as
evb.
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β + f
k5−→←−
k−5

βf

βf
k6−→ Φ + β

As may be seen, especially in the equation b � β in the second set, Rosen regarded b

and β as different entities, albeit related and interconvertible.

8.7 Arithmetical example of an (M,R)-system

A major difficulty in accepting Rosen’s analysis arises from a difficulty in accepting
that the evaluation map for functions on sets can be invertible, as this is an unusual
property of such a map, and as Rosen’s device for achieving closure to efficient causa-
tion depends on its possible existence it can only be correct if the property is possible.
Our main point is that metabolisms are represented by quite special mappings

f from A to B. We follow here the notations introduced by Rosen, who was never
fully clear about the kind of mappings represented by his f , sometimes even writing
H(A, B) to denote the set of all such mappings f from A to B; this implied that this
set could be a proper subset of the set Map(A, B) of all possible mappings from A to
B.
In our simple arithmetical example (Letelier et al., 2006) we took A and B to be the

integers modulo 12, which can be interpreted as “hours”: 0, 1, 2 . . . 11, with 12 ≡ 0.
Hours may be added modulo 12; for example, 9 + 6 = 15 = 3 modulo 12. We then
take H(A, B) to consist of all mappings that preserve addition, which are simply
“scaling mappings”, i.e. multiplication by a constant number modulo 12 (which can
be recovered by evaluating the scaling mapping at 1). It follows that evaluation at 1 is
invertible, because from any number k modulo 12 we can recover the scaling mapping
given by multiplication by k, whose value at 1 is of course k.
This example is not biological, but the essential point is that it disposes of any

suggestion that Rosen’s conclusion is impossible on the mathematical grounds that
it requires an impossible inversion. Study of this example led us to argue that the
evaluation maps needed for Rosen’s argument must be applied to a class of restricted,
structure-preserving, or “admissible”, maps, a tiny sub-set of the universe of possible
mappings from A to B (Letelier et al., 2006). The smallness of this subset is visible
even in an example as simple as the one we described, for which there are 1212,
i.e. about 8.9 × 1012, possible functions from A to B to which the evaluation map at
b may be applied, but only 12, or 1.3 × 10−10%, of these are “structure preserving”,
i.e. scaling maps given by multiplication by a constant number k modulo 12. On this
set H(A, B) with 12 elements, the evaluation maps at 1, 5, 7 and 11 are invertible.
Evaluation maps at 2, 3, 4, 6, 8, 9, 10 are not one-to-one and therefore not invertible:
scaling by 3 and scaling by 9 take the same value 6 = 18 modulo 12 at 2, for instance.
At this point we need to refer back to our earlier criticism (Letelier et al., 2006)

of the arguments by Landauer and Bellman (2002) that Rosen’s analysis could not
work. We incorrectly implied that these authors considered Rosen’s argument to be
impossible, whereas in reality (see Section 2.5 of their paper) they considered it too
trivial to support his claim that an organism was not a mechanism. However, their
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Fig. 6. A model of an (M, R)-system. This is the biological model suggested previously, (a) with
reaction cycles compressed into catalysed reactions (Letelier et al., 2006), with catalysts shown
as acting on reactions rather than on substrates (cf. Goudsmit, 2007), (b) with reaction cycles
shown explicitly (Cornish-Bowden et al., 2007; Cornish-Bowden and Cárdenas, 2007), and (c)
with an interpretation of the cycles in terms of metabolism, replacement and organizational
invariance. The metabolites shown inside squares (input) or diamonds (output) are considered
to be “external” and to have fixed concentrations. Fig. 3b of Cornish-Bowden et al. (2007),
should have been very similar to the form shown in (b), but it was printed incorrectly, with
three intermediates misidentified, STUST as SUST, STUSU as SUSU, and SUSTU also as SUSU
(with the result that the names SUST and SUSU occurred twice each). The arrows shown
in black highlight the part of the model that was considered to be “metabolism” during its
construction, i.e. S + T −→ ST catalysed by STU. Note, however, that this cannot be deduced
simply from the structure of the network.

own argument depended on a simple example that was indeed too trivial, as it was
based on a two-member set that could be regarded as its own inverse.

9 A simple metabolic model interpreted in terms of theories
of closure

9.1 (M,R)-systems

Although there has been a considerable resurgence of interest in Rosen’s view of
organisms in recent years, a large part of the discussion has focussed on his diagram
in Fig. 10C.6 of his book (Rosen, 1991), corresponding to Fig. 1a of the present paper.
However, as we have emphasized in the Introduction, full understanding of Rosen’s
work cannot be obtained from a single diagram, and we, following an idea of Morán et
al. (1996), have been exploring the characteristics of a very small metabolic network in
the hope of revealing in a simple system how the concepts embodied in the symbols
f , Φ and β can be mapped, not into λ-calculus but into concepts more familiar to
biologists.
The small network illustrated in Fig. 6 represents a minimal (M,R)-system. It was

first given in outline (Letelier et al., 2006), and later in more detail (Cornish-Bowden
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et al., 2007; Cornish-Bowden and Cárdenas, 2007)14.
Fig. 6 looks quite different from Fig. 1, and it is natural therefore to enquire what

is the relationship between the two. In naive terms, this is illustrated in Fig. 7. In
this figure we have tried to establish a clear correspondence between Figs. 1 and 6,
in effect superimposing a specific biochemical network on Rosen’s conceptual world.
Despite the dangers of trying to encapsulate a complex theory in a simple example,
it may allow the abstract ideas to be made more concrete, and several points emerge
from study of this example:

1. The input in Fig. 6 ({S, T, U}) corresponds to A in Fig. 1.

2. The products of the metabolic network ({ST, SU, STU, X, Y}) correspond to B in
Fig. 1.

3. The metabolic part of the model (S + T → ST) is only a subset of the complete
set of reactions.

4. Some components fulfil multiple functions, for example STU embodies both
f and β. We believe that multifunctionality is essential for achieving closure
(Cornish-Bowden et al., 2007; Cornish-Bowden and Cárdenas, 2007), and for
avoiding the combinatorial explosion that would otherwise occur, if every new
enzyme required a new set of enzymes to maintain it. The particular example
of it seen here, however, is a consequence of the smallness of the model, and
should not be taken to suggest that f and β coincide in general.

5. Every function (f , Φ or β) is embodied by some molecule produced by the
system.

6. The molecules embodying B ({ST, SU, STU, X, Y}) and β (STU) are not the same.
This point is crucial.

7. The set B is different from A, and contains elements that account for f , Φ and
β.

8. The system is an (M,R)-system, but it is not an (M,R)-system with organiza-
tional invariance. As discussed (Letelier et al., 2006), the set of biochemical
reactions accepts more than one assignment for Φ; in other words the particular
assignment shown is not the only possible one, and so the required property of
invertibility is violated.

In relation to this last point, however, note that this is an artificial example in which
we, as its inventors, had a free choice in ascribing catalytic properties to whatever
molecules we wished. In a real system, in contrast, there is little or no choice, because
the reactions that the constituent molecules can undergo are circumscribed by their
structures and the laws of chemistry. No more choice is involved than there is for a
pigeon when it uses its eyes for seeing and its ears for hearing, rather than the other
way around. Expanding this type of micro-metabolic example, and rooting it more
14Unfortunately Fig. 3b of Cornish-Bowden et al. (2007) was printed incorrectly, as detailed in the

legend to Fig. 6. The corresponding illustration in Cornish-Bowden and Cárdenas (2007), Fig. 1b therein,
was printed correctly.
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Fig. 7. An attempt to interpret the model of Fig. 6 in terms of the closure diagram (Fig. 1).
(a) The three functions f , Φ and β are associated with two molecules (one of them used
twice). (b) The closure diagram shown in Fig. 1a is labelled with the molecules in Fig. 6. The
correspondence is at best approximate, and should not be taken too precisely. In particular,
the fact that {STU} is identified both with f and with β is not a general property but is just
a consequence of the smallness of the model. Nonetheless, some sort of multifunctionality is
essential for closure, so although at least some molecules must have multiple functions the
choice of STU in this example was arbitrary.

firmly in chemical possibilities that are known from the study of real metabolism,
should eventually allow us to arrive at the smallest real metabolic system (which
perhaps will turn out to be very large indeed) in which the condition of invertibilty
(Φ(b) = f ) has one and only one solution, making β a well defined entity.
The research programme just outlined will certainly be very difficult, and perhaps

impossible, to achieve. Elsewhere (Cornish-Bowden and Cárdenas, 2007) we have
hinted at an alternative way of looking at the model that may offer a way out of the
impasse. Fig. 7 assumes a fundamental distinction between enzymes and metabolites,
i.e. it is based on Fig. 6a. However, such a distinction may not correspond to reality,
and Fig. 6b, in which all the catalytic processes are expanded into cycles of chemical
reactions, may be considered more realistic. All enzymes are products of metabolism,
and are therefore metabolites, and many metabolites (in the usual sense) participate
in reaction cycles that regenerate them, and are thus catalysts. The distinction be-
tween enzymes and metabolites is thus more artificial than it is usually taken to be,
and is simply a human interpretation of some very complicated chemistry. On the
interpretation of Fig. 6b, therefore, the regeneration of all catalysts is automatically
taken care of by the structure of the network and the laws of chemistry.
A similar point has been made by Kun et al. (2008), who analysed many well

characterized metabolic networks and found that intermediary metabolism is always
autocatalytic for ATP: although ATP is a product of metabolism it can never be pro-
duced without pre-existing ATP. Other metabolic cycles may be obligatorily autocat-
alytic in some networks, but not necessarily in all. They also comment, following
Gánti (2003b), that “in addition to template and membrane growth, metabolism is
also autocatalytic and, hence, results in replication”. We take this to refer to replica-
tion in Rosen’s sense, which, as we have mentioned, we prefer to call organizational
invariance.
It is interesting to note that in biochemical systems theory (Savageau, 1976; Voit,
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2000), the same sort of symbols are used for the concentrations of all components
of a system, whether reactants or catalysts, in other words no necessary distinction
between enzymes and metabolites is assumed. The distinction is maintained, however,
in metabolic control analysis (Kacser and Burns, 1973; Heinrich and Rapoport, 1974;
Fell, 1997), the other main approach to analysis of multienzyme systems.
In attempting here to relate the biochemical model to Rosen’s mathematical for-

malism we have oversimplified some points in the hope of remaining intelligible in
chemical terms. It is hardly possible at the present state of understanding to resolve
all the problems and arrive at a mathematically rigorous analysis, but we can note
some points that will need to be clarified in the future. In Fig. 7 we took A to be the
three-element set {S,T,U}, but more accurately this should be written as the three-
element set A = {(S,T), (ST,U), (S,U)}, or better still the one-element set A = {((S,T),
(ST,U), (S,U))}. A rigorous analysis will need to take account of this.
The underlying biological idea of Φ is that it is a function that assigns molecular

identities to the enzymes involved in

(S, T) �→ ST, (ST,U) �→ STU, (S,U) �→ SU

Understanding β ultimately amounts to understanding the unicity of Φ, which re-
quires an understanding of the constraints that Φ must fulfil, which are not explicit
in a purely combinatorial approach in which any molecule can (in principle) catalyse
any reaction.

9.2 Other definitions of life

Fig. 6 is not only an (M,R)-system; it also satisfies the definition of an autocatalytic
set (Kauffman, 1993) given in Section 3. In the case of Fig. 6 the autocatalytic set
is {STU, ST, SU} and, as seen in Fig. 7a, the formation of every member of the set
is catalysed by another member of the set (“at least one of the possible last steps in
its formation [is] catalyzed by some member of the set”). The food set is {S, T, U},
and it is obvious from inspection that the second half of the definition (“connected
sequences of catalyzed reactions lead from the maintained food set to all members of
the autocatalytic set”) is also satisfied. We have been able to construct an autocatalytic
set far smaller than those assumed by Kauffman because we have not incorporated
his condition that closure is an inevitable consequence of the statistical properties15 of
the constituent molecules. It is worth recalling, however, that in a very large system
we cannot assume that all of the individual molecules are nutrients: “instead of being
‘nutrients’ they are likely to be ‘poisons’ ... [and] a completely recycling system would
have evolved chemically from a more complex system by losing those materials which
would otherwise disrupt the recycling” (King, 1982). The model of Fig. 6 is, in fact, an
autocatalytic system in King’s sense, and it is not by chance that Fig. 6 is somewhat
similar in appearance to the subsystem illustrated in Fig. 1b of King (1982).
The minimal metabolic network that we have analysed can also be interpreted as

an example of a minimal autopoietic system, because the three coupled transforma-
tions can be interpreted as “a network of processes that produces itself”, and if one
15The key word here is, of course, “inevitable”, not “statistical”: one cannot reasonably doubt that life

started with a chance event, but it was not necessarily an event with high probability.
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Fig. 8. A model of an (M, R)-system modified to incorporate enclosure of the system within a
membrane, as in autopoietic models. The metabolic product ST is assumed to be capable of
self-association to form a polymer that can form a membrane.

of the components (ST) is further endowed with the property of self-assembling into
a membrane the necessary encapsulation property of autopoietic systems is achieved
(Fig. 8). Interestingly, this interpretation of a minimal (M,R)-system network as an
autopoietic system overcomes an important shortcoming of previous models of au-
topoietic systems, which fail to explain (or sometimes even to mention) the origin of
the necessary catalyst (see Section 5). In these previous models (Varela et al., 1974;
Zeleny, 1981; McMullin and Varela, 1997; Breyer et al., 1998) the component respon-
sible for catalysing the process S + S → L was not produced by the system but rather
imposed from the outside, making it a property of space rather than a consequence
of biochemical interactions. In the language of efficient causation, therefore, these
previous examples of autopoietic systems were not closed to efficient causation.
Finally, we should consider our model in the light of the chemoton of Gánti (2003a).

In a sense this is more general than the (M,R)-system, and is therefore more than just
a special case of an (M,R)-system, because it explicitly includes what Schrödinger
(1944) called a codescript, i.e. a module for storing and using information, what in
modern terminology we would call replication (though emphatically not what Rosen
called replication).16
Gánti’s chemoton has two fundamental aspects, cycle stoichiometry and the sub-

division of metabolism into three subsystems. Like Rosen, Maturana and Varela, he
aimed to define the special organization that a complex system of biochemical reac-
tions must have in order to exhibit lifelike properties. He described the key in the
16Hofmeyr (2007) has argued that the chemoton is more limited than (M, R)-systems, because he

considers that simple molecules implicit in Gánti’s model cannot have the specificity needed to prevent
the system from dissipating into unspecific side reactions. However, this is a problem with all current
theories of life, none of which explains the origin of the necessary specificity.
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following words: “Within a living system almost all events are connected with each
other. These interactions happen in a special order, and the unique properties of liv-
ing systems originate just from this special order of the interactions” (Gánti, 1975).
Thus he identified the need for processes to occur in a defined order, but not the need
for closure, a vital difference from (M,R)-systems and autopoiesis.
His three interlocking subsystems with a self-maintaining metabolism are the cyclic

(later called metabolic), the genetic and the membrane subsystems. In adopting as
necessary a genetic subsystem (essentially an informational system based on tem-
plates similar to the nucleic-acid based system found in current living organisms) he
incorporated a restriction not found in (M,R)-systems or autopoiesis, which are not
concerned with reproduction or evolution. To produce a system that can produce its
own enzymes, and also to take into account that enzymes are catalysts that need to be
continuously regenerated by the system itself, Gánti introduced the notion of cyclic
stoichiometry, and organized the three subsystems as loops that produce their own
enzymes, as illustrated in Fig. 1 of Gánti (1997).
Thus the chemoton is equivalent to a particular implementation of an autopoietic

system that explicitly deals with the origin of enzymes via cycles and also makes
explicit the steps to produce the encapsulating membrane. But important concep-
tual differences remain: in particular, organizational closure is the central concept in
autopoiesis and (M,R)-systems, whereas it is absent from Gánti’s writings.

9.3 Comparison between theories of life

As we have noted briefly before (Cornish-Bowden and Cárdenas, 2009), a puzzling
feature of the theories we have discussed about describing cellular organization from
new principles (Rosen, 1958a; Gánti, 1966; Varela et al., 1974) has been the complete
lack of dialogue between them or with autocatalytic sets (Kauffman, 1993), despite
important overlap between some of their ideas. A survey of the core literature reveals
that Rosen, in a long period between 1958 and 1971, only cited himself. Similar
observations apply to the authors of autopoiesis; likewise the first English version
of the chemoton theory (Gánti, 1975) also ignores the previous work on autopoiesis
(understandable as it was only published some months before in 1974) and Rosen (less
easy to explain, as the core papers were published in 1959 in a well known journal).
By 1975, therefore, these three competing theories existed in complete isolation from
one another. Full analysis of this autarky would be interesting, but it is beyond
the scope of the current paper. A partial explanation may perhaps be found in the
fact that Gánti’s original work (from 1966 to 1974) was published in Hungarian, and
Maturana and Varela initially published in Spanish and were not in the mainstream
of biochemistry (both were neurophysiologists more interested in artificial intelligence
than in artificial life). In any case the fact that Gánti, Maturana and Varela did not
cite Rosen’s work constituted a serious oversight due, perhaps, to the opaque style
systematically maintained by Rosen.
By 1995 these three theories had evolved almost independently in the literature.

Rosen had already published his seminal, but difficult, book Life Itself (Rosen, 1991),
but continued with his entrenched tradition of ignoring competing viewpoints. A
similar statement can be made for autopoiesis, which by then had already being found
and expanded by many people in the “cybernetics” community, but the principal
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authors did not cite Rosen or Gánti. A curious departure from this trend is provided
by Gánti’s only publication in this Journal (Gánti, 1997), in which he acknowledged
that Varela was also examining the nature of life, but ignored Rosen’s work completely,
despite mentioning Varela in a section entitled “Life itself” in a paper whose title also
evokes the title of Rosen’s book.
Thus, for reasons that historians of science will need to explain in detail, the

authors of three of the main theories concerning the inner organization of living
metabolism chose, systematically, to ignore each other. In fact one of our first con-
tributions to this field was an attempt to end this internal separation and to make
explicit the relation between (M,R)-systems and autopoiesis (Letelier et al., 2003).
Part of the explanation for the isolation may be sought, no doubt, in the very

different backgrounds of the principal players, Rosen as a theoretical biologist from
the school of Nicolas Rashevsky, Gánti as a chemical engineer, and Maturana and
Varela as neurophysiologists concerned primarily with the working of the nervous
system, with no initial intention of developing a theory of life. They set out not to
understand life but to understand how to avoid the infinite regress implicit in most
models of brain function. That of course parallels the problem that Rosen sought to
solve, and the solution of closure they proposed parallels Rosen’s solution in (M,R)-
systems.

10 Conclusions

Efforts to mathematically disprove Rosen’s contention that an organism cannot have
simulable models have not resolved the question. Louie (2007) has been highly critical
of some of the arguments (Chu and Ho, 2006), and, as we have discussed in Section
3, there are problems also with some of the others. Other supposed contradictions
can be attributed to the use of loose definitions in place of Rosen’s very precise ones.
As noted above, for example, the definition of computability used by Mossio et al.
(2009) does not require termination of the program in a finite number of steps. Their
definition of computability is widely accepted, but a more serious problem is their
representation of Rosen’s scheme with an incorrect set of equations. Similarly Wells
(2006) replaced Rosen’s precise definition of a mechanism by a vague one based on
everyday ideas of what a machine is, and used it to claim that Rosen’s conclusions
were mistaken.
Rosen did not reject the possibility of artificial life, and in one of his less often

cited papers (Rosen, 1973), he made an important distinction between the abstract
theory of (M,R)-systems, in which “the replication map17 is always perfect” and the
dynamical formalism that he was discussing, in which it was legitimate “to seek
specific realizations of abstract (M,R)-systems in dynamical terms, and for each such
dynamical realization, to seek actual physical processes whose equations of motion
are precisely those of the realization”.
However, the argument about simulability will certainly continue: the work of

many groups, including those attempting to develop life in silico depends on the as-
17It is important to remember that “replication” in Rosen’s terminology has nothing to do with DNA

replication, but corresponds to what we have called organizational invariance. His teminology appears,
not surprisingly, to have misled some authors.
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sumption that computer simulation of living systems is in principle possible, and any
claims that it is not possible can expect to meet vehement opposition. It is important,
therefore, to examine arguments on both sides with care and attention. In this paper
we have tried to do that, and supply a more biological insight into Rosen’s ideas.

This work was supported by Fondecyt 1030371 (JCL), Fondecyt 1040444 (JSA) and the CNRS
(AC-B, MLC).
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