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Abstract 

Measuring the vestibular evoked myogenic potential (VEMP) promises to become a routine 

method for assessing vestibular function, although the technique is not yet standardized. To 

overcome the problem that the VEMP amplitude depends not only on the inhibition triggered by 

the acoustic stimulation of the vestibular end organs in the inner ear, but also on the tone of the 

muscle from which the potential is recorded, the VEMP is often normalized by dividing through a 

measure of the electromyogram (EMG) activity. The underlying idea is that VEMP amplitude and 

EMG activity are proportional. But this would imply that the muscle tone is irrelevant for a 

successful VEMP recording, contradicting experimental evidence. Here, an analytical model is 

presented that allows to resolve the contradiction. The EMG is modeled as the sum of motor unit 

action potentials (MUAPs). A brief inhibition can be characterized by its equivalent rectangular 

duration (ERD), irrespective of the actual time course of the inhibition. The VEMP resembles a 

polarity-inverted MUAP under such circumstances. Its amplitude is proportional to both the ERD 

and the MUAP rate. The EMG activity, by contrast, is proportional to the square root of the MUAP 

rate. Thus, the normalized VEMP still depends on the muscle tone. To avoid confounding effects of 

the muscle tone, the standard deviation of the EMG could be considered. But the inhibition effect 

on the standard deviation is small so that the measuring time would have to be much longer than 

usual today. 

 

Keywords: VEMP, vestibular function testing, sacculus, sonomotor responses, electromyogram, 

EMG 
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1. Introduction 

Although several structural specializations have evolved within the vertebrate labyrinth that reduce 

the effect of ambient pressure changes on the balance organs, sufficiently loud sounds may 

nevertheless stimulate the vestibular end organs in the inner ear (Carey and Amin, 2006). In a 

report about vestibular side effects of extremely loud sounds, von Békésy (1935) speculated that 

the movement of the stapes might cause eddies that spread to the vestibular organs. In humans, the 

vestibular organ with the highest sound sensitivity seems to be the sacculus (Townsend and Cody, 

1971; Todd et al., 2000; Sheykholeslami and Kaga, 2002), presumably due to its close proximity to 

the stapes. Other vestibular end organs appear to be acoustically responsive as well, though (see 

e.g. Young et al., 1977; Carey et al., 2004; Xu et al., 2009). The sacculus has bilateral excitatory 

connections to the neck extensor muscle motoneurons and bilateral inhibitory connections to the 

neck flexor muscle motoneurons (Uchino et al., 1997). Thus, stimulation of the sacculus can 

modulate the tonic electromyogram (EMG) activity of the respective muscles. In the averaged 

EMG, such modulations emerge as sonomotor responses (Jacobson and McCaslin, 2007).  

The sonomotor response currently receiving the most attention is the vestibular evoked myogenic 

potential (VEMP) recorded from surface electrodes over the sternocleidomastoid muscle. 

Colebatch et al. (1994) were the first to record a response from this recording site. Clicks of 140 or 

145 dB SPL were presented at a rate of 3/s while the subjects activated their neck flexors, and 512 

stimulus-related epochs of surface EMG (sEMG) were averaged. The averaged sEMG, i.e. the 

VEMP, showed early peaks with mean latencies of 13 and 23 ms, respectively. Considering their 

polarity, they were denoted as p13 and n23. This pioneering work triggered not only numerous 

research studies, but also lead to continuously increasing clinical interest in the VEMP [see e.g. the 



Acc
ep

te
d m

an
usc

rip
t 

- 4 - 

reviews by Ferber-Viart et al. (1999), Colebatch (2001), Welgampola and Colebatch (2005), 

Hamann and Haarfeldt (2006), Rauch (2006), and Jacobson and McCaslin (2007), or the recent 

monograph by Murofushi and Kaga (2009)]. The clinical interest results from the opinion that 

recording the VEMP is the only readily available method for unilaterally assessing the sacculus 

(Clarke et al., 2003; Wuyts et al., 2007). 

The latencies of the early VEMP peaks are basically invariant, apart from a possible prolongation 

in the case of a retrolabyrinthine lesion (Murofushi et al., 2001). Thus, parameters of interest are 

mainly the amplitudes of the VEMP peaks and measures that depend on these amplitudes such as 

the VEMP threshold. However, the VEMP amplitude depends not only on the inhibition triggered 

by the acoustic stimulation of the vestibular end organs in the inner ear, but also on the level of the 

tonic muscle activation. Colebatch et al. (1994) quantified the latter in terms of the level of the 

averaged rectified sEMG that was observed just before the stimulus presentation, and they found a 

highly linear relationship to the VEMP amplitude. Alternatively, the muscle tone may be quantified 

in terms of the pre-stimulus root-mean-square (RMS) value of the sEMG, which was reported to be 

linearly related to the VEMP amplitude as well (Lim et al., 1995). Subsequent studies corroborated 

these findings (Ochi et al., 2001; Welgampola et al., 2003; Akin et al., 2004). Nowadays, the 

prevailing idea seems to be that the VEMP amplitude is proportional to the sEMG level. Many 

authors consequently normalize the VEMP amplitude by dividing it by a measure of the muscle 

tone (e.g. Karino et al., 2005; Welgampola and Colebatch, 2005; Miyamoto et al., 2006; Brantberg 

et al., 2007; Sandhu and Bell, 2008; Seo et al., 2008; Brantberg and Verrecchia, 2009). But there is 

a problem. Proportionality between VEMP amplitude and sEMG level would imply that the signal-

to-noise ratio of the VEMP is independent of the muscle tone, which would be contradictory to the 

experience that a certain muscle tone is an indispensable requirement for a successful VEMP 

recording. This contradiction indicates that the relationship between VEMP amplitude and sEMG 

level is still insufficiently understood. The question arises as to what extent the proposed 



Acc
ep

te
d m

an
usc

rip
t 

- 5 - 

normalization of the VEMP amplitude really eliminates the influence of the muscle tone, thus 

providing an unequivocal signature of the inhibition arising from the vestibular end organs. 

Answering this question requires a solid theoretical basis. The theory that will be developed here 

was inspired by the model of Wit and Kingma (2006). They simulated the VEMP generation by 

adding a large number of motor unit action potentials which randomly occurred in time with equal 

probability, apart from a narrow time window for which complete inhibition was assumed. The 

theory presented below is based on a similar model, but the mathematical framework is different: 

Analytical formulas are derived that allow calculating the quantities of interest (mean and standard 

deviation of the sEMG) directly from the assumptions. The general theory requires the evaluation 

of integrals, but regarding a typical VEMP experiment the situation is less complicated: 

Approximations can be used, owing to the fact that the inhibition time window may be assumed to 

be short (see e.g. Colebatch and Rothwell, 2004). Thus, in the end, the question raised above can be 

answered on the basis of surprisingly simple formulas in an intuitively appealing way. 

2. Model 

2.1. Motor unit action potential and electromyogram 

The elementary unit of function in the motor system is the motor unit, which consists of the cell 

body of the motor neuron, the axon of the motor neuron that runs in the peripheral nerve, the 

neuromuscular junction, and the muscle fibers innervated by that neuron (Rowland, 1991). When 

the motor neuron fires and an action potential reaches the neuromuscular junction, the muscle 

fibers depolarize and contract, and the currents associated with the depolarization spread in the 

surrounding volume conductor. If there were only one active motor unit, an electrode placed on the 

skin above the muscle would record a motor unit action potential (MUAP) whenever the unit fires. 
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However, under realistic conditions many motor units are simultaneously active, and  the 

contributions of the individual motor units can barely be recognized in the recorded signal, but are 

intermingled in an interference pattern (Stegeman et al., 2000). This signal represents the surface 

electromyogram (sEMG). 

The sEMG is the algebraic sum of the MUAP trains of all active motor units (Day and Hulliger, 

2001). In the present study, the motor units are assumed to have the same MUAP time course, 

except for an amplitude factor that may differ from unit to unit. This simplifying assumption allows 

to integrate the MUAP trains of all motor units into a single MUAP train, where each MUAP is 

defined by a time of occurrence and an amplitude factor. Thus, the sEMG that is observed in a 

certain (finite) time range of interest may be calculated using the formula 

   )(tvT   = ∑
=

−
TN

i
ii tta

1
)(μ ,          (1) 

where )(tμ  is the time course of a normalized MUAP occurring at time zero, and ti and ai are time 

of occurrence and amplitude, respectively, of the i-th MUAP.  The parameter TN denotes the 

number of MUAPs that occur between –T/2 and +T/2, where T is assumed to be large enough to 

ensure that MUAPs occurring outside this range have no measurable effect on the time range of 

interest. The normalized MUAP, )(tμ , is dimensionless, which means that the unit of measure 

(Volt) is attached to the amplitude factor ia . The function )(tμ  is assumed to fulfill the 

requirement 

 0)( =∫
+∞

∞−

dttμ            (2) 

and to have the value one at its maximum. The sample MUAP function shown in the inset of Fig. 1 

(same curve also in the inset of Fig. 2A) corresponds to a single sine wave, defined as 
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⎪⎩

⎪
⎨
⎧ Δ≤≤Δ−Δ

=
otherwise

tfort
te 0

ˆˆ)ˆ/sin(
)(sin

π
μ    ,       (3) 

where Δ̂  is the time span between negative and positive peak. In our simulations, Δ̂  was 10 ms, 

corresponding to the interval between the peaks p13 and n23 of the VEMP. The zero crossing 

between the two peaks is considered as the occurrence time of the MUAP (marked by a vertical 

line). This special MUAP function was chosen because of its simplicity [a good alternative would 

have been the first derivative of a Gaussian probability density function, as in the model of Wit and 

Kingma (2006)]. From a physiological point of view, such a MUAP function is, of course, 

relatively artificial. Therefore, it is emphasized that the theory developed here does in no way 

depend on Eq. (3) and could easily be applied to more realistic model functions or even MUAPs 

actually measured. As to the latter, it must be taken into account that a MUAP is usually measured 

under conditions that are not comparable to a VEMP measurement. Features such as the MUAP 

duration strongly depend not only on the recording conditions (e.g. near- versus far-field), but also 

on aspects such as muscle fiber length and conduction velocity (Dumitru et al., 1999). Moreover, 

Eq. (1) is based on the simplifying assumption that the time course of the MUAP is identical for all 

motor units. Thus, )(tμ  has to be interpreted as a function describing the time course of an average 

MUAP, which may be expected to resemble a compound muscle action potential (CMAP). The 

relationship between MUAP and CMAP was investigated, for example, by Dumitru (2000) and 

McGill et al. (2001).  

To calculate an sEMG using Eq. 1, random numbers have to be generated for TN , and for ti and ai 

( TNi ≤≤1 ). For the times of occurrence ti, a Poisson process with rate 0ρ  is assumed. This means 

that the random variable TN  has the expected value T0ρ . To simulate a real experiment, where TN  

would vary from trial to trial, a random number has to be drawn from a Poisson distribution. 

Regarding the amplitudes ai, Wit and Kingma (2006) suggested to use a Gamma distribution of 
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order 2.1 The theory developed in the text that follows is more general, and specific assumptions 

about the distribution of the amplitudes are not required at this point. 

2.2. Vestibular Evoked Myogenic Potential (VEMP) 

With a simple extension, the above model can be transformed into a model for the VEMP. Instead 

of unconditionally summing over all the TN  MUAPs in Eq. 1, some of the MUAPs are considered 

inhibited. The inhibition is controlled by an inhibition function )(tξ  that specifies the probability of 

inhibition.2 Equivalently, it can be postulated that the occurrence times of the MUAPs are drawn 

from a time-dependent Poisson process (see e.g. Cox and Miller, 1965). This means that the 

probability of a MUAP between t and t+dt  is assumed to be dtt)(ρ , with a rate function 

( ))(1)( 0 tt ξρρ −= .         (4) 

To prevent misunderstanding it is emphasized that, if not explicitly stated otherwise, the term ‘rate’ 

refers to the ensemble of all motor units.   

                                                 

1 In the simulations based on Eq. 1, Poisson-distributed random numbers NT and Gamma-distributed random numbers 

ai were drawn using the routines POISSRND and GAMRND, respectively, of the Matlab Statistical Toolbox (The 

MathWorks Inc., Natick, MA, USA). The MUAP occurrence times ti were obtained by mapping random numbers 

generated by the Matlab routine RAND (uniformly distributed on the interval (0,1)) onto the time range (–T/2, T/2). 

2 Whether or not a specific MUAP in Eq. 1, say the i-th one, is considered inhibited depends on the value of )( itξ . A 

value of zero means ‘not inhibited’, a value of one means ‘inhibited’. For values in between, a random number is 

drawn from a uniform distribution on the interval (0,1). In our simulations, this was done using the Matlab routine 

RAND.  Inhibition is assumed if the random number is smaller than )( itξ . Inhibited MUAPs are excluded from the 

summation in Eq. 1. 
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Figure 1A illustrates how the sEMG arises from an interference of MUAPs. The thin curves show 

individual MUAPs, whereas the irregular thick curve represents their sum, i.e. the sEMG. The 

amplitude factors in Eq. 1, ai, were set to 1, for the sake of simplicity. The MUAP rate was 250 s−1, 

and complete inhibition within a 2-ms time window centered at t = 0 was assumed. A MUAP is 

inhibited, in the mean, every second trial under these circumstances so that the inhibition effect is 

negligible compared to the random fluctuations of the MUAP density. To see the inhibition effect, 

a sufficient number of trials are to be averaged. The white curves on black background were 

calculated on the basis of 500,000 trials. They show the mean and the standard deviation (STD) of 

the sEMG. The mean of the sEMG represents the VEMP. Except for a scaling factor, the VEMP 

curve is basically a polarity-inverted version of the MUAP curve shown in the inset. The STD is 

affected by the inhibition as well, although the effect is relatively small: At times where the 

absolute value of the VEMP has a maximum, the STD has a minimum. A more realistic situation is 

illustrated in Fig. 1B. In that simulation, the amplitude factors ai were drawn from a Gamma 

distribution of order 2 rather than being constant. 

Under typical experimental conditions, 200 averages suffice to obtain a VEMP with a reasonable 

signal-to-noise ratio. Two such examples are presented in Fig. 2. The MUAP rate was 1600 s-1, and 

complete inhibition for a duration of 1.25 ms (Fig. 2A) and 5 ms (Fig. 2B), respectively, was 

assumed. The MUAPs had unit amplitude, for the sake of simplicity. The thin curves show results 

that were estimated on the basis of 200 trials, whereas the thick gray curves in the background 

represent an infinite number of trials (curves based on analytical formulas that will be derived 

below). As already seen in Fig. 1, the VEMP (i.e. the mean of the sEMG) is basically a polarity-

inverted MUAP, except for a scaling factor (compare inset). A comparison between Figs 2A and 

2B suggests that increasing the duration of the inhibition by a factor of four increases the VEMP 

amplitude by about the same factor. Regarding the standard deviation (STD) of the sEMG, the thin 
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curves in Fig. 2B show deflections similar to those in the theoretical curves (gray background). In 

Fig. 2A, however, the signal-to-noise ratio is insufficient. 

3. Analytical considerations 

Simulations based on Eq. 1 can be performed with little mathematical effort, but they are 

numerically expensive, because a huge number of trials have to be simulated to get estimates that 

approximate the expected values. Apart from that, simulations can only be done for a finite number 

of parameter constellations so that drawing general conclusions is problematic. This is why the 

model is considered analytically now. The consistency between the simulations based on Eq. 1 and 

the analytical model is demonstrated in Fig. 1, where the simulation results are represented by the 

white curves and the analytical model by the thick black curves in the background. 

3.1. General theory 

To prepare the transition from Eq. 1 to the analytical model, it shall be assumed that the time span 

T is close to infinity so that TN  may be equated with the expected number of MUAPs between 

2/T−  and 2/T+ . If the probability of a MUAP between t and t+dt  is dtt)(ρ , as postulated 

above, each of the TN  MUAPs in Eq. 1 occurs with the probability TNdtt /)(ρ . The amplitudes ai 

are assumed to be drawn independently of each other and of the MUAP occurrence times ti. The 

probability that a MUAP amplitude is between a and a+da is assumed to be f(a)da. With these 

assumptions, the following equation is obtained for the expected value of )(tvT  in the limit T→∞: 

)(tv  =  ∑ ∫∫
= −

∞

∞→
−

TN

i
iiii

T

i
i

T

T
T

dadttta
N

taf
1

2/

2/0

)()()(lim μρ .    (5) 

Simplifying this equation yields 
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         )(tv  = ∫
+∞

∞−

− ')'()'( dtttta μρ ,       (6) 

where 

   ∫
∞

=
0

)( daafaa        (7) 

is the arithmetic mean of the MUAP amplitudes. A similar formula can be derived for the variance 

of the sEMG (see Appendix): 

  [ ])(var tv  = ∫
+∞

∞−

− ')'()'( 22 dtttta μρ       (8) 

with 

   ∫
∞

=
0

2 )( daafaa .       (9) 

The quantity a  represents the quadratic mean of the MUAP amplitudes. 

The equations 6 and 8 are more general than needed in this study. Taking into account that the rate 

function )(tρ  has the structure specified in Eq. 4, the two equations may be rewritten as 

         )(tv  = ∫
+∞

∞−

−− ')'()'(0 dtttta μξρ        (10) 

and 

  [ ])(var tv  = ( ))(12
0 ta Ξ−⋅⋅Δρ       (11) 

with  
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  ∫
+∞

∞−

−
Δ

=Ξ ')'()'(1)( 2 dttttt μξ .       (12) 

The quantity Δ  in the latter two equations is defined as 

Δ  = ∫
+∞

∞−

dtt)(2μ .        (13) 

It may be interpreted as a measure of the effective MUAP duration, because the integral basically 

measures how long the normalized MUAP has an absolute value close to the maximum value, i.e. 

one. 

3.2. Approximations for short inhibition windows 

Auditory stimuli that are used to elicit a VEMP are usually short, and the inhibition time window 

may be assumed to be short as well. Supposing that it is short enough to ensure that the MUAP 

function )(tμ  is roughly constant for the duration of the inhibition, Eq. 10 may be approximated as 

         )(tv )(0 taμδρ ⋅−≈         (14) 

with 

         δ  = ∫
+∞

∞−

')'( dttξ .         (15) 

The latter quantity shall be called the equivalent rectangular duration (ERD) of the inhibition, 

because it indicates how long a rectangular window with complete inhibition must be to produce 

the same inhibition effect as the actual inhibition function )(tξ . According to Eq. 14, the VEMP is 

a polarity-inverted MUAP, except for scaling issues. Its amplitude is proportional to the term δρ0 , 
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which may be interpreted as the expected number of inhibited MUAPs. The approximation of )(tΞ  

for short inhibition windows is  

  )()( 2 tt μδ
Δ

≈Ξ .        (16) 

Thus, the variance of the sEMG shows a modulation which corresponds to the MUAP function 

squared. The ratio Δ/δ  measures the ERD in units of the effective MUAP duration. 

3.3. Approximations for a slowly changing  inhibition function 

Very small VEMP amplitudes (or no VEMPs at all) are to be expected if the inhibition function 

)(tξ changes much slower than the MUAP function )(tμ .  Equation 10 can be approximated in that 

case as 0)( ≈tv , due to Eq. 2. The corresponding approximation for Eq. 12 is )()( tt ξ≈Ξ . Thus, 

the variance of the sEMG shows a modulation which follows the time course of the inhibition. 

3.4. Normalization of the VEMP 

To normalize the VEMP, the recorded potential is divided by a measure of the muscle tone. Within 

the framework of the present theory, the most natural measure of the muscle tone is the standard 

deviation (or RMS value) of the uninhibited sEMG, which is a⋅Δ0ρ  (see Eq. 11). Normalization 

of the approximation for short inhibition windows (Eq. 14) yields 

         )(tvnorm )(
0

0 t
a
a μ

ρ
δρ

⋅
Δ

−≈  .       (17) 

The first fraction on the right of this equation was intentionally not simplified (by canceling the 

factor 0ρ ), because the terms in numerator and denominator have instructive interpretations: 

δρ0  is the number of inhibited MUAPs, whereas Δ0ρ  indicates with how many other MUAPs 
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each MUAP significantly interferes. The normalized VEMP is nothing else than a signal-to-noise 

ratio. The signal is proportional to the number of inhibited neurons, whereas the noise is 

proportional to the square root of the number of interfering MUAPs. Equation 17 shows that the 

normalization did not completely eliminate the dependence of the VEMP on aspects of the muscle 

activity. In what follows, the various factors will be considered one by one. 

The dependence of the normalized VEMP on the effective MUAP duration, Δ , is not a major issue. 

In theory, Δ  could even be estimated from the data: If it is assumed that the MUAP function )(tμ  

and the VEMP have a similar shape (see Eq. 14), the integral in Eq. 13 could be evaluated with a 

normalized MUAP function derived from the measured VEMP. But such a procedure may 

seriously fail if the assumption is violated. Thus, a model-based evaluation of Δ  appears more 

appropriate. For the sine wave displayed in the inset of Fig. 1, the result is Δ  = Δ̂  = 10 ms, 

corresponding to the typical latency difference of the VEMP peaks p13 and n23. 

The ratio aa /  in Eq. 17 does not represent a serious problem either, because the lack of 

knowledge regarding the amplitude distribution of the MUAPs can be largely compensated for by 

making reasonable assumptions. If the MUAP amplitudes are drawn from a Gamma distribution of 

order k, the ratio aa /  has the value )1/( +kk . For k = 2 (as in Fig. 1B) this value is 0.82, and 

with increasing k it approaches 1. Similar values can be expected for a real experiment, because the 

assumption of a Gamma distribution is considered appropriate for both normal and pathological 

conditions (e.g. Slawnych et al., 1997). All in all, the amplitude distribution of the MUAPs seems 

to be of secondary importance with regard to VEMP modeling. Thus, as long as the goal is to 

achieve a qualitative understanding of the VEMP, it appears acceptable to assume MUAPs of unit 

amplitude, for the sake of simplicity. This yields 1/ =aa . 
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The actual problem is the dependence of the normalized VEMP on the MUAP rate, 0ρ . The 

normalization reduced this problem, at least. Without normalization, the amplitude of the VEMP is 

proportional to 0ρ , whereas after normalization it is proportional to 0ρ . Supposing, for example, 

that the uncertainty regarding 0ρ  corresponds to a factor of 16, the uncertainty regarding 0ρ  

corresponds to a factor of only 4. 

This is illustrated in Fig. 3, which compares a situation before normalization (on the left) with a 

situation after normalization (on the right). Three different MUAP rates are considered: 400/s (top), 

1600/s (middle), and 6400/s (bottom). Complete inhibition within a time window of 1.25 ms, 

centered at t = 0, was assumed. As in the simulations before, the MUAP function corresponded to 

the sine wave shown in the inset of Fig. 1. The MUAPs had unit amplitude, for the sake of 

simplicity. The lower curve in each panel shows the mean of the sEMG, i.e. the VEMP; the upper 

curve shows the standard deviation of the sEMG. The thin curves are based on 10,000 sEMG 

epochs (simulation using Eq. 1), whereas the thick gray curves in the background are based on the 

analytical solutions (Eqs 10 and 11). An increase of the MUAP rate from 400/s to 6400/s 

corresponds to a factor of 16. In the curves on the left, the VEMP amplitude increases by about the 

same factor, whereas in the normalized curves on the right there is only an increase by about a 

factor of 4. As to the standard deviation of the uninhibited sEMG, increasing the MUAP rate by a 

factor of 16 led to an increase by a factor of 4, whereas the normalized counterpart is always 1, by 

definition. Most interesting is the inhibition-induced modulation of the normalized standard 

deviation, which appears to be independent of the MUAP rate. To explain this observation, the 

variance of the sEMG (Eq. 11) has to be normalized. The normalized variance, i.e. the square of the 

normalized standard deviation, is )(1 tΞ− . This term is indeed independent of the MUAP rate 0ρ  

(see Eqs 12 and 16). 
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3.5. Relationship between VEMP amplitude and sEMG level 

Both the VEMP amplitude and the standard deviation of the sEMG depend on the MUAP rate 0ρ . 

However, the latter is generally unknown when analyzing experimental data, and therefore it is 

useful to establish a more direct relationship between the two measures. The following 

consideration is based on the approximation for short inhibition windows, according to which the 

peak amplitude of the VEMP has an absolute value of 

as ⋅= δρ0 .         (18) 

The standard deviation of the uninhibited sEMG is 

a⋅Δ= 0ρσ .         (19) 

The latter formula may be rewritten as ( )⋅Δ= 22
0 / aσρ  Inserting this result into the equation for s 

yields: 

  2

2

aa
s σδ ⋅

Δ
=          (20) 

Thus, the VEMP amplitude is proportional to the variance of the sEMG. If both quantities are 

appropriately normalized (division by a  and 2a , respectively), the factor of proportionality is the 

ratio of ERD and effective MUAP duration. 
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4. Discussion 

4.1. Resolving a seeming contradiction 

Starting point for this theoretical study was the realization that the common view of a proportional 

relationship between VEMP amplitude and sEMG level (in this study quantified in terms of the 

standard deviation of the sEMG, σ ) is contradictory to the experience that a successful VEMP 

recording requires a certain muscle tone. Equation 20 allows to resolve the contradiction, although 

this is not obvious at first glance. The importance of the muscle tone follows from the fact that, 

according to Eq. 20, σ/s  is proportional to σ . This means the higher the muscle tone, the better is 

the signal-to-noise ratio of the VEMP. However, the equation appears to conflict with the view that 

VEMP amplitude and sEMG level are proportional to each other. Instead, it suggests that the 

VEMP amplitude is proportional to the sEMG level squared. This raises the question as to why 

contradictory conclusions were drawn from experimental data. 

The pivotal element in the following consideration is the ERD, δ .  So far, there was no reason to 

address the question as to how δ  might depend on experimental conditions. But this question 

becomes crucially import now. By reanalyzing data published in the classical article by Colebatch 

et al. (1994) it will be exemplified how the parameter δ  can be used to reconcile model and 

experiment. Data points read from Fig. 4B of that article are displayed as filled circles in Fig. 4A. 

A linear fit (thick gray line in the background) is quite satisfactory so that the data could be seen as 

counterevidence to the quadratic law suggested by Eq. 20. But such a conclusion would be 

premature. The dashed curve shows a quadratic function fitted to all data points with a mean sEMG 

level <70 μV (4 data points excluded). The function explains these data at least as well as the linear 

function. 
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To remove the discrepancy between model and data at higher sEMG levels, the inhibition function 

)(tξ  is assumed to depend on the MUAP rate 0ρ . The inhibition function determines the 

proportion of MUAPs that are inhibited, and it appears reasonable to assume that the relative 

inhibition effect decreases with increasing excitation. In Eq. 20, the inhibition effect is not 

expressed in terms of the inhibition function )(tξ , but in terms of the ERD δ , which is an integral 

of the inhibition function (Eq. 15). In order to make the model consistent with the data, δ  is 

assumed to be a function of σ : 

  ( )
22

0

/1 refσσ
δσδ

+
=         (21) 

With this empirical extension, the model explains the data also at higher sEMG levels (black solid 

curve). The estimated reference sEMG level was refσ  = 37.5 μV. At low sEMG levels, Eq. 21 may 

be approximated as ( ) 0δσδ ≈ , and the VEMP amplitude is proportional to 2σ  (dotted curve). At 

high sEMG levels, Eq. 21 may be approximated as ( ) σσδσδ /0 ref≈  so that the VEMP amplitude 

becomes proportional to σ . The latter approximation explains why the curve representing the 

model basically coincides, over a wide range of levels, with the linear fit published by Colebatch et 

al. (1994). The curve in Fig. 4B shows the function ( ) 0/δσδ , which shall be called the relative 

ERD. If the muscle tone is high, the relative ERD is about five times smaller than if the muscle 

tone is low. 

The normalized VEMP is considered in Fig. 4C. Data points and curves were derived from the 

counterparts in Fig. 4A by dividing the p13-n23 amplitude by the mean sEMG activity. The 

normalized VEMP linearly increases with the sEMG activity if the latter is low (dotted line). At 

intermediate levels, where the majority of the data points are found, this increase slows down, and 

beyond a level of 60 μV the normalized VEMP is roughly independent of the sEMG activity. 
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4.2. Estimation of the ERD 

The above considerations exemplified how to compare different experimental conditions by 

calculating relative ERDs. At least in theory, the data of a VEMP experiment allow to determine 

the ERD in absolute terms, too. This information is not contained in the classical VEMP curve 

(mean of the sEMG), but requires inspecting the standard deviation of the sEMG (as explained in 

the context of Fig. 3). Getting meaningful data for such an analysis may be a challenging task, 

though. The problem is that the standard deviation is affected to a much lesser degree by the 

inhibition than the mean (see Fig 2A). Thus, to make an analysis of the standard deviation possible, 

the measuring time has to be largely increased. This appears feasible in scientific investigations, 

where data could also be accumulated over multiple sessions and subjects, if necessary. Whether 

estimating the ERD could become an option for clinical investigations as well is difficult to assess 

at this point. Figure 2B suggests that not more than 200 sEMG trials are required to obtain clear 

evidence of an inhibition effect in the standard deviation. In a real experiment, however, an ERD of 

5 ms, as assumed in that example, might be difficult to achieve. 

4.3. Estimation of the MUAP rate 

Given the ERD, another quantity of potential interest could be determined as well: the MUAP rate 

0ρ . By combining Eqs 18 and 19, an equation for σs  can be obtained. Solving this equation for 

0ρ  yields 

2

2

2

2

20 a
as ⋅⋅Δ=

σδ
ρ  .        (22) 

This equation will be used now to estimate the order of magnitude of the MUAP rate in a typical 

VEMP experiment. The assumptions Δ  = 10 ms and ( ) 2/32 =aa  are based on considerations 
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presented above. The assumption σs  = 3/5 implies that the average of 100 trials has a signal-to-

noise ratio of 6 (assuming that averaging n  trials enhances the signal-to-noise ratio by n ), which 

seems to be a realistic order of magnitude for a typical VEMP experiment. Considering the 

inhibition effects found in peristimulus time histograms of motor unit discharges (Colebatch and 

Rothwell, 2004), the assumption δ  = 2 ms appears to be reasonable. With these assumptions, Eq. 

22 predicts a MUAP rate of 1350/s. This value is consistent with an estimate derived by Wit and 

Kingma (2006). Referring to Keenan et al. (2005) they assumed that the number of motor units 

contributing to the sEMG recorded from the sternocleidomastoid muscle is between 50 and 100. 

Moreover, referring to a compilation of MUAP rates in a review article by Enoka and Fuglevand 

(2001) they assumed a MUAP rate of 25/s per motor unit. For the ensemble of all contributing 

motor units they consequently estimated a MUAP rate between 1250/s and 2500/s. 

5. Conclusions 

Building upon the pioneering work of Wit and Kingma (2006), an analytical model has been 

developed that explains the VEMP by the inhibition of MUAPs. An inhibition that is short 

compared to the duration of the VEMP (a reasonable assumption, considering e.g. the study of  

Colebatch and Rothwell, 2004) can be characterized in terms of its ERD, irrespective of its actual 

time course. In theory, the ERD can be estimated from measured data by considering the standard 

deviation of the sEMG. But in practice, this is problematic because the inhibition effect on the 

standard deviation is small. Thus, the measuring time would have to be much longer than usual 

today. 

For an ERD being independent of the sEMG level, the VEMP amplitude predicted by the model is 

proportional to the variance of the sEMG. The normalized VEMP amplitude, defined as the ratio of 

VEMP amplitude and standard deviation of the sEMG, is consequently proportional to the standard 
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deviation of the sEMG. Since the normalized VEMP amplitude may be interpreted as a signal-to-

noise ratio, the model explains why a certain muscle tone is an indispensable requirement for a 

successful VEMP recording. The model is also able to explain why experimental data often suggest 

a more or less proportional relationship between VEMP amplitude and sEMG level (quantified, for 

example, by the RMS value of the sEMG). For that purpose, it has to be assumed that the ERD 

decreases with increasing sEMG level, which means that the relative inhibition effect (proportion 

of inhibited MUAPs) is assumed to diminish with increasing excitation. All in all, the model 

suggests that the optimal condition for measuring the VEMP is an intermediate muscle tone. 

Increasing the muscle tone to the highest possible level would cause discomfort without 

significantly enhancing the signal-to-noise ratio. 

 

 

6. Appendix: Variance of the sEMG 

The variance of )(tvT  in the limit T→∞ may be calculated as 

 [ ])(var tv  = [ ] ( )22 )()(lim tvtvE
TT

−
∞→

,      (A1) 

where E[…] denotes the expected value. To calculate the first term on the right of this equation, 

)(2 tvT  is expanded, yielding 
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Evaluation of the second term in Eq. A2 yields 
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which can be rewritten as 
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2/
2

2
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⎠
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∫
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T
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NN μρ .  

In the limit T→∞, TN  is negligible compared to 2
TN , and, with Eq. 6, the above term reduces to 

  ( )2
2

)(')'()'( tvdtttta =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∫

+∞

∞−

μρ . 

Using this result, Eq. A1 may be rewritten as 

 )](var[ tv  = ⎥
⎦

⎤
⎢
⎣

⎡
−∑
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i
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22 )(lim μ .      (A3) 

The remaining calculation is analogous to the calculation of )(tv . The result is Eq. 8. 
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Figure Captions 

Fig. 1  Model explaining how surface electromyogram (sEMG) and vestibular evoked myogenic 

potential (VEMP) arise from motor unit action potentials (MUAPs). The sEMG (irregular thick 

curve) is the algebraic sum of MUAPs randomly distributed along the time axis (thin curves; inset 

showing single MUAP). The MUAP rate was 250/s. The MUAP generation was inhibited in a 2-ms 

window centered at time zero, but this assumption has no obvious effect on a single sEMG trial. 

The mean of 500,000 sEMG trials (lower white curve on black background), by contrast, looks like 

a polarity-inverted MUAP. This curve represents the VEMP. The inhibition effect can also be seen 

in the standard deviation (STD) of the sEMG (upper white curve on black background).  A All 

MUAP amplitudes were identical.  B The MUAP amplitudes were drawn from a Gamma 

distribution of order 2. 

Fig. 2.  VEMPs for inhibition windows of 1.25 ms (A) and 5 ms (B), respectively. The thin curves 

were calculated on the bases of 200 simulated sEMG trials; the thick gray curves in the background 

represent analytical solutions. The lower curves show the VEMP (mean of the sEMG), whereas the 

upper curves show the standard deviation (STD) of the sEMG. The MUAPs had unit amplitude; 

they occurred at a rate of 1600/s. Inset: MUAP waveform, for the sake of comparison. 

Fig. 3: VEMP (lower curve) and standard deviation of the sEMG (upper curve) before and after 

normalization for three different MUAP rates: 400/s (top), 1600/s (middle), and 6400/s (bottom). 

The inhibition window had a duration of 1.25 ms. The thin curves are based on 10,000 sEMG 

epochs; the gray curves in the background represent analytical solutions. 
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Fig. 4: Reanalysis of the data in Colebatch et al.’s (1994) figure 4B.  A  VEMP amplitude 

(amplitude difference between the peaks p13 and n23) versus mean sEMG activity. The filled 

circles show the data read from the original paper; the thick gray line in the background represents 

a linear fit to the data. The data points with a mean sEMG level <70 µV can also be explained by a 

quadratic function (dashed curve). The black curve represents a function that is quadratic in the 

limit of low sEMG levels (dotted curve), but linear in the limit of high sEMG levels. B  Relative 

ERD as a function of the mean sEMG activity.  C  Normalized VEMP amplitude versus mean 

sEMG activity. Data points and curves were derived from the counterparts in Fig. 4A by dividing 

the p13-n23 amplitude by the mean sEMG activity.  
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 

 

 




