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Convexity of injectivity domains on the ellipsoid of revolution: The
oblate case (addendum)

With the same notations as [1], convexity holds whenever (′ = ∂/∂pθ)

T (T + pθT
′) + (X0 − pθ

2)(2T ′2 − TT ′′) ≥ 0, pθ ∈ [0,
√

X0].

The period T (pθ, λ) of the ϕ coordinate is computed using the quadrature in
the form of the algebraic curve (X = sin2 ϕ)

[

Ẋ(λ − X)√
λ

]2

= 4(X − pθ
2)(X − 1)(X − λ).

Setting y = 1 − pθ
2 and x = λ − 1, the invariants are

g2(x, y) =
4

3
(x2 + xy + y2), g3(x, y) =

4

27
(2x3 + 3x2y − 3xy2 − 2y3).

The period is T = 4τ/(3
√

x + 1) with

τ = (2x + y)ω + 3η

where ω is the real half-period of the Weierstraß function associated with (g2, g3),
and η = ζ(ω). Differentiation with respect to x is obtained through the following
rules,

δx

∂ω

∂x
= −Axω − Bxη, δx

∂η

∂x
= Cxω + Axη,

where

δx = 18x(x + y), Ax = 3(2x + y), Bx = 9, Cx = x2 + xy + y2.

Symmetrically,

δy

∂ω

∂y
= −Ayω − Byη, δy

∂η

∂y
= Cyω + Ayη,

where

δy = 18y(x + y), Ay = 3(x + 2y), By = −9, Cy = −(x2 + xy + y2).

Proposition 1. The first and second order derivatives of τ with respect to
(positive) pθ are

τ ′ = −
√

1 − y

y
[−(x − y)ω + 3η],

τ ′′ = − 1

y2(x + y)
{[−2x2 + x(x − 2)y + (2x + 1)y2]ω + 3[2x − (x − 1)y]η}.

Define

α(x, y) =
1

y2
[χ(x, y) − x

3
− y

6
], χ =

η

ω
·

So as to estimate the curvature sign, one essentially needs to compute directional
limits of α at the two degeneracies (x, y) = (0, 0) and (∞, 0).
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Lemma 1. For positive x and y, α > − 1

2y
·

Proof. It is geometrically clear that the period T (hence τ) must be strictly
decreasing with pθ > 0 on an ellipsoid of revolution with prescribed oblateness
(x is fixed). Then, according to Proposition 1, −(x − y) + 3χ > 0, hence the
result on α.

Remark 1. When x → 0 (flat ellipsoid), χ degenerates to the rational value
limx=0 3g3/(2g2) = −y/3 so one gets α(0, y) = −1/(2y) for positive y.

Lemma 2. For positive x, α(x, 0) = − 1

16x
·

Proof. When y → 0 (equator), χ degenerates to limy=0 3g3/(2g2) = x/3. The
differentiation rules imply that

δy

∂χ

∂y
= Cy + 2Ayχ + Byχ2

so, iterating, one obtains

∂χ

∂y
(x, 0) =

1

6
,

∂2χ

∂y2
(x, 0) = − 1

8x
,

whence the directional limit for α (order two Taylor-Young).

One can then devise a global coarse estimate of xα, for instance the following.

Corollary 1. For positive x and y, xα > −1/15.

Remark 2. One actually has xα > −1/16 for positive x and y.

Lemma 3. For positive y, (xα)(∞, y) = −1/16.

Proof. Set ξ = 1/x. When ξ → 0 (round case1), ξχ degenerates to the limit at
ξ = 0 of

ξ
3g3

2g2

(1/ξ, y) =
2 + 3yξ − 3y2ξ2 − 2y3ξ3

6(1 + yξ + y2ξ2)

so (ξχ)(0, y) = 1/3. Computing as in Lemma 2, one obtains

∂(ξχ)

∂ξ
(0, y) =

y

6
,

∂2(ξχ)

∂ξ2
(0, y) = −y2

8
,

whence the directional limit for

α

ξ
=

1

ξ2y2
[ξχ − 1

3
− y

6
ξ].

A global coarse estimate of (x + 1)α is for instance as follows.

Corollary 2. For positive x and y, (x + 1)α < −1/17 < 0.

1The degeneracy x → ∞ towards the round case is interpretated as follows: All geodesics
tend to meridians, so the limit has to be independent of y = 1− pθ

2, and the computation of
α(x, 0) in Lemma 2 for the equator already gives the result.
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Remark 3. One actually has (x + 1)α < −1/16 for positive x and y.

Proposition 2. When x ∈ (0, 1/2), the curvature for ϕ0 = π/2 changes sign.

Proof. For X0 = sin2 ϕ0 = 1, up to some positive factor the curvature reads

κ = τ(τ + pθτ
′) + y(2τ ′2 − ττ ′′) ≥ 0.

As

τ + pθτ
′ = 3ω[(x − 1

2
) + (1 − α)y + 2αy2],

we see using Lemma 2 that this term has a negative limit as y → 0 since

lim
y=0

ω = lim
y=0

π

3

√
g2

2g3

=
π

2
√

x
> 0.

Moreover,

τ ′ = −3ω

2

√

1 − y(1 + 2αy)

and

τ ′′ = − 3ω

2(x + y)
[1 + (1 + 4α)x + 2α(1 − x)y],

are both well defined for y = 0 so κ has the sign of x − 1/2 and is negative.
Conversely, when y = 1, τ ′ vanishes and κ = τ(τ − τ ′′) with

τ − τ ′′
|y=1

= ω[(x + 2) + 6χ] > 3ωx > 0

by virtue of Lemma 1. Hence the change of sign.

Proposition 3. When x ≥ 1/2, τ ′′ ≤ 0.

Proof. Write as in the previous proof

τ ′′ = − 3ω

2(x + y)
[1 + (1 + 4α)x + 2α(1 − x)y],

and notice that, using Corollary 1, the term in the brackets is bounded from
below according to

(1 + x) + 2αx [2 + y(
1

x
− 1)]

︸ ︷︷ ︸

≥0

> (1 + x) − 2

15
[2 + y(

1

x
− 1)] ≥ 11

10

for x ≥ 1/2.

Proposition 4. When x ≥ 1/2, τ + pθτ
′ ≤ 0.

Proof. Write as in the proof of Proposition 2

τ + pθτ
′ = 3ω[(x − 1

2
) + (1 − α)y + 2αy2],

and notice that, using successively Lemma 1 and Corollary 2,

(1 − α) + 2αy ≥ −α > 0.
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Theorem 1. Injectivity domains on the oblate ellipsoid are all convex if and
only if the ratio between the minor and major axes is greater or equal to 1/

√
3.

Proof. When the ratio is less than 1/
√

3, that is when x < 1/2, Proposition 2
shows that convexity does not hold for ϕ0 = π/2. Conversely, when x ≥ 1/2, as
τ ′′ ≤ 0 according to Proposition 3, nonnegativeness of

τ(τ + pθτ
′) + (X0 − pθ

2)(2τ ′2 − ττ ′′)

holds as soon as τ + pθτ
′ ≥ 0, which is Proposition 4.
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