Convexity of injectivity domains on the ellipsoid of revolution: The oblate case (addendum)

With the same notations as [1], convexity holds whenever ( ′ = ∂/∂p θ )

The period T (p θ , λ) of the ϕ coordinate is computed using the quadrature in the form of the algebraic curve (X = sin 2 ϕ)

Ẋ(λ -X) √ λ 2 = 4(X -p θ 2 )(X -1)(X -λ).
Setting y = 1 -p θ 2 and x = λ -1, the invariants are g 2 (x, y) = 4 3 (x 2 + xy + y 2 ), g 3 (x, y) = 4 27 (2x 3 + 3x 2 y -3xy 2 -2y 3 ).

The period is T = 4τ /(3 √ x + 1) with

τ = (2x + y)ω + 3η
where ω is the real half-period of the Weierstraß function associated with (g 2 , g 3 ), and η = ζ(ω). Differentiation with respect to x is obtained through the following rules,

δ x ∂ω ∂x = -A x ω -B x η, δ x ∂η ∂x = C x ω + A x η,
where

δ x = 18x(x + y), A x = 3(2x + y), B x = 9, C x = x 2 + xy + y 2 .
Symmetrically,

δ y ∂ω ∂y = -A y ω -B y η, δ y ∂η ∂y = C y ω + A y η,
where

δ y = 18y(x + y), A y = 3(x + 2y), B y = -9, C y = -(x 2 + xy + y 2 ).
Proposition 1. The first and second order derivatives of τ with respect to (positive) p θ are

τ ′ = - √ 1 -y y [-(x -y)ω + 3η], τ ′′ = - 1 y 2 (x + y) {[-2x 2 + x(x -2)y + (2x + 1)y 2 ]ω + 3[2x -(x -1)y]η}. Define α(x, y) = 1 y 2 [χ(x, y) - x 3 - y 6 ], χ = η ω •
So as to estimate the curvature sign, one essentially needs to compute directional limits of α at the two degeneracies (x, y) = (0, 0) and (∞, 0).

Lemma 1. For positive x and y, α > -1 2y •

Proof. It is geometrically clear that the period T (hence τ ) must be strictly decreasing with p θ > 0 on an ellipsoid of revolution with prescribed oblateness (x is fixed). Then, according to Proposition 1, -(x -y) + 3χ > 0, hence the result on α.

Remark 1. When x → 0 (flat ellipsoid), χ degenerates to the rational value lim x=0 3g 3 /(2g 2 ) = -y/3 so one gets α(0, y) = -1/(2y) for positive y.

Lemma 2. For positive x, α(x, 0) = -1 16x • Proof. When y → 0 (equator), χ degenerates to lim y=0 3g 3 /(2g 2 ) = x/3. The differentiation rules imply that

δ y ∂χ ∂y = C y + 2A y χ + B y χ 2
so, iterating, one obtains

∂χ ∂y (x, 0) = 1 6 , ∂ 2 χ ∂y 2 (x, 0) = - 1 8x ,
whence the directional limit for α (order two Taylor-Young).

One can then devise a global coarse estimate of xα, for instance the following. Proof. Set ξ = 1/x. When ξ → 0 (round case 1 ), ξχ degenerates to the limit at ξ = 0 of

ξ 3g 3 2g 2 (1/ξ, y) = 2 + 3yξ -3y 2 ξ 2 -2y 3 ξ 3 6(1 + yξ + y 2 ξ 2 )
so (ξχ)(0, y) = 1/3. Computing as in Lemma 2, one obtains

∂(ξχ) ∂ξ (0, y) = y 6 , ∂ 2 (ξχ) ∂ξ 2 (0, y) = - y 2 8 ,
whence the directional limit for

α ξ = 1 ξ 2 y 2 [ξχ - 1 3 - y 6 ξ].
A global coarse estimate of (x + 1)α is for instance as follows.

Corollary 2. For positive x and y, (x + 1)α < -1/17 < 0.

Remark 3. One actually has (x + 1)α < -1/16 for positive x and y.

Proposition 2. When x ∈ (0, 1/2), the curvature for ϕ 0 = π/2 changes sign.

Proof. For X 0 = sin 2 ϕ 0 = 1, up to some positive factor the curvature reads

κ = τ (τ + p θ τ ′ ) + y(2τ ′2 -τ τ ′′ ) ≥ 0. As τ + p θ τ ′ = 3ω[(x - 1 2 ) + (1 -α)y + 2αy 2 ],
we see using Lemma 2 that this term has a negative limit as y → 0 since

lim y=0 ω = lim y=0 π 3 
g 2 2g 3 = π 2 √ x > 0.
Moreover,

τ ′ = - 3ω 2 1 -y(1 + 2αy) and τ ′′ = - 3ω 2(x + y) [1 + (1 + 4α)x + 2α(1 -x)y],
are both well defined for y = 0 so κ has the sign of x -1/2 and is negative. Conversely, when y = 1, τ ′ vanishes and κ = τ (τ -τ ′′ ) with

τ -τ ′′ |y=1 = ω[(x + 2) + 6χ] > 3ωx > 0
by virtue of Lemma 1. Hence the change of sign.

Proposition 3. When x ≥ 1/2, τ ′′ ≤ 0.

Proof. Write as in the previous proof

τ ′′ = - 3ω 2(x + y) [1 + (1 + 4α)x + 2α(1 -x)y],
and notice that, using Corollary 1, the term in the brackets is bounded from below according to

(1 + x) + 2αx [2 + y( 1 x -1)] ≥0 > (1 + x) - 2 15 [2 + y( 1 x -1)] ≥ 11 10 for x ≥ 1/2. Proposition 4. When x ≥ 1/2, τ + p θ τ ′ ≤ 0.
Proof. Write as in the proof of Proposition 2

τ + p θ τ ′ = 3ω[(x - 1 2 ) + (1 -α)y + 2αy 2 ],
and notice that, using successively Lemma 1 and Corollary 2,

(1 -α) + 2αy ≥ -α > 0.

Theorem 1. Injectivity domains on the oblate ellipsoid are all convex if and only if the ratio between the minor and major axes is greater or equal to 1/ √ 3.

Proof. When the ratio is less than 1/ √ 3, that is when x < 1/2, Proposition 2 shows that convexity does not hold for ϕ 0 = π/2. Conversely, when x ≥ 1/2, as τ ′′ ≤ 0 according to Proposition 3, nonnegativeness of τ (τ + p θ τ ′ ) + (X 0 -p θ 2 )(2τ ′2 -τ τ ′′ ) holds as soon as τ + p θ τ ′ ≥ 0, which is Proposition 4.

Corollary 1 .

 1 For positive x and y, xα > -1/15. Remark 2. One actually has xα > -1/16 for positive x and y. Lemma 3. For positive y, (xα)(∞, y) = -1/16.

The degeneracy x → ∞ towards the round case is interpretated as follows: All geodesics tend to meridians, so the limit has to be independent of y = 1 -p θ

, and the computation of α(x, 0) in Lemma 2 for the equator already gives the result.