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We study a variant of the univariate approximate GCD problem, where the coeffi-

cients of one polynomial f(x)are known exactly, whereas the coefficients of the second

polynomial g(x)may be perturbed. Our approach relies on the properties of the matrix

which describes the operator of multiplication by gin the quotient ring C[x]/(f). In

particular, the structure of the null space of the multiplication matrix contains all the

essential information about GCD(f, g). Moreover, the multiplication matrix exhibits

a displacement structure that allows us to design a fast algorithm for approximate

GCD computation with quadratic complexity w.r.t. polynomial degrees.

1 Introduction

The approximate polynomial greatest common divisor (denoted as AGCD) is
a central object of symbolic-numeric computation. The main difficulty of the
problem comes from the fact that is no universal notion of AGCD. One can
find different approaches and different notions for AGCD. We will not give a
review of all the existing work on this subject, but we will recall one of the most
popular approaches to show how our work brings a different point of view on
the problem.

The main approach to the computation of an AGCD consists in considering
two univariate polynomials whose coefficients are known with uncertainty. This
uncertainty can be the result of the fact that the polynomials have floating point
coefficients coming from previous computation (and so are subject to round-off
errors). The most frequently adopted formulation is related to semi-algebraic
optimization : given f̃ and g̃ two approximate polynomials, find two polynomials
f and g such that ‖f̃−f‖ and ‖g̃−g‖ are small (lower than a given tolerance for
instance) and such that the degree of gcd(f, g) is maximal. That is, one looks
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for the most singular system close to the input (f̃ , g̃). An ε-gcd is obtained
if the conditions ‖f̃ − f‖ < ε and ‖g̃ − g‖ < ε are satisfied. One can try to
compute the tolerance on the perturbation of the input polynomial thanks to
direct computation (for instance from a jump on singular values of particular
matrix for instance). This last approach has received a great interest following
the work of Zeng using Sylvester like matrices ([14]).

Here, we consider a slightly different problem. One of the polynomials, say
f , is known exactly (it is the result of an exact model) and the second one, say g,
is an approximate polynomial (result of measures or previous approximation for
instance). This case occurs in applications such as model checking (to compare
results of an exact model and measures). There are many other instances of
such a problem, such as simplification of fractions when one of the polynomial
is known exactly but the other one is not.

We give a example of such a situation. When modeling an electromagnetic
filter, one might want to parametrize its behavior with respect to the frequency.
But one may need to do so even if there are singularities and to do so one may
use Padé approximations of the electromagnetic signal at each point as a func-
tion of the frequency. In some cases of interest, one can know all the singularities
and so compute an exact polynomial called characteristic. Padé approximations
are computed independently for each point by a numerical process and denom-
inators may have a non trivial gcd with the “characteristic” polynomial. The
denominators are not known exactly. So, in order to identify unwanted common
factors in denominators one has to compute approximate gcds between an exact
and non exact polynomials.

This AGCD problem can also be interpreted as an optimization problem.
Given f exactly and g̃ approximately, compute a polynomial g close to g̃ such
that g has a maximal degree gcd with f . Our approach takes advantage of
the asymmetry of the problem and of the structure of the quotient algebra
C[x]/(f(x)) (more accurately, of the displacement rank of the multiplication
operator in this algebra). So, we address the following problem :

Problem 1 Let f(x) ∈ C[x] a given polynomial and g(x) another polynomial. Find
g̃(x) close to g(x) (in a sense that will be explained) such that f(x) and g̃(x) have a
gcd of maximal degree.

This may be also an interesting approach when one has two polynomials, one
known with high confidence and another with worse accuracy. This approach
may take advantage of this asymmetry which would not be possible for classical
framework based on Sylvester or Bézout matrices.

In this paper, we propose an approach and an algorithm to address this
problem. The proposed algorithm is “fast” since the exponent of its complexity
is better than the classical linear algebra exponent in the degree of the input
polynomials.

Organisation of the paper: The second section is devoted to some basic re-
sult on algebra needed after, the third section gives an algebraic method for gcd
based on linear algebra, the fourth section recalls the Barnett formula allowing
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to compute the multiplication matrix without division, the fifth gives the dis-
placement rank structure of the multiplication matrix, the sixth describes the
final algorithm and experiments before finishing with conclusions and perpec-
tives.

2 Euclidian structure and quotient algebra

In this section, we recall basic algebraic results allowing to understand the
principle of our approach. All material in this section can be found (even in the
non reduced case and in the multivariate setting) in [11].

Assume that K is an algebraically closed field (here we think about C).

Let f(x) and g(x) ∈ K[x] and assume that f(x) = fd ∗
d∏

i=1

(x − ζi) and that

ζi 6= ζj for all i 6= j in {1, . . . , d}. Let A = K[x]/(f) and π : K[x] −→ A be

the natural projection. For i ∈ {1, . . . , d}, we define Li(x) =

∏

j 6=i

(x−ζj)

∏

j 6=i

(ζi−ζj)
, the ith

Lagrange polynomial associated to {ζ1, . . . , ζd}. Clearly, since deg(Li) < deg(f)
we have π(Li) = Li, for all i ∈ {1, . . . , d}. Let A∗ = HomK(A,K) be the usual
dual space of A. For all i ∈ {1, . . . , d}, we define 1ζi : A −→ K by 1ζi(p) =
p(ζi) for all p ∈ A. The following lemma is obvious form the definition of the

polynomials Li that for i and j ∈ {1, . . . , d}, we have Li(ζj) =

{
1 if i = j
0 else

.

This implies that the set {L1, . . . , Ld} is a basis of A. A well known fact is
that the set {1ζ1 , . . . ,1ζd} form a basis A∗ dual of the basis {L1, . . . , Ld} of A.
As a corollary, we have the Lagrange interpolation formula : Each p ∈ A can

be written p(x) =
d∑

i=1

1ζi(p) ∗ Li(x). A funny consequence is that if we choose

{L1, . . . , Ld} as a basis of A, for all g ∈ K[x], the remainder π(g) of the euclidian
division of g by f is given by (g(ζ1), . . . , g(ζd)) in the basis {L1, . . . , Ld}, i.e.

r =
d∑

i=1

g(ζi)Li(x). In other word, divide g by f is equivalent to evaluate g at

the roots of f .
The general philosophy of this last proposition will allows us to make a lot

of proof in a very simple way. For example, it is very easy to see the different
operation in A using this representation. Let g and h be to elements in A, then

we have g+h =
d∑

i=1

(g(ζi)+h(ζi))∗Li(x) and g ∗h =
d∑

i=0

(g(ζi)∗h(ζi))Li(x) in A.

This allows us to avoid the use of the section σ. In fact, the Lagrange polyno-
mials L1, . . . , Ld reveal a deeper structure on the algebra A : The polynomials

L1, . . . , Ld are the idempotents of A, i.e. Li ∗ Lj =

{
Li if i = j
0 else

.

Thanks to this description of the quotient algebra, it is easy to derive al-
gorithms for both polynomial solving and gcd computation even though the
problems are of very different nature.
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Remark that we have expressed everything in the monomial basis since it is
the most widely used basis to express polynomials but we could use other bases.
A particular basis is the Chebyshev basis where all results are exactly the same
since it is a graduated basis.

3 An algebraic algorithm for gcd computation

To first give an idea on how to exploit the section above in order to design
algorithm for gcd, We recall a classical method for polynomial solving (see [4]
for instance). Proofs are given for the sake of completeness and because very
similar ideas will lead us to the AGCD computation.

3.1 Roots via eigenvalues

Let f(x) =
d∑

i=0

fix
i ∈ C[x] be a polynomial of degree d. Then we consider the

matrix of the multiplication by x in C[x]/(f). Its matrix in the monomial basis
1, . . . , xd−1 is the following:

Frob(f) =

(
1 x x2 · · · xd−1

)



1
x
x2

...
xd−1







0 0 0 · · · − f0
fd

1 0 0 · · · − f1
fd

0 1 0 · · · − f2
fd

...
...

...
. . .

...

0 0 0 · · · −
fd−1

fd




well known as the Froebenius companion matrix associated to f .

Proposition 1 Let f(x) ∈ C[x]be polynomial of degree d with d distinct roots
Z(f) = {z1, . . . , zd}, then the eigenvalues of Frob(f) are the roots of f(x), i.e.
Spec(Frob(f)) = {z1, . . . , zd}.

Proof It follows directly from the fact that Frob(f) is the matrix of the mul-
tiplication by x in C[x]/(f). But here we propose to give a direct proof by
induction. In fact, we prove by induction that the characteristic polynomial of
Frob(f) is f(x) itself (up to a sign and a scalar factor 1/fd), i.e.:

∣∣∣∣∣∣∣∣∣∣

−x 1 0 · · · − f0
fd

0 −x 1 · · · − f1
fd

...
...

...
. . .

...

0 0 0 · · · −x−
fd−1

fd

∣∣∣∣∣∣∣∣∣∣

= −f(x).
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since we have:
∣∣∣∣∣∣∣∣∣∣

−x 1 0 · · · − f0
fd

0 −x 1 · · · − f1
fd

...
...

...
. . .

...

0 0 0 · · · −x−
fd−1

fd

∣∣∣∣∣∣∣∣∣∣

= −x∗

∣∣∣∣∣∣∣∣

−x 1 0 · · · − f1
fd

...
...

...
. . .

...

0 0 0 · · · −x− fd−1

fd

∣∣∣∣∣∣∣∣
−
f0
fd

= −(x∗f̃(x)+
f0
fd

)

and by assumption f̃(x) = f(x)−f0
fd∗x

and finally we have the wanted result. Re-

mark that this proof allows to avoid the condition that all the roots of f(x) are
distinct. �

Then, to compute the roots of f(x) one can compute the eigenvalues of
is Froebenius companion matrix. This is the object of the method proposed
(reintroduced) by Edelman and Murakami [5] and revisited by Fortune [6] and
many others trying to use the displacement structure of the companion matrix.
In fact, often, the author realized that the monomial basis of the quotient algebra
is not the most suitable one and proposed to express the matrix of the same
linear application but in other basis. In the case of the Chebyshev basis this
algorithm was already known by Barnett [2] and Cardinal later [4].

In the next section, we will also take advantage of the structure of the quo-
tient algebra to design an algorithm for gcd computation mainly using linear
algebra (eigenvalues are used in theory and never computed).

3.2 Structure of quotient and gcd

Let f(x) and g(x) ∈ K[x] such that they are both monic. As above, we denote
A = K[x]/(f) and d = deg(f). We denote denote {ζ1, . . . , ζd} the set of roots
of f(x) and we assume that f(x) is squarefree, i.e. ζi 6= ζj if i 6= j. We define

Mg :

{
A −→ A

h 7−→ π(gh)
where π(p) ∈ A denote the remainder of p(x) ∈ K[x]

by division by f(x). We denote Mg the matrix of Mg in the monomial basis
1, x, . . . , xd−1 of A but other bases can be used. A matrix representing the map
Mg is called an extended companion matrix.

Proposition 2 The eigenvalues of Mg are {g(ζ1), . . . , g(ζd)}.

Proof It is a direct corollary of the proposition ?? since if we write the matrix
of this linear map in the Lagrange basis associated to {ζ1, . . . , ζd} is




g(ζ1) · · · 0
...

. . .
...

0 · · · g(ζd)




and gives the wanted result. �

Trivially, we have:
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Corollary 1 We have corank(Mg) = deg(f)− rank(Mg) = deg(gcd(f, g)).

The column of index i of Mg is the column vector of the coefficients of
xi−1 ∗ g(x).

Let p1, . . . , pl be a basis of Ker(Mg) and let P1(x), . . . , Pl(x) be the corre-
sponding polynomials. First remark that AnnA(g) = {P (x) ∈ A|P (x)∗g(x) = 0}
is an ideal of A.

Lemma 1 The ideal AnnA(g) is a principal ideal.

Proof Let us define

s(x) =
∏

ζ∈Z(f)\(Z(f)∩Z(g))

(x− ζ).

For all h ∈ AnnA(g) it is clear that Z(h) ⊃ Z(f)\(Z(f) ∩ Z(g)) and then s
divide h. Furthermore s ∈ AnnA(g) since in the Lagrange basis

s(x) ∗ g(x) =

d∑

i=1

s(ζi) ∗ g(ζi)Li(x) = 0.

This shows that AnnA(g) = (s). �

To compute s(x), we built the matrix with columns formed by p1, . . . , pl and
we make a triangulation operating only on the columns. This way we obtain
the polynomial of minimal degree linear combination of P1(x), . . . , Pl(x) and it
is easily seen that this s(x) up to a multiplicative scalar factor.

Lemma 2 The first column of a column echelon form of the matrix Kg built
from a basis of Ker(Mg) is the generator of AnnA(g), i.e. it is the vector of the
coefficients of s(x) up to a scalar multiplication.

Proof Since the columns of a column echelon form of the matrix Kg are
linearly independent, they form a basis of AnnA(g) as K-vector space. So s(x)
is a linear combination of the polynomials associated to those columns. The
polynomial associated to the column echelon form ofKg have all different degree
(because it is an echelon form) and so s(x) is a linear combination of those
polynomial. Because s(x) as the lowest degree possible, it is a scalar multiple
of the polynomial associated to the first column. �

Proposition 3 f(x) ∧ g(x) = f(x)
s(x) .

Proof By construction, we have s(x) ∗ g(x) = 0mod f(x) and so s(x) divide

f(x). We also have gcd( f(x)s(x) , g(x)) = gcd(f(x), g(x)) since the roots of f(x)
s(x) are

the root of f(x) where g(x) vanishes. Since deg( f(x)s(x) ) = deg(gcd(f(x), g(x)) we

have the wanted result. �
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In all this section, we did not care if the polynomials are known in monomial
or Chebyshev basis for instance. In fact, in order to have an algebraic algorithm,
we only need to be able to perform euclidian division and this is always the case
if the polynomial basis is graduated (as for monomial, Chebyshev, most of the
orthogonal bases).

4 Bezoutian and Barnett’s formula

A classical matricial formulation of resultant is given by the Bézout matrix.
In this part, we recall the construction of the Bézout matrix and a special
factorization of the multiplication matrix expressed in the monomial basis. This
factorization is called Barnett formula (see [2]). The Barnett’s formula allows to
build the classical extended companion matrix without using euclidian division
and only stable numerical computations. Furthermore, this factorization reveals
that the extended companion matrix has a special rank structure and we will
use this fact later to design a fast algorithm to compute AGCD.

Definition 1 Let f and g ∈ C[x] of degree m and n respectively (with n > m),

we denote Θf,g(x, y) = f(x)g(y)−f(y)g(x)
x−y =

∑
i,j

θi,jx
iyj =

m−1∑
j=0

κf,g,j(x)y
j. The

Bézout matrix associated with f and g is Bf,g =
(
θj,j

)
i,j∈{0,...,m−1}

.

Remark that since Θf,g(x, y) = Θf,g(y, x) the matrix Bf,g is symmetric. The
polynomials κf,g,j(x) are univariate polynomials of degree at most m− 1. One
particular case of interest is when f = 1. In this case the Bézout matrix has a
Hankel structure, i.e. θi,j = θi−1,j+1. In this case we denote Hg,i(x) = κ1,g,i(x)
for i ∈ {0, . . . ,m− 1} which are called the Horner polynomials.

Proposition 4 Let i ∈ {0, . . . ,m− 1}, the polynomial Hg,i(x) = c1,m−i+ · · ·+
c1,mxi has degree i and since they have different degree, they form a basis of

C[x]/(g). Furthermore, Θ1,g(x, y) =
m−1∑
i=0

Hg,m−i(x)y
i.

Corollary 2 The matrix B1,g is the basis conversion from the Horner basis
H0, . . . ,Mm−1 to the monomial basis 1, x, . . . , xn−1 of C[x]/(g).

This leads us to the following theorem, known as Barnett formula (see [2]):

Theorem 1 Let Mf be the multiplication matrix associated to f in C[x]/(g) in
the monomial basis, we have:

Mf = Bf,gB
−1
1,g .

Proof We have Θf,g(x, y) = f(x) g(y)−g(x)
x−y +g(x) f(x)−f(y)

x−y and so f(x) g(x)−g(y)
x−y ≡

Θf,g(x, y) in C[x, y]/(g(x)). So, for each i ∈ {0, . . . ,m− 1}, we have Θf,g,i(x) ≡
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f(x)Θ1,g,i(x). This last equality means that Bf,g is the matrix of the multipli-
cation by f(x) in C[x]/(g). The result follows directly from this fact. �

The Barnett’s formula reveals the rank structure of the multiplication ma-
trix. Furthermore, this formula is already known if we choose Chebyshev basis
instead of monomial basis to express the polynomials and the matrices have
exactly the same nature.

5 Structured matrices and asymptotically fast

algorithms

In this section, we briefly recall some basics on displacement structured matrices
and related algorithms.

5.1 Displacement structure

Given an integer n and a complex number ϑ with |ϑ| = 1, define the circulant
matrix

Zϑ
n =




0 ϑ
1 0

1
. . .

. . .
. . .

1 0




∈ C
n×n.

Next, define the Toeplitz-like displacement operator as the linear operator

∇T : Cm×n −→ C
m×n

∇T (A) = Z1
mA−AZϑ

n .

A matrix A ∈ Cm×n is said to be Toeplitz-like if ∇T (A) is a small rank matrix
(where “small” means small with respect to the matrix size). The number
α = rank(∇(A)) is called the displacement rank of A. If A is Toeplitz-like, then
there exist (non-unique) displacement generators G ∈ Cm×α and H ∈ Cα×n

such that
∇(A) = GH.

Toeplitz matrices and their inverses are examples of Toeplitz-like matrices. An-
other useful example is the multiplication matrix Mf , which has Toeplitz-like
displacement rank equal to 2, regardless of its size.

A similar definition holds for Cauchy-like structure; here the relevant dis-
placement operator is

∇C : Cm×n −→ C
m×n

∇C(A) = D1A−AD2,

whereD1 and D2 are diagonal matrices of appropriate size with disjoint spectra.
See [10] for a detailed description of displacement structure.
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5.2 Fast solution of displacement structured linear sys-

tems

Gaussian elimination with partial pivoting (GEPP) is a well-known and reli-
able algorithm that computes the solution of a linear system. Its arithmetic
complexity for an n× n matrix is asymptotically O(n3). But if the system ma-
trix exhibits displacement structure, it is possible to apply a variant of GEPP
with complexity O(n2). The main idea consists in operating on displacement
generators rather than on the whole matrix; see [7] for details.

Strictly speaking, the GKO algorithm performs GEPP (or, equivalently,
computes the PLU factorization) for Cauchy-like matrices. However, several
authors have pointed out (see [7], [9], [12]) that Toeplitz-like matrices can be
stably and cheaply transformed into Cauchy-like matrices; the same is true for
displacement generators.

Consider, for instance, the case ϑ = 1 and let A be an n×n Toeplitz-like ma-
trix with generatorsG andH . Denote byD0 the matrix diag(1, eπi/n, . . . , e(n−1)πi/n)
and let F be the Fourier matrix of size n × n. Then the matrix FAD−1

0 FH is
Cauchy-like, of the same displacement rank as A, with respect to the dis-
placement operator defined by D1 = diag(1, e2πi/n, . . . , e2πi(n−1)/n) and D2 =
diag(eπi/n, e3πi/n, . . . , e(2n−1)πi/n). Its Cauchy-like generators can be computed

as Ĝ = FG and Ĥ
H

= FD0H
H .

Generalization to the case of m× n rectangular matrices is possible. In this
case, the parameter ϑ should be chosen so that the spectra of D1 and D2 are
well separated (see [1] and [3]).

We also point out that the GKO algorithm can be adapted to pivoting tech-
niques other than partial pivoting ([8], [13]). This is especially useful in case of
instability due to internal growth of generator entries. A Matlab implementa-
tion of the GKO algorithm that takes into account several pivoting strategies is
found in the package DRSolve described in [1]. In our implementation, we use
the pivoting strategy proposed in [8].

6 A structured approach to AGCD computation

We propose here an algorithm that exploits the algebraic and displacement
structure of the multiplication matrix to compute the AGCD of two given poly-
nomials with real coefficients (as defined in section 1).

6.1 Rank estimation

It has been pointed out in Section 3 that the rank deficiency of the multiplica-
tion matrix equals the AGCD degree. Here we use the structured pivoted LU
decomposition to estimate the approximate rank of the multiplication matrix.
Recall that Mg has a Toeplitz-like structure with displacement rank 2; it can

then be transformed into a Cauchy-like matrix M̂g as described in Section 5.2.

Fast pivoted Gauss elimination yields a factorization M̂g = P1LUP2, where L
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is a square, nonsingular, lower triangular matrix with diagonal entries equal to
1, U is upper triangular and P1,2 are permutation matrices. Inspection of the
diagonal entries (or of the row norms) of U allows to estimate the approximate
rank of M̂g and, therefore, of Mg.

6.2 Minimization of a quadratic functional

Let us suppose that:

• the polynomial f(x) =
∑n

j=0 fjx
j is exactly known,

• the polynomial g(x) =
∑m

j=0 gjx
j is approximately known and may be

perturbed, so that we consider its coefficients as variables,

• the AGCD degree is known.

Then we can reformulate the problem of AGCD computation as the minimiza-
tion of a quadratic functional. Indeed, recall that the cofactor v(x) with respect
to f(x) is defined by the “shortest” vector (i.e., the vector with the maximum
number of trailing zeros) that belongs to the null space of Mg. We assume v(x)
to be monic; we denote its degree as k and we have

Mgv = Mg ·




v0
...

vk−1

1
0
...
0




=




0
...
...
...
...
...
0




.

Also observe that the entries of Mg are linear functions of the coefficients of
g(x). Then the equation Mgv = 0 can be rewritten as F(g, v)=0, where the
functional F is defined as

F : Cm+1 × C
k −→ R+

F(g, v) = ‖Mgv‖
2
2.

For a preliminary study of the problem, we have chosen to solve the equation
F(g, v)=0 by means of Newton’s method, applied so as to exploit structure.
Denote by z = [g0, . . . , gm, v0, . . . , vk−1]

T the vector of unknowns; then each
Newton step has the form

z(j+1) = z(j) − J(g(j), v(j))†Mg(j)v(j).

In particular, notice that the Jacobian matrix associated with F is an n× (m+
k + 1) Toeplitz-like matrix of displacement rank 3. This property allows to
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compute a solution of the linear system J(g(j), v(j))y = Mg(j)v(j) in a fast way;
therefore, the arithmetic complexity of each iteration is quadratic w.r.t. the
degree of the input polynomials.

We propose in the future to take into consideration other optimization meth-
ods in the quasi-Newton family, such as BFGS.

6.3 Computation of displacement generators

In order to perform fast factorization of the multiplication matrix Mg, we need
to compute Toeplitz-like displacement generators. It turns out that the range
of ∇(Mg) is spanned by the first and last column of the displaced matrix, and
the columns of indices from 2 to n− 1 are multiples of the first one. Therefore,
it suffices to compute a few rows and columns of Mg in order to obtain displace-
ment generators. This can be done in a fast and stable way by using Barnett’s
formula. If we denote as ej the jth vector of the canonical basis of C

n

, then
the computation of the j-th column of Mgcan be seen as

Mg(:, j) = B(f, g) ·
(
B(1, f)−1ej

)
,

that is, it consists in solving a triangular Hankel linear system and computing
a matrix-vector product. For row computation, recall that the Bezoutian is a
symmetric matrix; we have analogously:

Mg(j, :) = eTj · B(f, g) ·B(1, f)−1 =
(
B(1, f)−1B(f, g)eTj

)T
,

so that the computation of a row of Mg amounts to performing a matrix-vector
product and solving a Hankel triangular system.

A similar approach holds for computation of displacement generators of the
Jacobian matrix J(g, v) associated with the functional F(g, v).

6.4 Description of the algorithm

Input: coefficients of polynomials f(x) and g(x).
Output: a perturbed polynomial g̃(x) such that f and g̃ have a nontrivial com-
mon factor.

1. Estimate the approximate rank k of Mg by computing a fast pivoted LU
decomposition of the associated Cauchy-like matrix.

2. Again by using fast LU, compute a vector v = [v0, v1, . . . ., vk−1, 1, 0, . . . ., 0]
T

in the approximate null space of Mg.

3. Apply structured Newton with initial guess (g, v) and compute polynomials
g̃ and ṽ such that f and g̃ have a common factor of degree deg f − k and ṽ
is the monic cofactor for f .

6.5 Numerical experiments and computational issues

We have written a preliminary implementation of the proposed method in Mat-
lab (available at the URL http://www.unilim.fr/pages perso/paola.boito/MMgcd.m).
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The results of a few numerical experiments are shown below. The polynomi-
als f and g are monic and have random coefficients uniformly distributed over
[−1, 1]. They have an exact GCD of prescribed degree. A perturbation is then
added to g. The perturbation vector has random entries uniformly distributed
over [−η, η] and its norm is of the order of magnitude of η. We show:

• the residual F(g̃, ṽ),

• the 2-norm distance between the exact and the computed cofactor v,

• the 2-norm distance between the exact and the computed perturbed poly-
nomial g (which is expected to be roughly of the same order of magnitude
as η).

In the following table we have taken η =1e-5.
n,m, deg f F(g̃, ṽ) ‖v − ṽ‖2 ‖g − g̃‖2
8, 7, 3 1.02e-15 1.19e-15 1.40e-5
15, 14, 5 1.51e-15 2.26e-15 1.35e-4
22, 22, 7 2.07e-13 1.40e-13 2.20e-4
36, 36, 11 1.19e-12 5.07e-14 0.0012

Here are results for η =1e-8:
n,m, deg f F(g̃, ṽ) ‖v − ṽ‖2 ‖g − g̃‖2
8, 7, 3 5.49e-15 1.63e-15 5.85e-8

28, 27, 13 7.90e-14 8.98e-14 6.50e-7
38, 37, 13 4.88e-12 4.26e-12 2.30e-5
58, 57, 23 2.03e-12 4.40e-12 2.54e-4

There are several issues in our approach that deserve further investigation.
Let us mention in particular:

• The choice of a threshold (or a more refined technique) for estimating
approximate rank.

• Normalization of polynomials: here we mostly work with monic polyno-
mials, but other normalizations may be considered.

• The structured implementation of the optimization step (minimizing F(g, v)).
We have used for now a heuristic structured version of the Gauss-Newton
algorithm. Observe that each step of classical Gauss-Newton applied to
our problem has the form z(j+1) = z(j)−y(j), where z(j) is the vector con-
taining the coefficients of the j-th iterate polynomials g(j) and v(j), and y(j)

is the least-norm solution to the underdetermined system J(g(j), v(j))y(j) =
Mg(j)v(j). Computing this least-norm solution in a structured and fast way
is a difficult point that will require more work. Our implementation gives
a solution which is not, in general, the least-norm one, even though it
is typically quite close. Further work will also include a study of other
possible optimization methods that lend themselves well to a structured
approach.
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7 Conclusions

We have proposed and implemented a fast structured matrix-based approach to
a variant of the AGCD problem, namely, the problem of computing an approx-
imate greatest common divisor of two univariate polynomials, one of which is
known to be exact. To our knowledge, this variant has been so far neglected in
the existing literature. It may be also interesting when one polynomial is known
with high accuracy and the other is not.

Our approach is based on the structure of the multiplication matrix and
on the subsequent reformulation of the problem as the minimization of a suit-
ably defined functional. Our choice of the multiplication matrix Mg over other
resultant matrices (e.g., Sylvester, Bézout...) is motivated by

• the smaller size of Mg, with respect e.g. to the Sylvester matrix,

• the strong link between the null space ofMg and the gcd, and in particular
the fact that the null space of Mg immediately yields a gcd cofactor,

• the displacement structure of Mg,

• the possibility of computing selected rows and columns of Mg in a stable
and cheap way, thanks to Barnett’s formula.

This is, however, a preliminary study. Further work will include generalizations
of the proposed problem and a more thorough analysis of the optimization part
of the algorithm. Furthermore, this approach can be generalized in several
intersting way:

• using better bases then the monomial one,

• it can be extended to some multivariate setting to compute the co-factor
of a polynomial g in C[x1, . . . , xn]/(f1, . . . , fn) when f1, . . . , fn define a
complete intersection since Barnett formula still holds,

• to compute the AGCD of f with g1, . . . , gk where f is known with accuracy
but g1, . . . , gk are inaccurate, one can take g as a linear combination of
g1, . . . , gk with our method and succeed with a high probability.
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