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2Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ;

F-31077 Toulouse Cedex 4, France
3MobiGIS; ZAC Proxima, rue de Lannoux, 31310 Grenade Cedex France

fgueye@mobigis.fr, artigues@laas.fr, huguet@laas.fr

Abstract

Taking into account the multimodality of urban transportation networks for com-
puting the itinerary of an individual passenger introduces a number of additional
constraints such as restriction and/or preferences in using some modes. In this pa-
per, such constraints are gathered under the concept of viable path modeled by a
deterministic finite state automaton. Several polynomial algorithms are proposed to
solve a bi-objective problem proposed in [13], where the goal is to find all the non-
dominated viable shortest paths under the two objectives “travel time” and “number
of modal transfers”. Among these algorithms, we consider an improved variant of the
topological label-setting algorithm provided by Lozano and Storchi [13], a new multi-
label multi-queue algorithm and its bidirectional variant. The different algorithms are
compared on a real network. The results show that, on the considered network, the
proposed algorithms outperform the Lozano and Storchi [13] algorithm, both for the
time-independent and time-dependent case. Finally, A∗ acceleration techniques are
discussed.
keywords: bi-objective viable shortest paths, multimodal transportation, finite state
automaton, label-setting algorithms, bidirectional search, A∗

1 Introduction

Computing shortest paths in the context of monomodal passenger transportation, where
a single transportation mode (e.g. private vehicle, bus, metro) is used during the passen-
ger’s itinerary, was subject to extensive research since the publication of Dijkstra’s algo-
rithm in the 1950s. Among the considered extensions of the basic shortest path problems,
the case where travel times (or costs) are time-dependent, allowing to take into account
public transportation timetables or traffic congestion hours, has also been widely stud-
ied. Nowadays, thanks to powerful acceleration and/or preprocessing techniques (such
as bidirectional search, A∗ search, landmarks, contraction hierarchies, etc.), computing
shortest-paths very fastly in large-scale network, either in a time-independent or in a
time-dependent context, is not a challenge anymore [7, 8, 17]. Note that the best results
obtained consider the FIFO assumption for the time-dependent network, i.e. for an arc
(i, j) departing earlier from i implies arriving earlier at j.
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The case of multimodal passenger transportation, which lies in the transportation of
one or several passengers with diffferent modes during the same itinerary, has been much
less adressed. However, multimodal transportation is subject to a growing interest in the
research community, as multimodality is now widely accepted for urban transportation as
a necessary alternative to the exclusive use of private vehicles. In this paper, we consider
a polynomial bi-objective shortest path problem in a multimodal urban transportation
network: the minimum time/minimum number of transfers multimodal viable shortest-
path problem. We consider a time-independent problem variant initially proposed by
Lozano and Sorchi [13] denoted as BI-MM-V-SPP and a time-dependent extension (under
the FIFO assumption), denoted BI-TD-MM-V-SPP. We also consider an application to the
urban area of Toulouse (France) the purpose of which being to evaluate the tractability
of the considered problem on real-life network.

In Section 2 we briefly recall the existing litterature on the multimodal shortest path
problem, so as to introduce our motivation for the present study. Section 3 formally
defines the problem. The proposed algorithm for BI-MM-V-SPP and BI-TD-MM-V-SPP, i.e.,
an improved variant of the topological label-setting algorithm provided by Lozano and
Storchi [13], a new multi-label multi-queue algorithm and its bidirectional variant, are
presented in Section 4. Their performance on the considered real network are compared
in Section 5. For further speedups, integration of goal-oriented (A∗) techniques in the
algorithms and associated additional computational experiments are discussed in Section 6.
Concluding remarks are drawn in Section 7.

2 Literature review

Multimodal transportation raises network modeling issues [6, 12]. A simple way of mod-
eling the network, used by many authors [16, 13, 4], lies in assuming that the set of nodes
is partitionned according to the modes. Arcs linking two nodes of differents subsets is
called a transfer arc. Equivalently, nodes and/or arcs are labeled according to the asso-
ciated mode [2]. Once such a network is defined, one typically seeks to model the fact
that some sequence of modes constituting a path can be infeasible in practice. A first
(relaxed) way of taking account of such mode restrictions for shortest path computations
was proposed by Modesti and Sciomachen [16], who proposed a extension of Dijkstra’s al-
gorithm to minimize a (single) global utility function defined by a weighted sum of modal
characteristics of a path (time spent on the private car, time spent on the bus or sub-
way, walking time, waiting time,...). For shortest path computation including hard modal
constraints, (possibily infinite) mode-dependent travel times were used by Ziliaskopoulos
and Wardell [23], together with an arc representation allowing to design mode constraints
involving three nodes. A more general way of modeling the multimodal constraints was
proposed by Barett et al. [2]. Each mode being viewed as an element of an alphabet, each
arc of the network being labeled by a mode, the mode restrictions can be described by a
regular language over the alphabet. The multimodal shortest path problem then amounts
to a regular language-constrained shortest path problem. As a regular language can be
represented by a non-deterministic finite state automaton (NFA), Barett et al. [2] proved
that the problem is polynomial in the number of states of the automaton. In [1, 22, 21],
practical implementation issues of this method are discussed. Barett et al. [1] proposed A∗
and bidirectional accelerations. Considering deterministic finite-state automaton (DFA)
as input, Sherali et al. [21] extend the problem to time-dependence and propose a strongly
polynomial algorithm for FIFO graphs. Sherali and Jeenanunta [22] further extend the
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problem to approach-dependent travel times and propose a label-setting algorithm which
consistently outperforms a label correcting algorithm designed for the same problem.

The main drawback of the approaches based on the regular language constraint shortest
path problem are that they all consider only a single objective. However, when several
modes are available a user may want to select her/his itinerary among a set of alternatives,
taking account of several objectives. Two general classes of multi-objective multimodal
shortest path problems have already been considered in the litterature: namely, polynomial
problems and NP-hard problems.

The simplest polynomial bi-objective multimodal problem was introduced by Pallottino
and Scutellà [20]. They considered the problem to find all non-dominated point-to-point
paths considering the “minimum time” and “minimum number of transfers” objectives, a
transfer being defined as a mode change along the path. No multimodal restrictions were
considered. They proposed a polynomial topological label-setting algorithm to solve the
problem. In [13], Lozano and Storchi directly extend this problem and the topological
algorithm to integrate mode restrictions using a DFA in a time-independent network,
defining the BI-MM-V-SPP considered in the present paper.

Bielli et al [4] consider a simplified version of the DFA model but include time-
dependent arcs and time penalties for turning movements. Their problem can be con-
sidered as a variant of the BI-TD-MM-V-SPP. Their objective is to compute the K− short-
est paths under an upper bound of the maximum allowed number of transfers. The
method can also be defined as an extension of the topological Pallottino and Scutellà [20]
algorithm, with labels on arcs. Experimental validations for the BI-MM-V-SPP and the
BI-TD-MM-V-SPP are limited to small networks. The largest one, presented in [4], involves
1000 nodes and 2830 arcs and the K-shortest path algorithm runs in 6.5s on a Pentium II
with 64 MB RAM. To our knowledge, no realistic computational experiments were carried
out for the the BI-MM-V-SPP and the BI-TD-MM-V-SPP. The main purpose of the paper is
to study the tractability of solving these two bi-objective problems on a real network in
reasonable computational time.

A more general class of problems consider general objective function and mostly pro-
pose extensions to multimodality of the NP-hard bi-objective shortest path problem. Al-
though we focus in this paper on the polynomial BI-MM-V-SPP and BI-TD-MM-V-SPP, we
mention a recent experimental study carried out for a more general problem since the num-
ber of transfers and minimum time objectives were also considered among other objectives.
Gräbener et al. [10] present an extension of Martin’s algorithm [15] to deal with the mul-
timodal, multiobjective shortest path, considering only basic mode restrictions (the finite
state automaton formalism is not used). When only the minimum number of transfers
and minimum time objectives are considered, the method shows very fast computational
times. For three modes (cycling, walking and public transportation), in a time-dependent
context, the pareto-optimal paths are computed in 71.9 milliseconds in average for a net-
work of 36694 nodes and 171443 edges. However the number of non-dominated path is
on average equal to 1.2. Actually, since the cycling mode can be taken from the origin to
the destination (or left anywhere in the network), it generally dominates the other modes.
This recent study partially answered our question in the sense that they showed that the
BI-TD-MM-V-SPP is actually tractable when no complex mode restrictions are defined and
when one of the modes tends to dominate the others.

In this paper we propose specific algorithms for the BI(-TD)-MM-V-SPP and we evaluate
the practical tractability of real instances admitting significantly more non-dominated
solutions and where complex mode restrictions are represented by a finite state automaton.
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3 Problem statement

3.1 BI-MM-V-SPP and BI-TD-MM-V-SPP definition

Let M denotes the set of modes. The multimodal transportation network is modeled by
a multi-layer graph G(V,E) such that each layer corresponds to a mode m ∈ M . A mode
mi ∈ M is defined for each node i ∈ V . For the BI-MM-V-SPP, a travel time dij is asso-
ciated to each arc (i, j) ∈ E. For the BI-TD-MM-V-SPP, a function aij(t) is associated to
each arc (i, j) ∈ E. It gives the arrival time to node j given that departure time from i is
t. An arc (i, j) such that mi 6= mj is called a transfer arc.
In terms of multimodal characteristics, each path in G yields by a sequence (or string) of
modes. Among all strings of modes, only a subset of strings are acceptable according to
a passenger’s preferences or to feasibility constraints. The acceptable mode sequences are
represented via a deterministic finite state automaton (DFA). The input DFA is given by a
5-uple A = (S,M, δ, s0, F ) where S = {1, . . . , |S|} is the set of states, s0 is the initial state,
F is the set of final states and δ : M × M × S → S is the transition function such that
δ(m,m′, s) gives the state obtained when traversing from state s an arc (i, j) with mi = m

and mj = m′. We assume that δ(m,m′, s) = ∅ denotes the case where the transition is
unfeasible.

A viable path is a path in G from an origin node O to the destination node D veri-
fying the constraints represented by the DFA. A path is viable if it starts with O (in state
s0) and reaches D in a state s ∈ F .

We consider both the “minimum time” and “minimum number of transfers” objectives.
We first recall definitions on multiobjective optimization [9] applied to our problem.
Let time(p) denote the travel time along a path p. Let ntr(p) denote the number of
transfers along p. An efficient (or Pareto-optimal) solution is a feasible O-D path p such
that there is no other path p′ verifying either time(p′) ≤ time(p) and ntr(p′) < nbtr(p),
or time(p′) < time(p) and ntr(p′) ≤ nbtr(p). In the objective space, a non-dominated
point is a pair (t, k) such that there exists an efficient path p verifying time(p) = t and
ntr(p) = k.
Considering the bi-objective “minimum time” and “minimum number of transfers” O-D
viable path problem, the goal is to find all non-dominated points, and, for each of them,
a single efficient path.

3.2 DFA example

For our experimental evaluation on a real network, we consider the case where M =
{wa, bu, pr,me} (walking, bus, private car, metro). The considered intineraries are as-
sumed to be from home to another place. Hence, the viability constraints taking into
account are the following: the private car can be taken only from O and, once left, cannot
be taken again. Moreover, the private car can only be left at a subset of nodes representing
parking places. We assume for the considered example that the private car cannot be left
at the destination. For the metro, one assume that it can be taken at any time but, once
left, cannot be taken again. We assume also that the origin and destination nodes are not
in the metro.

The deterministic finite state automaton with |S| = 5 represented in the Figure 1
models these viability constraints on both metro and private car. Transition arcs between
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states are labeled by a mode m ∈ M where M = {wa, bu, pr,me} ∪ {mO}, mO being
a fictive mode labeling only the origin O. A transition from state s to state s′ labeled
by m ∈ M describes the transition function of a traversed arc (i, j) in such a way that
s′ = δ(mi,mj , s) with mj = m. If a mode m does not appear as a possible transition
of a given state s, any transition towards this mode is forbidden. The state at origin is
s0. In Figure 1 state s1 means that private car was not taken at O and so mode pr is

sOstart

s1

s2

s3

s4 s5

wa, bu

pr

wa, bu

me

pr

wa

wa, bu

me

wa

me wa, bu

Figure 1: Original deterministic finite state automaton

forbidden for the remaining of the travel, while metro has not been taken yet. State s2
means that private car was taken at O and has not been left yet. State s3 means that
private car cannot be taken anymore since it has already been taken and left while metro
mode has not been taken yet. In state s4 metro has been taken but not left. In state s5,
metro has been left. We consider the acceptable final states are reduced to F = {s1, s3, s5}
(displayed in double circle in Figure 1). Indeed, state s4 models the presence of the user
in the metro, so she/he must leave the metro to reach her/his destination. State s2 means
the private car is currently being used and must be left in a parking area to reach the
destination.

4 Algorithms for the BI-MM-V-SPP and the BI-TD-MM-V-SPP

In this section, we detail three algorithms to solve both the BI-MM-V-SPP and the BI-TD-MM-V-SPP.
All algorithms are based on a label setting principle which is described in Section 4.1. All
algorithms also use dominance rules which are presented in Section 4.2. The first algo-
rithm (TLS), a label-setting version of the topological label setting algorithm proposed
by [13], is given in Section 4.3. The second algorithm (MQLS), described in Section 4.4 is
a new label setting algorithm based on multiple priority queues. Section 4.5 presents the
third algorithm (FB-MQLS), a bidirectional (Forward-Backward) adaptation of MQLS.

We decribe algorithms TLS and MQLS in the most general context, i.e. the time-
dependent one. In this context, a travel time function aij(t) is associated to each arc (i, j).
The time-independent case can be obtained by setting aij(t) = t+dij . We assume the FIFO
assumption holds, i.e. if t1 ≤ t2 then aij(t1) ≤ aij(t2) for each arc (i, j) ∈ E. Assuming
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time discretization, for each time-dependent arcs (i, j), arrival times at destination are
store in a table Aδ

ij where δ ∈ ∆ij and ∆ij is a set of intervals. Each interval δ ∈ ∆ij is

defined by bounds Sδ and Fδ such that if t ∈ {Sδ, . . . , Fδ−1}, aij(t) = Aδ
ij . In other words

aij(t) is piecewise constant. Hence, given t, aij(t) can be computed in O(1). It follows that
algorithms TLS and MQLS described below have the same worst case time complexity for
BI-MM-V-SPP and the BI-TD-MM-V-SPP. The bidirectional algorithm FB-MQLS however
is first decribed for solving BI-MM-V-SPP and then extended to BI-TD-MM-V-SPP.

4.1 Label setting principle

The proposed algorithms use labels to represent paths. Let (i, s, k) denote a label repre-
senting a path from the source to node i in state s and using k transfers. Each label has
two attributes: tkis which denotes the arrival time on i and pkis which denotes the predeces-
sor label of (i, s, k) on the path. When pkis = (j, s′, k′) it means that (a) arc (j, i) is used
on the path and that (b) the state of the path on i is s with s = δ(mj ,mi, s

′) and that
(c) there is k used transfers with k = k′ if mi = mj and k = k′ + 1 if mi 6= mj . Note that
no algorithm needs to store more than one label (i, s, k) for fixed i,s and k. Consequently,
the considered bi-objective problem is polynomial and all the proposed algorithms are
of polynomial time complexity. We opt for the label setting principle which is a simple
extension of Dijkstra algorithm incorporating the multimodal restrictions and the number
of transfers computations.

All the proposed algorithms implement differently the following basic principles. Ini-
tially, a label (O, s0, 0) is generated with t0Os0

= 0 and p0Os0
= (O, s0, 0). The label is

stored in a convenient data structure Q. The label setting process is then applied until Q
becomes empty. At each iteration, the label (i, s, k) with minimum tkis is removed from Q

as tkis is the shortest time from O to i in state s with number of transfers k. Then, the di-
rect successors of node i in Q are scanned. For each successor j, we first check if taking arc
(i, j) is viable according to multimodal restrictions which is true if s′ = δ(mi,mj , s) 6= ∅. If
label extension through j is viable, we set the number of transfers k′ at j to k if mi = mj

or to k + 1 otherwise. We obtain a label (j, s′, k′). We then set tk
′

js′ := tkis + dij and

pk
′

js′ := (i, s, k) if the label was never visited or if tk
′

js′ < tkis + dij . The label is inserted in
Q if some dominance rules do not apply. Otherwise the label is discarded.

4.2 Dominance rules and state reduction

In this section we give dominance rules allowing to discard labels. A first dominance rule,
the basic dominance rule, is linked to the bi-objective optimization.

Proposition 4.1 (Basic dominance rule) Consider two disctinct labels (i, s, k) and
(i, s, k′). If k ≤ k′ and tkis ≤ tk

′

is , then the label (i, s, k′) can be discarded (because it is
dominated by the label (i, s, k)).

Obviously, under the described conditions, any O-D path issued from (i, s, k) is non-
dominated by any O-D path issued from (i, s, k′).

A second dominance rule, the state-based dominance rule, strengthens the basic dom-
inance rule considering label extension possibilities in terms of multimodal restrictions.
We consider a binary relation � on the states such that s � s′ means that s yields more
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extension possibilities than s′. More precisely s � s′ if for any mode pair (m,m′) ∈ M

one of the following conditions holds











δ(m,m′, s′) = ∅
δ(m,m′, s′) = δ(m,m′, s)
δ(m,m′, s) = s and δ(m,m′, s′) = s′

Proposition 4.2 (State-based dominance rule) Consider two disctinct labels (i, s, k)
and (i, s′, k′). If k ≤ k′, tkis ≤ tk

′

is , s � s′ then the label (i, s′, k′) can be discarded.

From the state-based dominance rule, we also derive the following state merging condi-
tions that can be used to reduce the initial automaton presented in 1 and initially proposed
by Lozano and Storchi [13]. Such a reduction is beneficial for the computational require-
ments as the next sections show that the complexity of the algortithms depends on the
number of states of the DFA.

Proposition 4.3 If s � s′ and s′ � s, s and s′ are equivalent states and can be merged
into a single state

We remark in Figure 1 that states s1 and s3 verify the above-described condition and then,
we consider the reduced automaton of the Figure 2.

sOstart

s1

s2 s3 s4

wa, bu

pr

wa, bu

me

pr

wa
wa

me wa, bu

Figure 2: Reduced deterministic finite state automaton

4.3 Topological label-setting (TLS) algorithm

The topological Pallottino and Scutellà [20] algorithm was extended by Lozano and Storchi
algorithm [13] to path viability modeled by a DFA. We describe below a label-setting vari-
ant of algorithm TLS (the original algorithm of [13] being described as a label-correcting
algorithm).

Under the topological principle, the data structure Q storing labels is made of two
priority queues Qnow and Qnext. Labels are generated according to the increasing number
of transfers. Initially, Qnow contains label (O, s0, 0) while Qnext is empty. At a typical
iteration, the minimum time label (i, s, k) is taken from Qnow. Each non-dominated ex-
tended label (j, s′, k′), j being a direct successor of i, is queued into Qnow if k = k′ and
into Qnext if k′ = k + 1. As soon as the destination D is dequeued from Qnow or Qnow

becomes empty, Qnow is set to Qnext and Qnext is emptied. The algorithm stops when
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Qnext is empty meaning that no non-dominated labels with k+1 transfers could be found,
or when a maximum number of transfers is reached.

The basic dominance rule to decide whether (j, s′, k′) is kept or discarded can be
performed in O(1): for a given label (j, s′, k′), we have only to keep track of the shortest
time found so far to reach (j, s′, k′′) with k′′ ≤ k′, denoted lastlabeljs′ and the label is
dominated if tk

′

js′ ≥ lastlabeljs′ , as the previously encountered label cannot have more
transfers. The complexity of the state-based dominance rule is in O(|S|) : a given label
(j, s′, k′) obtain by extension of a label (i, s, k) is dominated if lastlabelj,s′′ > aij(t

k
is) for

all states s′′ such that s′′ � s′.
The algorithm pseudo code is given in (Algorithm 1).

Algorithm 1 Topological label-setting algorithm (TLS)

Require: Graph G(V,E), DFA A, O, D, aij(.), ∀(i, j) ∈ E, kmax

1: Set Qnow := {(O, s0, 0)}, t
0
O,s0

:= 0, p0O,sO
:= 0, tkis := ∞, ∀i ∈ V \ {O}, ∀s ∈ S, ∀k =

0, . . . , kmax

2: Set Qnext := ∅, lastlabeli,s = ∞, ∀i ∈ V \ {O}, ∀s ∈ S

3: Set k := 0
4: while Qnow 6= ∅ and k ≤ kmax do
5: repeat
6: set (i, s, k) := argmin{tkjs′ |(j, s

′, k) ∈ Qnow} and set Qnow := Qnow \ {(i, s, k)}

7: if (i 6= D or s 6∈ F ) and tkis < lastlabeli,s then
8: set lastlabelis := tkis

{Scan successors of label (i, s, k)}
9: for j ∈ FS(i) do

10: set s′ := δ(mi,mj , s)
11: if s′ 6= ∅ and ∀s′′ � s′, lastlabelj,s′′ > aij(t

k
is) then

12: if mi = mj then
13: set tkjs′ := aij(t

k
is), p

k
js′ := (i, s, k) and Qnow := Qnow ∪ {(j, s′, k)}

14: set lastlabeljs′ := tkjs′

15: else if mi 6= mj and k + 1 <= kmax then
16: set tk+1

js′ := aij(t
k
is), p

k+1
js′ := (i, s, k) and Qnext := Qnext ∪ {(j, s′, k + 1)}

17: end if
18: end if
19: end for
20: end if
21: until Qnow = ∅ or (i = D and s ∈ F )
22: if i = D and s ∈ F then
23: store tkDs and pkDs (shortest path with k transfers).
24: end if
25: Set k := k + 1, Qnow := Qnext and Qnext := ∅
26: end while

We now establish the complexity of our implementation of TLS using binary heaps
for Qnow and Qnext. Let kmax denotes the maximum allowed number of transfers. Note
kmax is bounded from above by n. For a given number of transfers k, at most n|S| labels
(i, s, k) are selected as minimum time labels in Qnow.
For each of them, there are two operations: (a) deletion from Qnow and (b) successor
scan and insertion in Qnow or Qnext. Deletion from the binary heap can be done in
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O(log(n|S|)). Successor scan with the basic dominance rule (in O(1)) and possible in-
sertion (in O(log(n|S|)) has a worst-case complexity in O(|FSi| log(n|S|)) where FSi is
the set of direct successors of i. The complexity of operation (a) is ignored (neglected)
since it is lower than the complexity of operation (b). It follows that the worst-case
time complexity of TLS with the basic dominance rule and binary heap implementation
is O(kmax|S||E| log(n|S|)). Running the state-based dominance rule takes in addition
|S| operations for each successor so we obtain in this case a worst-case complexity of
O(kmax|S||E|(|S|+ log(n|S|))).

To illustrate the TLS algorithm behavior, consider the bi-objective multimodal shortest
path problem from node x1 to node x5, represented in Figure 3 (there are no multimodal
restrictions so a label corresponds to a pair (i, k)). There are 2 modes and 5 nodes (transfer
arcs are represented by dashed arcs) and the shortest path is obtained for the maximum
number of transfers k = 4. We present below the by step-by-step execution of Algorithm

x1 x3 x5

x2 x4

5 5

5

1 1 1 1

Figure 3: Small example of multimodal problem

TLS.
Iteration 1: k = 0, Qnow = {x1}, t

0
1 = 0

(i, k) = (x1, 0):
(j, k′) = (x3, 0), t

0
3 = 5, Qnow = {x3}

(j, k′) = (x2, 1), t
1
2 = 1, Qnext = {x2}

(i, k) = (x3, 0):
(j, k′) = (x5, 0), t

0
5 = 10, Qnow = {x5}

(j, k′) = (x4, 1), t
1
4 = 6, Qnext = {x2, x4}

(i, k) = (x5, 0): destination reached: shortest path with 0 transfer
Iteration 2: k = 1, Qnow = {x2, x4}, t

1
2 = 1, t14 = 6, Qnext = ∅

(i, k) = (x2, 1):
(j, k′) = (x4, 1), t

1
4 = 6, this label is dominated

(j, s′) = (x3, 2), t
2
3 = 2, Qnext = {x3}

(i, k) = (x4, 1):
(j, k′) = (x5, 2), t

2
5 = 7, Qnext = {x3, x5}

stop: Qnow = ∅
Iteration 3: k = 2, Qnow = {x3, x5}, t

2
3 = 2, t25 = 7, Qnext = ∅

(i, k) = (x3, 2):
(j, k′) = (x5, 2), t

2
5 = 7, this label is dominated

(j, k′) = (x4, 3), t
3
4 = 3, Qnext = {x4}

(i, k) = (x5, 7): destination reached: shortest path with 2 transfers
Iteration 4: k = 3, Qnow = {x4}, t

3
4 = 3, Qnext = ∅

(i, k) = (x4, 3):
(j, k′) = (x5, 4), t

4
5 = 4, Qnext = {x5}
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stop : Qnow = ∅
Iteration 5: k = 4, Qnow = {x5}, t

4
5 = 4, Qnext = ∅

(i, k) = (x5, 4): destination reached: shortest path with 4 transfers
Iteration 6: k = 5, Qnow = ∅, stop

Then, in this example, three non-dominated solutions are generated for the bi-objective
shortest path from x1 to x5: the first solution with 0 transfer and a travel time equals to
10, the second solution corresponds to 1 transfer and a travel time of 7 and the third one
leads to 4 transfers and a travel time equals to 4. The algorithm stops because there is no
more label in Qnow even if the limit on the maximal number of transfers is not reached.
The TLS algorithms generates non-dominated solutions in increasing order of the number
of transfers and decreasind order of travel time.

4.4 Multi-queue label-setting (MQLS) algorithm

We propose an alternative multi-queue algorithm that computes the shortest paths in
increasing order of the time criterion values and then in decreasing order of the number
of transfers. Instead of considering two queues Qnow and Qnext, we build incrementally a
list Q = {Q0, Q1, . . .} of priority queues (implemented as binary heaps) such that Qk ∈ Q
contains labels representing paths with k transfers. More precisely, Q0 is initialized with
label (O, s0, 0), all other Qk being empty. The upper bound of the number of transfers K is
set to kmax. At each iteration the label (i, s, k) with minimum travel time is taken among
all non-empty priority queues. If a destination label (D, s, k∗) is dequeued, priority queues
Qk′ with k′ > k∗ are discarded and K is set to k∗−1, as the shortest path with k∗ transfers
to D is found. Otherwise, non-dominated labels (j, s′, k′) such that k′ ≤ K issued from
(i, s, k) are inserted in the corresponding priority queue Qk′ . The algorithm stops when
the shortest path with 0 transfer is found or when all queues are emptied. The algorithm
pseudo code is given in (Algorithm 2). Now we determine the algorithm complexity, using
binary heaps for each Qk ∈ Q. In Q at most kmaxn|S| labels are stored and dequeued
(marked). For each iteration, there are three operations: (a) search of the minimum
time value in the kmax queues; (b) deletion of the corresponding label in O(log(n|S|));
and (c) for each scanned successor, a dominance check is possibly followed by an insertion
operation in the appropriate queue in O(log(n|S|)). The basic dominance check can be
made here in at most kmax operations as all labels (j, s′, k′′) with k′′ ≤ k′ must be checked.
So, with this dominance rule, the operation (c) as an O(|FSi|(kmax+log(n|S|)) worst-case
time complexity. The state-based dominance rule can be applied in O(kmax|S|), then the
operation (c) as a worst-case time complexity of O(|FSi|(kmax|S|+ log(n|S|)).

Taking account of (a) and (b) operations, with the basic dominance rule we obtain a
worst-case complexity of

O(kmax|S| (nkmax + n log(n|S|) + |E|kmax + |E| log(n|S|)) = O(kmax|S||E| (kmax + log(n|S|)) .

and with the state-based dominance rule this worst-case complexity is

O(kmax|S| (nkmax + n log(n|S|) + |E|kmax|S|+ |E| log(n|S|)) = O(kmax|S||E| (kmax|S|+ log(n|S|)) .

The worst-case time complexity is increased compared to the TLS algorithm by a kmax

factor.
Considering the example of Figure 3, we show hereafter the step-by-step execution of this

10



Algorithm 2 Multi-queue label setting algorithm (MQLS)

Require: Graph G(V,E), DFA A, O, D, aij(.), ∀(i, j) ∈ E, kmax

1: Set Q = {Q0 := {(O, s0, 0)}}, t
0
O,s0

:= 0, p0O,s0
:= (0, s0, 0), t

0
i,s := ∞, ∀i ∈ V , ∀s ∈ S,

(i, s) 6= (0, s0)
2: set K = kmax

3: repeat
4: set (i, s, k) := argmin{tk

′

i′,s′ |(i
′, s′, k′) ∈ Q} and set Qk := Qk \ {(i, s, k)}

5: if i = D and s ∈ F then
6: store tki,s and pki,s as the shortest path with k transfers.
7: Discard all Qk′ with k′ ≥ k.
8: set K := k − 1
9: else

10: for j ∈ FS(i) do
11: set s′ := δ(mi,mj , s)
12: if mi = mj then
13: set k′ = k

14: else
15: set k′ = k + 1
16: end if
17: if k′ ≤ K and s′ 6= ∅ and ∀s′′ � s′, ∀k′′ ≤ k′, tk

′′

j,s′′ > aij(t
k
is) then

18: set tk
′

j,s′ := aij(t
k
i,s), p

k′

j,s′ := (i, s, k) and Qk′ := Qk′ ∪ {(j, s′, k′)}
19: end if
20: end for
21: end if
22: until K < 0 or Q = ∅

algorithm.
Iteration 1: Q0 = {x1}, t

0
1 = 0

(i, k) = (x1, 0):
(j, k′) = (x3, 0), t

0
3 = 5, Q0 = {x3}

(j, k′) = (x2, 1), t
1
2 = 1, Q1 = {x2}

Iteration 2: Q0 = {x3}, t
0
3 = 5, Q1 = {x2}, t

1
2 = 1

(i, k) = (x2, 1):
(j, k′) = (x4, 1), t

1
4 = 6, Q1 = {x4}

(j, k′) = (x3, 2), t
2
3 = 2, Q2 = {x3}

Iteration 3: Q0 = {x3}, t
0
3 = 5, Q1 = {x4}, t

1
4 = 6, Q2 = {x3}, t

2
3 = 2

(i, k) = (x3, 2):
(j, k′) = (x5, 2), t

2
5 = 7, Q2 = {x5}

(j, k′) = (x4, 3), t
3
4 = 3, Q3 = {x4}

Iteration 4: Q0 = {x3}, t
0
3 = 5, Q1 = {x4}, t

1
4 = 6, Q2 = {x5}, t

2
5 = 7, Q3 = {x4}, t

3
4 = 3

(i, k) = (x4, 3):
(j, k′) = (x5, 4), t

4
5 = 4, Q4 = {x5}

Iteration 5: Q0 = {x3}, t03 = 5, Q1 = {x4}, t14 = 6, Q2 = {x5}, t25 = 7, Q3 = ∅,
Q4 = {x5}, t

4
5 = 4

(i, k) = (x5, 4): destination reached, shortest path with 4 transfers, K = 3
Iteration 6: Q0 = {x3}, t

0
3 = 5, Q1 = {x4}, t

1
4 = 6, Q2 = {x5}, t

2
5 = 7, Q3 = ∅, K = 3

(i = x3, 0):

11



(j, k′) = (x5, 0), t
0
5 = 10, Q0 = {x5}

(j, k′) = (x4, 1), t
1
4 = 6: is dominated

Iteration 7: Q0 = {x5}, t
0
5 = 10, Q1 = {x4}, t

1
4 = 6, Q2 = {x5}, t

2
5 = 7, Q3 = ∅, K = 3

(i, k) = (x4, 1)
(j, k′) = (x5, 2), t

2
5 = 7: is dominated

Iteration 8: Q0 = {x5}, t
0
5 = 10, Q1 = ∅, Q2 = {x5}, t

2
5 = 7, Q3 = ∅, K = 3

(i, k) = (x5, 2): destination reached, shortest path with 2 transfers, K = 1
Iteration 8: Q0 = {x5}, t

0
5 = 10, Q1 = ∅, K = 1

(i, k) = (x5, 0) : destination reached, shortest path with 0 transfer, K = −1
Iteration 9: K = −1 (Q = ∅): stop

This example illustrates than MQLS algorithm obtains solution in decreasing order of
the number of transfers : the first obtained solution is the one with 4 transfers, the second
has 2 transfers and the third one has 0 transfer.

We show the equivalence of TLS and MQLS in the sense they both have the nice
feature described by the following property. As in the standard Dijkstra algorithm, a
label is “marked” as soon as it is dequeued from Q.

Proposition 4.4 The set of labels (i, s, k) marked by TLS or MQLS for a given (i, s)
maps the set of all non-dominated points for the bi-objective O− i viable path problem with
s as final state.

In particular, setting i = D and s ∈ F , we see that TLS and MQLS generates one and
only one path for each non-dominated point.

4.5 Bidirectional Multi-Queue Label Setting Algorithm (FB-MQLS)

We propose an adaptation of MQLS in a bidirectional way taking advantage of the multi-
queue characteristics. The proposed bidirectional algorithm (FB-MQLS) maintains, in a
similar way as in MQLS algorithm, two priority queue lists FQ for the forward search and
BQ for the backward search such that FQk contains forward labels ftki,s representing paths

reaching i in state s with k transfers and BQk contains backward labels btki,s representing
paths originating from i with k transfers in state s.

As already mentionned, we first describe FB-MQLS in a time-independent context (i.e.
for the BI-MM-V-SPP). There are two main issues in designing a bidirectional algorithm for
the considered multimodal problem. The first issue addressed in Section 4.5.1, consists in
modeling backward path viability. The second issue for designing a bidirectional algorithm
for our problem lies in exploiting the connection between a forward and backward label in
the bi-objective context. The multi-queue structure is then fully exploited as several label
queues may be discarded when a connection meets the condition described in Section 4.5.2.
These issues being adressed, the algorithm FB-MQLS is described in Section 4.5.3 for the
BI-MM-V-SPP. Extension to the BI-TD-MM-V-SPP is discussed in Section 4.5.4.

4.5.1 Modeling backward path viability

We exhibit below two different possibilities to model backward path viability. Let FA =
(SFA,M, δFA, sFA

0 , F FA) denotes the automaton for the forward search and BA = (SBA,

M, δBA, sBA
0 , FBA) the automaton for the backward search. To obtain BA from FA, the

12



first possibility is simply to reverse the arcs of FA. Generally, the obtained state automa-
ton is non-deterministic (see left part of Figure 4). In this figure, the initial state (at
destination) is s5. Final states are s1 (departure by walk or bus) and s2 (departure by
private car). Transition function δBA(mi,mj , s) gives a set of possible states. For example
δBA(mD, wa, s5) = {s1, s4} (where mD denotes the mode at the destination, ie. either wa
either bus). This means what when arriving by walk at the destination, it could be that
the metro was taken (state s4) or was not taken (state s1). In practice, each time a label
extension uses an arc that yields several possible successor states (in the backward path),
all the corresponding labels are generated. Note that such an indeterminism may yield
pairs (i, s) that may never reach the origin, inducing useless computations.

The second possibility is to use a deterministic finite state automaton for the backward
search. This is always possible as there exist algorithms that transform a non-deterministic
finite state automaton equivalent to any deterministic one, however one can not ensure
that for a given non-deterministic automaton with |S| states, the equivalent deterministic
automaton has less than 2|S| states. An issue then is to generate the deterministic au-
tomaton with a minimal number of states. We display in right part of Figure 4 a possible
deterministic finite state automaton for BA that we have obtained manually by a logical
description of a reverse viability of a path, involving the same number of states. Between
these two deterministic automaton, CSBA→FA (respectively CSFA→BA) denotes the set of
FA (resp. BA) states compatible with a given state of BA (resp. FA).

sDstart

s1 s2

s4 s3

wa, bu

wa,bu

wa, bu

pr

pr

me

wa,bu me

wa

(a) Non deterministic automata

eDstart e1

e3

e2

e4

wa, bu

wa, bu

me

pr

me

wa

pr

wa

wa,bu

(b) Deterministic automata

Figure 4: Automata for the backward search

4.5.2 Connection and queue discarding rule

The second issue for designing a bidirectional algorithm for the considered problem is
linked to connection consequences between a forward label and a backward label in terms of
number of transfers. In this case, the interest of the multi-queue implementation appears.
Indeed, when a minimal connection is made between a label fth

i,sf
and a label btq

i,sb
such

that the state sf of FA is compatible with state sb of BA, if condition

fthi,sf + bt
q

i,sb
≤ min

(i′,s′,k′)∈FQ
ftk

′

i′,s′ + min
(i′,s′,k′)∈BQ

btk
′

i′,s′

holds, all priority queues FQk′ and BQk′ with k′ ≥ h+ q can be discarded.
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4.5.3 Algorihm description and complexity

Algorithm FB-MQLS pseudo-code is given in (Algorithm 3). FQ is initalized to a single
priority queue FQ0 with a single label (O, s0, 0) and BQ is initialized to a single priority
queue BQ0 with a labels (D, sD, 0). The upper bound of the number of transfers K is set
to kmax.
The main loop computes the minimum time forward label (if , sf , kf ) and the minimum
time backward label (ib, sb, kb). The search proceeds from the minimum time label among
them (i, s, k). The minimum time label (i, s, k) is removed from its priority queue (FQk or
BQk) and the forward or backward extension is performed in a similar way as in Algorithm
MQLS (see Algorithm 4 for the forward extension, the backward extension algorithm being
symmetrical). The only difference is that (for the forward extension), for each new label
(j, s′, k′), a connection with the opposite direction search is searched by scanning all labels
(j, sb, k′′) with k′ + k′′ ≤ K and sb ∈ CSFA→BA(s′) which possibly yield an O −D path of
less than K transfers. If such a connection is established, its path time (ftk

′

j,s′ + btk
′′

j,sb
) is

compared against the best O−D path already found with k′ + k′′ transfers whose time is
stored in an array Lk′+k′′ to possibly update it.
In this case, the queue discarding rule can be tested by comparing the minimum time Lk∗

obtained among the extensions, with the lower bound given by the sum of the minimum
forward and backward label times (ftk

f

if ,sf
+ btk

b

ib,sb
). If the test is positive, Lk∗ is the best

path time for k∗ transfers and priority queues FQ
k̃
and BQ

k̃
with k̃ ≥ k∗ can be discarded.

Compared to MQLS, there is a computational overhead (only at label extension) in-
duced by connection search (step 10 of Algorithm 4). Let us examine first this overhead
in terms of complexity for the forward extension. With the basic dominance rule, recall
the complexity of label extension is O(|FSi|(kmax + log(n|S|)) for MQLS. For a back-
ward deterministic automaton, connection search introduces an additive term equal to
kmax to search for all labels (j, sb, k′′) as there is a single compatible state. For the non-
deterministic backward automaton, the additive term can be bounded from above by
kmaxs̃ where s̃ = maxs∈SFA |CSFA→BA(s)| ≤ |SBA|. Hence for the basic dominance rule,
the complexity of the forward extension (Algorithm 4)) is O(|FSi|(kmax + log(n|SFA|))
for the deterministic backward automaton and O(|FSi|(kmaxs̃+ log(n|SFA|)) for the non-
deterministic backward automaton. For the state based dominance rule, the complexity of
forward extension is O(|FSi|(kmax|S

FA|+ log(n|SFA|)) for the deterministic bakward au-
tomaton and O(|FSi|(kmax(|S

FA|+ s̃) + log(n|SFA|)) for the non-deterministic backward
automaton. Since the forward automaton is assumed to be deterministic, the complexity
of the backward extension is always equal to O(|BSi|(kmax + log(n|SBA|)) for the basic
dominance rule and to O(|FSi|(kmax(|S

BA|)+ log(n|SBA|)) for the state-based dominance
rule.

We show below the execution of this algorithm for the example of Figure 3.
FQ0 = {x1}, ft

0
1 = 0, BQ0 = {x5}, bt

0
5 = 0, k∗ = −1, K = 5

Iteration 1: select x1 from FQ0, forward search, (i, k) = (x1, 0)
(j, k′) = (x3, 0): ft

0
3 = 5, FQ0 := {x3}, no connection

(j, k′) = (x2, 1): ft
1
2 = 1, FQ1 := {x2}, no connection

Iteration 2: select x5 from BQ0, backward search, (i, k) = (x5, 0)
(j, k′) = (x3, 0): bt

0
3 = 5, BQ0 := {x3}, 1 connection: ft03 = 5 ⇒ L0 = 10, k∗ = 0

(j, k′) = (x4, 1): bt
1
4 = 1, BQ1 := {x4}, no connection

argmin{ftk
′

i′,s′ |(i
′, s′, k′) ∈ FQ} = (x2, 1), ft

1
2 = 1

argmin{btk
′

i′,s′ |(i
′, s′, k′) ∈ BQ} = (x4, 1), bt

1
4 = 1
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Algorithm 3 Bidirectional multi-queue algorithm (FB-MQLS)

Require: Graph G(V,E), DFA FA, BA, O, D, dij , ∀(i, j) ∈ E, kmax

{Initial forward and backward labels}
1: Set FQ = {FQ0 := {(O, s0, 0)}}, ft

0
O,s0

:= 0, fp0O,s0
:= (0, s0, 0), ft

0
i,s := ∞, ∀i ∈ V ,

∀s ∈ SF , (i, s) 6= (0, s0)
2: Set BQ = {BQ0 := {(D, sD, 0)}}, bt

0
O,sD

:= 0, fp0O,sD
:= (D, sD, 0). Set bt0i,s := ∞,

∀i ∈ V , ∀s ∈ SB, i 6= 0 or s 6= sD.
{Initial minimal connection}

3: set K = kmax and set Lk = ∞, ∀k, 0 ≤ k ≤ kmax

{Main Loop: start by getting minimum time label among all priority queues}
4: repeat
5: Let (if , sf , kf ) := argmin{ftk

′

i′,s′ |(i
′, s′, k′) ∈ FQ}

6: Let (ib, sb, kb) := argmin{btk
′

i′,s′ |(i
′, s′, k′) ∈ BQ}

{Direction setting}

7: if ftk
f

if ,sf
≤ btk

b

ib,sb
then

8: set (i, s, k) := (if , sf , kf ) and set FQk := FQk \ {(i
f , sf , kf )}

9: if i = D and s ∈ F FA then
10: set Lk := ftkis and set k∗ := k

11: else
12: ForwardExtension((i, s, k),FQ,BQ, k∗, L)
13: end if
14: else
15: set (i, s, k) := (ib, sb, kb) and set BQk := BQk \ {(i

b, sb, kb)}
16: if i = O and s ∈ FBA then
17: set Lk := btkis and set k∗ := k

18: else
19: BackwardExtension((i, s, k),FQ,BQ, k∗, L)
20: end if
21: end if

{queue discarding test}
22: Let (if , sf , kf ) := argmin{ftk

′

i′,s′ |(i
′, s′, k′) ∈ FQ}

23: Let (ib, sb, kb) := argmin{btk
′

i′,s′ |(i
′, s′, k′) ∈ BQ}

24: if k∗ 6= −1 and Lk∗ ≤ ftk
f

if ,sf
+ btk

b

ib,sb
then

25: store Lk∗ as the shortest path with k∗ transfers.
26: Discard all FQk and BQk with k ≥ k∗.
27: set K := k∗ − 1, k∗ = argmink∈{0,...,K}L

k

28: end if
29: until K < 0 or FQ = BQ = ∅

L0 > 1 + 1 : no update
Iteration 3: select x2 from FQ1, forward search, (i, k) = (x2, 1)
(j, k′) = (x4, 1): ft

1
4 = 6, FQ1 := {x4}, 1 connection: bt14 = 1 ⇒ L2 = 7, k∗ = 2

(j, k′) = (x3, 2): ft
2
3 = 2, FQ2 := {x3}, 1 connection: bt03 = 5, value 7 ≥ L2 (no update)

argmin{ftk
′

i′,s′ |(i
′, s′, k′) ∈ FQ} = (x3, 2), ft

2
3 = 2

argmin{btk
′

i′,s′ |(i
′, s′, k′) ∈ BQ} = (x4, 1) bt

1
4 = 1

L2 > 2 + 1 : no update
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Algorithm 4 Forward multi-queue algorithm: ForwardExtension((i, s, k),FQ,BQ, k∗, L)

1: for j ∈ FS(i) do
2: set s′ := δ(mi,mj , s)
3: if mi = mj then
4: set k′ = k

5: else
6: set k′ = k + 1
7: end if
8: if k′ ≤ K and s′ 6= ∅ and ∀k′′ ≤ k′, Lk′′ > ftki,s+dij and ∀s′′ � s′, ftk

′′

js′′ > ftki,s+dij
then

9: set ftk
′

j,s′ := ftki,s + dij , p
k′

j,s′ := (i, s, k) and FQk′ := FQk′ ∪ {(j, s′, k′)}
{Connection checking}

10: for (j, sb, k′′) ∈ BQ, k′ + k′′ ≤ K, sb ∈ CSFA→BA(s′) do
11: if Lk′+k′′ > ftk

′

j,s′ + btk
′′

j,sb
then

12: set Lk′+k′′ := ftk
′

j,s′ + btk
′′

j,sb

13: if k∗ = −1 or Lk′+k′′ < Lk∗ then
14: set k∗ := k′ + k′′

15: end if
16: end if
17: end for
18: end if
19: end for

Iteration 4: select x4 from BQ1, backward search, (i, k) = (x4, 1)
(j, k′) = (x2, 1): bt

1
2 = 6, BQ1 := {x2}, 1 connection: ft12 = 1, value 7 ≥ L2 (no update)

(j, k′) = (x3, 2): bt
2
3 = 2, BQ2 := {x3}, 2 connections: ft03 = 5, value 7 ≥ L2 (no update)

and ft23 = 2 ⇒ L4 = 4, k∗ = 4
argmin{ftk

′

i′,s′ |(i
′, s′, k′) ∈ FQ} = (x3, 2), ft

2
3 = 2

argmin{btk
′

i′,s′ |(i
′, s′, k′) ∈ BQ} = (x3, 2) bt

2
3 = 2

L4 ≤ 2 + 2 : shortest path with 4 transfers, K = 3, k∗ = 2
Iteration 5: select x3 from FQ2, forward search, (i, k) = (x3, 2)
(j, k′) = (x5, 2): discarded since L2 ≤ ft23 + 5, FQ2 := ∅
(j, k′) = (x4, 3): ft

3
4 = 3, FQ3 := {x4}, no connection with less than 4 transfers

argmin{ftk
′

i′,s′ |(i
′, s′, k′) ∈ FQ} = (x4, 3), ft

3
4 = 3

argmin{btk
′

i′,s′ |(i
′, s′, k′) ∈ BQ} = (x3, 2) bt

2
3 = 2

L2 > 3 + 2 : no update
Iteration 6: select x3 from BQ2, backward search, (i, k) = (x3, 2)
(j, k′) = (x1, 2): discarded since L2 ≤ bt23 + 5, BQ2 := ∅
(j, k′) = (x2, 3): bt

3
2 = 3, BQ3 := {x2}, no connection with less than 4 transfers

argmin{ftk
′

i′,s′ |(i
′, s′, k′) ∈ FQ} = (x4, 3), ft

3
4 = 3

argmin{btk
′

i′,s′ |(i
′, s′, k′) ∈ BQ} = (x2, 3) bt

3
2 = 3

L2 > 3 + 3 : no update
Iteration 7: select x4 from FQ3, forward search, (i, k) = (x4, 3)
(j, k′) = (x5, 4): discarded since L4 ≤ ft+4 1, FQ3 := ∅
argmin{ftk

′

i′,s′ |(i
′, s′, k′) ∈ FQ} = (x3, 0), ft

0
3 = 5

argmin{btk
′

i′,s′ |(i
′, s′, k′) ∈ BQ} = (x2, 3) bt

3
2 = 3
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L2 ≤ 5 + 3 : shortest path with 2 transfers, K = 1, k∗ = 0, remove BQ3

Iteration 8: select x3 from BQ0, backward search, (i, k) = (x3, 0)
(j, k′) = (x1, 0): discarded since L0 ≤ bt03 + 5, BQ0 := ∅
(j, k′) = (x2, 1): discarded since bt12 ≤ bt03 + 1
argmin{ftk

′

i′,s′ |(i
′, s′, k′) ∈ FQ} = (x3, 0), ft

0
3 = 5

argmin{btk
′

i′,s′ |(i
′, s′, k′) ∈ BQ} = (x2, 3) bt

1
2 = 6

L0 ≤ 5 + 6 : shortest path with 0 transfers, K = 0, stop.

4.5.4 Adaptation for the BI-TD-MM-V-SPP

A (fast) extension of bidirectional search to time-dependent shortest path (in monomodal
networks) has been recently proposed by Nannicini et al. [17]. The concepts used in their
study can be transposed without difficulty in our context.

For the forward search, we simply replace ftki,s + dij by aij(dij) in steps 8 and 9 of the
forward extension (Algorithm 4).

For the backward search, Let bij(t) denote the function giving the departure time at
i if arrival time at j is t for an arc (i, j) and t a possible arrival time at j given by the
transportation timetables. As the arrival time at D is not fixed, we cannot use bij(t).
Instead we define the travel time dij such that t− dij is an upper bound of bij(t). dij can
be simply set to the minimal duration to traverse arc (i, j) given the timetable associated
with (i, j).

By using the timetables aij(.) for the forward search and the lower bounds on the travel
times dij for the backward search, the time computed for a path issued from a connection
is a lower bound of the actual duration. To apply the queue discarding rule, the actual
travel time is computed for each encountered connection by a traversal of the backward
path given the arrival time at the connection node.

5 Computational Experiments

5.1 Network and data set

The aim of these experiments is to compare TLS, MQLS and FB-MQLS for the deter-
ministic automaton (FBD-MQLS) and the non-deterministic automaton (FBND-MQLS),
as well as to evaluate the efficiency of the proposed dominance rules on a real network.
The experimental comparisons were carried out on a network covering a part of the urban
area of Toulouse (France). Considered modes are bus, metro, walk and private vehicle.
Viability constraints are modeled by the automaton of Figure 2. Two sets of experiments
were conducted: the first one considers the transportation network as a time-independent
graph and in the second one, there are time-dependent travel times for public transporta-
tion (bus and metro) but the road network remains time-independent. Table 1 details the
different layers of the time-independent graph in terms of modes, nodes and arcs. Timeta-
bles for buses and metro are approximate by an average travel time for each corresponding
arc in the network.

For the time-dependent network, in our example, some bus lines that have different
characteristics according to the timetables are break up in several sub-modes in the multi-
layer graph. For this reason, even if the time-dependent graph is the same than the time-
independent graph, it has more nodes and arcs for bus and transfer modes (see table 2)
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Modes Nodes Arcs
Bus 6 170 6 646
Metro 75 72
Street 56 774 146 280

Transfer - 6 370
Parking 29 -

Total 63 048 159 368

Table 1: Time-independent network data

and it verifies the FIFO assumption.

Modes Nodes Arcs
Bus 9 384 9 047

Transfer - 28 017

Total 65 262 183 416

Table 2: Time-dependent network data

All algorithms have been implemented in C++ and run on an 2.67 GHz Intel Xeon
quad core processor W3520 with 4GB RAM under Linux Fedora 11.

5.2 Results

Experiments concern 100 randomly generated origin-destination pairs. All algorithms
solve all problems to optimality. We obtained in average 5 non-dominated solutions and 2
transfers per itinerary. As a premiminary remark, we obtain much more efficient solutions
in average than Gräbener et al. in [10] for the same objectives. Although networks are
different we explain this difference by the fact that we do not have a dominant mode,
since the private car can only be left at a limited number of nodes and we have viability
constraints. The average distance is 40 km (from 30 km to 50 km), these itineraries are
longer than usual itineraries in the urban part of Toulouse but it leads to a best overview
of the interest of dominance rules. The start time is fixed to 08h00 am, the total number
of timetable elements for the bus is 129 975 and the frequency for the metro is 3 min.
In the following of this sections, all the comparisons are made in terms of CPU time but
comparisons in terms of number of labels provide same conclusions and are not detailed
here. All numerical results are given in the appendix.

Figure 5 shows the impact of dominance rules in terms of CPU time for the algorithms
TLS, MQLS, FBD-MQLS, FBND-MQLS in the time-independent graph. Integration of the
basic dominance rules improve the results of all algorithms. The state-based dominance
rule improves in turn the results of the basic dominance rules for all algorithms. Moreover,
this dominance rule is more efficient for MQLS algorithms (in monodirectional or bidirec-
tional way) than for TLS algorithm. The worst-case complexity of TLS algorithm is better
than that of the MQLS algorithm (with or without the use of dominance rules). But in
practice, MQLS algorithm is faster than TLS algorithm with the state-based dominance
rule. The best algorithm is FB-MQLS with state-based dominance rules. For this algo-
rithm, the best result is obtained with the deterministic backward automaton, as expected.
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Figure 5: Impact of dominance rule in the time-independent graph

Figure 6 compares the four algorithms on the time-dependent graph, with the state-
based dominance rule. Again the following rank is observed in terms of CPU time FBD-
MQLS<FBD-MQLS<MQLS<TLS. In conclusion, both on the time-independent and on

FBND-MQLS

FBD-MQLS

MQLS

TLS

0.5 1 1.5 sec

Figure 6: Comparaison of algorithms for the time-dependant graph

the time-dependent graphs, the bidirectional MQLS algorithm with state-based dominance
rule and deterministic automaton for backward search is the most efficient (the CPU time
is in average about 1.3 seconds in the time-independent graph and about 1.5 seconds in
the time-dependent one). Another conclusion is that the use of deterministic finite state
automaton in bidirectional algorithms leads to more efficient algorithms. Although these
times could be certainly reduced with further acceleration techniques, our experiments
allow to answer positively to the question whether the BI(-TD)-MM-V-SPP can be solved
efficienlty on a real urban network.

6 On the integration of goal-oriented (A∗) techniques

6.1 Using the A
∗ principle

The previous algorithms can be extended using the A∗ principle for computing point to
point shortest paths. For each label (i, s, k), a modified travel cost denoted by t̃kis is then
given by tkis+hi where tkis is the travel time from the origin O to i and hi is an estimation
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of the total travel time from i to the destination D. t̃kis represents an estimation of
the shortest path form a given origin to a given destination throught node i and in the
algorithms the search of a label with the minimum travel time is replaced by the search
of a label the minimum estimate total travel time.
We consider here that hi is independant of the states and the number of transfers and that
it correspond to the euclidian distance from i to D over the maximal speed of the modes.
Then hi is a lower bound of the real travel time from i to D, which insure the optimality
of the A∗ search.
Algorithms TLS and MQLS are directly extended to A∗ principle by using t̃kis instead of
tkis.

For the bidirectional algorithms, there are two functions of estimation: hfi for the forward
search (estimation from i to D in the graph) and hbi for the backward search (estimation
from i to O in the reverse graph) and the optimality test must be updated not to consider
twice the estimations, as stated in [11].

fthi,sf + bt
q

i,sb
≤ max( min

(i′,s′,k′)∈FQ
f̃ t

k′

i′,s′ , min
(i′,s′,k′)∈BQ

b̃t
k′

i′,s′)

Moreover, during the bidirectional search, some labels can be discarded with regards
to previously obtained connections. Let Lk denotes the value of the best obtained con-
nection with k transfers, if a label (j, s′, k′) is obtained such that there exists a number
of transfers h such that h ≤ k′ and ftk

′

i,s′ + hi ≥ Lh (in the forward search) then the label
(j, s′, k′) is dominated and can be discarded. The symmetric condition can also be applied
in backward search.

With the conditions presented above, the A∗ bidirectional algorithm provides all non-
dominated paths. However, the optimality condition is known to be little effective. We
also consider another condition which does not guarantee any more to obtain all of the non-
dominated solutions but which turns out to be more effective in practice. This condition
uses twice the estimation function in the both part of the inequality:

f̃ t
h

i,sf + b̃t
q

i,sb ≤ min
(i′,s′,k′)∈FQ

f̃ t
k′

i′,s′ + min
(i′,s′,k′)∈BQ

b̃t
k′

i′,s′

This condition is correct only in the cases that if the network is such that if any itinerary
goes further from the origin it proportionnaly comes closer to the origin.

6.2 Computational experiments

Figure 7 presents the impact of A∗ principle for the mono-directional algorithms TLS and
MQLS including the state-based dominance on the time-independent graph (Figure 8(a))
and on the time-dependant graph (Figure 8(b)). The use of A∗ principle improves very
slightly the mono-directionnal algorithms: for TLS the improvement is about 1.76% in the
time-independent graph and 2.89% in the time-dependent graph and for MQLS the impov-
ement is about 2.03% in the time-independent graph and 1.47% in the time-dependent one.

The next experiments concern the impact of A∗ in bidirectional algorithms (Figure 8).
For that, the exact and heuristic conditions for the optimality of the connection are evalu-
ated in the A∗ bidirectional algorithm with the deterministic automaton in the backward
search. For the time-independent graph (Figure 8(a)), the bidirectional algorithm with A∗
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Figure 7: Impact of A∗ for mono-directional algorithms

and the exact condition for the connection is about 2.5 times slower than the bidirectional
algorithm without A∗. The exact condition is too weak to produce improvements in the A∗

bidirectional algorithms. However, the heuristic condition reduces the CPU time needed
to obtain non-dominated solutions. This reduction of is about 15% for the bidirectional
algorithm using a non-deterministic automaton and of about 4% for the one using deter-
ministic automaton. The most efficient algorithm in the time-independent graph is the
A∗ bidirectional algorithm with the heuristic condition for connection test (the CPU time
is about 1.3 seconds).
The results are the same for the time-dependant graph, the exact condition is not efficient
and the heuristic condition allows to obtain all the non-dominated solutions. The im-
provement of the A∗ principle is about 10.31% for the deterministic automaton and 9.11%
for the non-deterministic one. Overall, even use with a heuristic component a simple im-
plementation of A∗ only improves slightly the proposed algorithms, which is in line with
the results obtained in [1]. Further refinements on the A∗ procedure, such as the design
of a state-dependent estimation function could lead to better improvements.
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D
-MQLS

FBE

D
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0.5 1 1.5 2 2.5 3 3.5 sec

no A∗

with A∗

(a) Time independent graph

FBH

ND
-MQLS

FBH

D
-MQLS

0.5 1 1.5 sec

(b) Time-dependant graph

Figure 8: Impact of A∗ for bidirectional algorithms

7 Conclusion

We have proposed several algorithms to solve the single-source, single-destination bi-
objective multimodal viable shortest path problem where path viability constraints are
modeled by a finite state automaton. The considered objectives were the number of
transfers and the total travel time. The proposed algorithms are all polynomial in the
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number of arcs and nodes of the transportation network and in the number of states of
the finite state automaton. Several improvements were brought to the topological Lozano
and Storchi algorithm [13] (TLS). We proposed a new multi-queue algorithm (MQLS)
for which a bidirectional variant can be easily derived (FB-MQLS). New dominance rules
based on the analysis of the finite state automaton were given. In the bidirectional vari-
ant, we consider both non-deterministic finite state automaton (which is the reversal of
the automaton used in the forward search) and a deterministic variant of this automa-
ton. An experimental study was carried out on a real-world multimodal network including
walk, bus, metro and private vehicle modes. For each problem instance, the set of non-
dominated solutions was found by all algorithms in an short CPU time, allowing their use
inside an end-user application which is currently being developped by MobiGIS. The dom-
inance rules allowed to reduce both the CPU times and the number of visited labels for all
algorithms. The most efficient algorithm is the bidirectional one based on the multi-queue
concept and the deterministic state automaton. A goal-oriented version (A*) of the three
algorithms has been developped, allowing further improvements with a heuristic condition
in the bidirectional algorithm.

For futher research, more experimental studies have to be carried out to evaluate
the influence of the finite state automaton structure on the efficiency of the algorithms
and stronger dominance rules could be exhibited, for other special cases of the state
automaton. Moreover, experiments on larger transportation networks have to be realized
and further acceleration techniques can be implemented. Other multi-objective problems
in the multimodal context are of interest and will be the subject of further research,
although the complexity of the problem could increase. The case where public transportion
does not have a fixed schedule and probability distributions may be associated to arrival
of passengers and transportation lines at each node is also of practical interest. Finding
an “optimal” strategy for a user (that minimizes expected travel times), has been tackled
via the the hypergraph model and the shortest hyperpath problem, introduced by Nguyen
and Pallotino in [18] for a single public transportation mode. This approach has been
extended to the bi-objective “expected travel time”/“number of transfers” multimodal
viable networks in [14] but no computational experiments where reported. Adapting our
algorithms to the hypergraph model is also a promising research direction.
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Appendix

This section details the numerical results of the computational experimentations. In the
following tables:

• row CPU Time gives the average CPU time in milliseconds over the 100 itineraries;

• row # Dequeued labels represents the average number of labels dequeued of the
priority queue during the search;

• row # Enqueued labels corresponds to the average number of labels enqueued in the
priority queue during the search;

• row # Visited labels provides the average number of visited labels which correspond
to the number of scanned successors.

Tables 3-5 correspond to the time-independent graph without A∗. Tables 6-8 corre-
spond to the experiments in the time-independent graph with A∗. For the FB-MQLS
with A∗, three variants are evaluated : with exact condition and deterministic automa-
ton in the backward search, with heuristic condition and deterministic automaton in the
backward search, and with heuristic condition and non-deterministic automaton in the
backward search. Last, Tables 9-10 give the results obtained by algorithms TLS, MQLS
and FB-MQLS with or without the A∗ principle in the time-dependent graph.

TLS MQLS FBD-MQLS FBND-MQLS
CPU Time 2 603 2 644 2 245 2 273

# Dequeued labels 555 900 555 899 386 391 409 516
# Enqueued labels 629 159 61 0193 430 994 456 657
# Visited labels 1 428 760 1 428 760 1 016 180 1 076 450

Table 3: Comparison of the proposed algorithms without dominance rule in the time-
independent graph
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TLS MQLS FBD-MQLS FBND-MQLS
CPU Time 1 654 1 703 1 600 1 654

# Dequeued labels 376 339 377 119 283 721 306 942
# Enqueued labels 420 374 411 903 313 798 339 536
# Visited labels 960 483 962 706 738 354 798 842

Table 4: Comparison of the proposed algorithms with the basic dominance rule in the
time-independent graph

TLS MQLS FBD-MQLS FBND-MQLS
CPU Time 1 587 1 525 1 396 1 559

# Dequeued labels 357 838 337 687 255 464 278 561
# Enqueued labels 399 459 368 021 281 770 307 381
# Visited labels 912 819 857 944 660 971 721 159

Table 5: Comparison of the proposed algorithms with the state-based dominance rule in
the time-independent graph

TLS MQLS FBH
D
-MQLS FBH

ND
-MQLS FBE

D
-MQLS

CPU Time 2 496 2 560 1 944 2 026 5 320

# Dequeued labels 541 619 541 618 338 490 366 260 738 746

# Enqueued labels 614 485 595 728 379 994 415 358 815 574

# Visited labels 1394 650 1 394 650 894 320 966 229 1 908 960

Table 6: Comparison of the proposed A∗ algorithms without dominance rule in the time-
independent graph

TLS MQLS FBH
D
-MQLS FBH

ND
-MQLS FBE

D
-MQLS

CPU Time 1 659 1 693 1 455 1 492 5 320

# Dequeued labels 369 146 370 041 259 671 276 089 738 746

# Enqueued labels 413 389 405 046 288 897 310 959 815 574

# Visited labels 943 528 946 037 678 385 719 805 1 908 960

Table 7: Comparison of the proposed A∗ algorithms with the basic dominance rule in the
time-independent graph

TLS MQLS FBH
D
-MQLS FBH

ND
-MQLS FBE

D
-MQLS

CPU Time 1 559 1 494 1 337 1 326 3 444

# Dequeued labels 351 998 332 027 235 079 251 082 51 5076

# Enqueued labels 393 947 362 668 260 762 282 515 566 297

# Visited labels 899 175 844 700 610 145 650 729 1 321 060

Table 8: Comparison of the proposed A∗ algorithms with the state-based dominance rule
in the time-independent graph
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TLS MQLS FBD-MQLS FBND-MQLS

CPU Time 1 765 1 696 1 523 1 581

# Dequeued labels 344 125 345 976 248 035 271 532

# Enqueued labels 386 538 378 042 275 912 301 892

# Visited labels 911 676 916 213 672 985 737 073

Table 9: Comparison of the proposed algorithms with the state-based dominance rule in
the time-dependent graph

TLS MQLS FBH
D
-MQLS FBH

D
-MQLS

CPU Time 1 714 1 671 1 366 1 437

# Dequeued labels 339 288 341 616 233 812 237 393

# Enqueued labels 382 254 374 116 261 236 269 807

# Visited labels 900 099 905 769 635 906 643 260

Table 10: Comparison of the proposed A∗ algorithms with the state-based dominance rule
in the time-dependent graph

26


