
HAL Id: hal-00564443
https://hal.science/hal-00564443v2

Submitted on 10 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of mixed integer linear programming
models for the resource-constrained project scheduling
problem with consumption and production of resources

Oumar Koné, Christian Artigues, Pierre Lopez, Marcel Mongeau

To cite this version:
Oumar Koné, Christian Artigues, Pierre Lopez, Marcel Mongeau. Comparison of mixed integer lin-
ear programming models for the resource-constrained project scheduling problem with consumption
and production of resources. Flexible Services and Manufacturing Journal, 2013, 25 (1-2), pp.24-47.
�10.1007/s10696-012-9152-5�. �hal-00564443v2�

https://hal.science/hal-00564443v2
https://hal.archives-ouvertes.fr

Comparison of mixed integer linear programming models for the

resource-constrained project scheduling problem with consumption

and production of resources

Oumar Koné1, Christian Artigues2,3, Pierre Lopez2,3, Marcel Mongeau4

1 Laboratoire de Mathématiques et Informatique, UFR-SFA, Université d’Abobo - Adjamé, BP 801
Abidjan 02, Côte d’Ivoire.

2 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France.
3 Univ de Toulouse, LAAS, F-31400 Toulouse, France.

4 École Nationale de l’Aviation Civile, 7 av. É.-Belin - BP 54005, 31055 Toulouse cedex 4, France.
e-mails: mr.okone@gmail.com, {artigues,lopez}@laas.fr, marcel.mongeau@enac.fr

Abstract

This paper addresses an extension of the resource-constrained project scheduling problem
that takes into account storage resources which may be produced or consumed by activities. To
solve this problem, we propose the generalization of two existing mixed integer linear program-
ming models for the classical resource-constrained project scheduling problem, as well as one
novel formulation based on the concept of event. Computational results are reported to com-
pare these formulations with each other, as well as with a reference method from the literature.
Conclusions are drawn on the merits and drawbacks of each model according to the instance
characteristics.

Keywords: Resource-constrained project scheduling, mixed integer linear programming, con-
sumption and production of resources, event-based on/off formulation.

1 Introduction

The resource-constrained project scheduling problem (RCPSP) is one of the best-known cumula-
tive scheduling problems due to the interest from the operational research community, and to its
numerous industrial applications. In this article we are concerned with the extension of the RCPSP
that, beyond renewable resources considered in its basic version, also allows resources that can be
produced and consumed during the execution of activities. This extension is called the RCPSP
with consumption and production of resources, noted RCPSP/CPR throughout the paper.

There exist in the literature some works relating to the RCPSP/CPR. Among others, we can
cite Neumann and Schwindt [25] who formalize the problem of project scheduling with inventory
constraints and generalized precedence constraints, including both renewable and storage resources.
The authors propose a branch-and-bound approach associated with a beam-search heuristic to solve
the problem. Carlier et al. [12] also include generalized precedence relations and propose a new
list algorithm. Laborie [24] defines the concept of resource temporal network, offering a powerful
modeling and providing a support for other authors such as Bouley et al. [9]. For more detail on
the state of the art in RCPSP/CPR, we refer the reader to [9, 24, 12].

Throughout this paper, we are interested in designing mixed integer linear programming (MILP)
formulations for the problem, which are passed to an MILP off-the-shelf branch-and-bound solver.

1

The solutions obtained with MILP formulations cannot generally compete with the above-cited
methods, all based on specialized scheduling models and algorithms, aiming at exploiting the prob-
lem structure within the solving scheme. However, the interest of proposing (efficient) MILP for-
mulations is double. On the one hand, MILP solvers have made gigantic progress in the last years.
In [22], the authors exhibit a class of specific but particularly hard standard RCPSP instances
for which MILP formulations yield in average better results than the best-known specialized exact
method. On the other hand, MILP solvers are often the only software available to practitioners
facing industrial applications.

There exist roughly three categories of MILP formulations for the standard resource-constrained
project scheduling problem. Note that we avoid considering here the formulations that explicitly
involve an exponential number of variables and/or constraints, which can only be solved through
branch-and-price and/or branch-and-cut techniques. This falls out of the scope of the paper, since
we are only concerned in this paper with direct solving via MILP solvers.

The first category gathers 0 − 1 time-indexed formulations which involve binary variables xit,
where i is the activity index while t is the time index, such that xit = 1 if and only if activity i

starts at time t. We assume integer values for both activity durations and possible start times.
The time index t varies from 0 to T − 1, where T is an upper bound of the schedule length. Time-
indexed formulations were proposed in Pritsker et al. [30] and refined in Christofides et al. [14]. They
generally yield good LP relaxations but, as a counterpart, they involve a pseudo-polynomial number
of variables, since T depends on activity durations. Remark that if the durations are arbitrarily
large, the number of variables grows exponentially. However, we distinguish these models from the
models that involve a number of variables and constraints which is also exponential in the numeric
value of the input.

The second category of formulations are called sequence-based, or disjunctive, MILP formulations
as they involve binary variables yij and continuous start-time variables Si, i and j being activity
indices, such that yij = 1 if and only if Si + pi ≤ Sj where pi is the duration of task i. Originally,
these formulations were proposed for machine or “disjunctive” scheduling [6, 3] where all activities
sharing the same machine must be fully sequenced. Additional variables modeling resource flows
are necessary to extend these formulations to the RCPSP (see [4]). That is why these formulations
are also named flow-based formulations. These formulations are compact, in the sense that they
involve a polynomial number of variables and constraints. On the other hand, they yield poor LP
relaxations. This is notoriously due to the big-M constraints needed to linearize the disjunctive
constraint.

The third category of formulations are named event-based formulations. They involve binary
variables zie indicating whether activity i is in process (or not) immediately after event e. Each
event corresponds to the start or the end time of at least one activity. There is a continuous
variables te to indicate the date of each event e. As there is a polynomial number of events, these
formulations are also compact. Originally proposed for single-machine scheduling in [23], they were
extended to more complex problems including flow-shop [16], batch plant scheduling [28, 13], and
variants of the RCPSP [34, 22]. Although these formulations do not involve big-M constraints, the
experiments carried out in [22] show that they yield poor LP relaxations.

For (mixed-)integer exact solving, it is shown in [22] that, despite this drawback, flow-based
and event-based formulations can be an alternative for RCPSP instances when the time horizon
(i.e. the largest t such that a variable xit must be defined) is so large that the time-indexed formu-
lations become intractable even when the number of activities remains of reasonable magnitude.
This happens if there are activities with a large duration while the greatest common divisor of all
durations is relatively small. We provide from the literature two classes of practical applications

2

where this situation occurs. A first class concerns problems with a high duration range. According
to [29], this is a characteristic of complex manufacturing processes such as semiconductor manu-
facturing. The authors mention that, in this industry, the durations may range from less than 15
minutes up to more than twelve hours. A second class of practical applications gathers problems
where accuracy of the processing time estimation requires a fine time discretization. Pinto and
Grossmann [28] provide a real example from a plastic compounding plant where the processing
times vary from 0.736 to 11.250 days. Consequently, in the area of process scheduling, a significant
amount of research has been carried out to propose alternatives to time-indexed formulations [17],
although Castro and Grossmann [13] state that time-indexed formulations associated with duration
rounding give the best approximations. Furthermore, the process industry frequently involves an
integrated management of production and consumption of utilities [1]. The RCPSP/CPR model is
well suited for such applications.

Specific MILP formulations were proposed for batch plant scheduling, including time-indexed,
sequence-based, and event-based formulations (see among others [28, 17, 13, 34]). Schwindt and
Trautmann [32] and Neumann et al. [26] first proposed the application of a generalized RCPSP/CPR
model to the batch scheduling problem in the process industries, and then compared the perfor-
mance of a time-indexed MILP formulation with the performance of a combinatorial branch-and-
bound algorithm. However, to our knowledge, no experiments have been carried out yet in the
literature to compare the performance of various MILP formulations for the RCPSP/CPR. In this
paper, we propose an extension to consumption and production of resources for each of the three
categories of MILP formulations, and we carry out experimental comparison on instances involv-
ing low and high duration ranges. We also evaluate the impact of the problem characteristics on
the performance of the models. Last, we compare the proposed MILP models to the constraint
programming method proposed by Laborie [24].

We describe in detail in Section 2 the RCPSP/CPR. Section 3 is dedicated to the proposed
MILP formulations. Section 4 reports experimental results on the performance of all the proposed
models. We conclude in Section 5.

2 Problem description

Let V be a set of activities, p a vector of processing times, E a set of precedence relations, R
a set of renewable resources, B a vector of capacity (availability of resources), and b a matrix of
resource usage. Typically, the RCPSP is a combinatorial optimization problem defined by the tuple
(V, p, E,R,B, b), aiming primarily at scheduling activities on resources available in limited quan-
tities. Its general character, due to many potential applications in the industry, yields numerous
possible extensions and variants that we cannot evoke here in detail. However, we will focus on its
basic version and a variant involving specific resources that can be consumed and produced during
the processing of activities.

2.1 Basic version (RCPSP)

Let n be the number of activities to schedule, and m the number of resources. The project under
study consists of n+ 2 activities defined by the set {0, . . . , n+ 1}, where activities 0 and n+ 1 are
dummy activities representing by convention the beginning and the end of the project, respectively.
The set of non-dummy activities, noted A = {1, . . . , n}, must be scheduled on the available renew-
able resources belonging to a set R = {1, . . . ,m}. The processing times are represented by a vector
p of Nn+2, where the ith component, pi, is the processing time of activity i with the special values

3

p0 = pn+1 = 0 for the dummy activities. Each activity i also demands bik amount of each resource
k during its processing. Each resource k is available in quantity Bk. Let us define the decision
variable Si for indicating the starting time of activity i (with S0 = 0), for i = 0, 1, 2, . . . , n + 1.
Note that Sn+1 is the date of the project completion time, also called makespan.

The precedence relations (precedence constraints) are given by a set E of index pairs such that
(i, j) ∈ E means that the execution of activity i must precede that of activity j. This can be
formulated as follows:

Sj − Si ≥ pi ∀(i, j) ∈ E. (1)

Resource constraints dictate that at any time the sum of demands of the activities being pro-
cessed does not exceed the resource availability:

∑

i∈At

bik ≤ Bk ∀k ∈ R, ∀t ∈ H, (2)

where: At = {i ∈ A|Si ≤ t < Si+pi} represents all non-dummy activities in process at time t taking
into account the non-preemption of the activities; H = {0, 1, . . . , T} is the scheduling horizon, and
T is its length (which may be regarded as an upper bound for the makespan).

A schedule S (with ith component Si), is said feasible if it is compatible with both the prece-
dence constraints and the resource constraints. The objective of the RCPSP consists in finding a
non-preemptive (with non interrupted activities) schedule S of minimal makespan subject to prece-
dence constraints and resource constraints. According to the computational complexity theory, the
RCPSP is NP-hard in the strong sense [8, 33].

2.2 RCPSP with consumption and production of resources (RCPSP/CPR)

The particularity of the RCPSP with consumption and production of resources is that, in addition
to using the renewable resources described above, it also involves specific storage resources. These
resources, described sometimes as cumulative by some authors [27], can be consumed (or not) at
the start time of an activity in a certain amount and/or then produced in another amount at the
completion time of this activity. More specifically, an activity i consumes c−iρ units of resource ρ

at the beginning of its processing, and produces c+iρ units at the end of its processing, where both

c−iρ and c+iρ are (given) input data of the problem. Furthermore, the total amount of each resource
must remain non-negative throughout the scheduling horizon. Note that, in contrast to the earlier
problem definitions by [25] and [24], no capacity restriction is imposed for the storage resources.

Let P be the set of such resources, and Cρ represent the level of initial stock of resource ρ ∈ P .
We can distinguish the following cases:

1. If c−iρ = c+iρ, then ρ is simply a renewable resource, as in the basic RCPSP.

2. If c−iρ 6= c+iρ:

(a) if c−iρ = 0 and c+iρ > 0 (case of resource production). This case is usually encountered
in material transformation industries and sometimes in power production. In general,
the resource production is preceded by the consumption, in a given amount, of another
resource.

(b) if c−iρ < c+iρ, then we first consume a quantity of a given product before producing more.
This constraint appears frequently in the process industry where an intermediate product

4

or a utility is produced in larger quantity than it is consumed by an activity. Of course,
there are other resources required by the activity that are consumed and transformed
into the considered utility.

(c) if c−iρ > c+iρ, then ρ is a non-renewable resource such as a project budget, raw materials,
etc.

3 Extended formulations & proposal

In this section, we introduce first an extension of two famous (time-indexed) MILP formulations of
the RCPSP to the RCPSP/CPR case. Second, we propose an extension of a flow-based continuous-
time formulation. Finally, we introduce an MILP formulation based on the concept of event [28,
22, 34].

Since some MILP formulations are highly sensitive to the cardinality of the scheduling horizon,
it is of great importance to develop efficient mechanisms to moderate its impact on the general
performance of such formulations. For each activity i, an earliest start time ESi (the date be-
fore which activity i will certainly not start) and a latest start time LSi (the date before which
it must start) can be calculated (in polynomial time) by preprocessing using standard resource
constraint propagation techniques, for example edge-finding (more detail in [15, 19]). Hence, the
time interval [ESi, LSi] represents the time window during which activity i can start. We only
use the constraint propagation mechanism described in [22] involving only renewable resource- and
temporal-constraint propagation techniques. Furthermore, as we do not have any procedure for
finding an initial feasible solution, we use the sum of activity durations as initial upper bound. As
a consequence, we obtain wide time windows.

3.1 Time-indexed formulations

Discrete-time formulations are characterized by the use of variables indexed by discrete times.
Among these formulations, we can cite the basic discrete-time formulation (DT) introduced by
Pritsker in 1969 [30], and the disaggregated discrete-time formulation (DDT) proposed by Christofi-
des in 1987 [14]. These two formulations are very similar. The major difference between them lies
in the formulation of the precedence constraints. The DT formulation involves only one type of
binary decision variable, xit, indexed by both activities and time. Variable xit = 1 if activity i

starts at time t; xit = 0 otherwise. Here is the DT formulation of the RCPSP:

min

LSn+1∑

t=ESn+1

txn+1,t (3)

LSj∑

t=ESj

txjt ≥

LSi∑

t=ESi

txit + pi ∀(i, j) ∈ E (4)

n∑

i=1

bik

min(LSi,t)∑

τ=max(ESi,t−pi+1)

xiτ ≤ Bk ∀t ∈ H, ∀k ∈ R (5)

LSi∑

t=ESi

xit = 1 ∀i ∈ A ∪ {n+ 1} (6)

xit ∈ {0, 1} ∀i ∈ A ∪ {n+ 1}, ∀t ∈ {ESi, . . . , LSi}. (7)

5

The values of the above-mentioned starting-time variables Si’s can be readily recovered through
the relation: Si =

∑
t∈H

txit, i ∈ A ∪ {0, n + 1}. Constraints (4) and (5) simply express the

precedence constraints (1) and the resource constraints (2), respectively. Constraints (6) and (7)
impose non-preemption of the project activities (Values x00 = 1 and xit = 0, ∀i ∈ A ∪ {n+ 1}, t ∈

H \ {ESi, . . . , LSi} are preset). This formulation involves
n+1∑
i=1

(LSi − ESi) binary variables, and

|E|+ (T + 1)m+ n+ 1 constraints.

To take into account resource consumption/production in this model, we introduce continuous
decision variable stp indicating the level of each resource p ∈ P at each time t. The additional
constraints required to model the RCPSP/CPR are:

s0ρ = Cρ −

n∑

i=1

xi0c
−
iρ ∀ρ ∈ P (8)

stρ = st−1,ρ +

n∑

i=1

xi,t−pic
+
iρ −

n∑

i=1

xitc
−
iρ ∀(t, ρ) ∈ H × P, t > 0 (9)

stρ ≥ 0 ∀(t, ρ) ∈ H × P. (10)

Constraints (8) state that the level of resource ρ at time 0 is equal to its initial value Cρ minus
the sum of consumption of activities starting at time 0. Constraints (9) require at each time t and
for each resource ρ ∈ P that the level of stock (stρ) is equal to the level of ρ at the previous time

(t− 1), plus the sum of output (
n∑

i=1
xi,t−pic

+
iρ) of resource ρ for activities ending their processing at

time t, and decreased by the sum of consumption (
n∑

i=1
xitc

−
iρ) of activities starting their processing

at the same time t. Constraints (10) enforce non negativity for each resource level.

Note that the intermediate decision variables stρ’s can therefore be explicitly substituted out
by their value as a function of the xit’s.

As previously announced, the DDT model proposed by Christofides [14] is very similar to DT,
but differs in the formulation of the precedence constraints. Typically, while the DT model defines
one constraint for each pair of activities and for each precedence relation, the DDT model involves
one constraint for each pair of activities, for each precedence relation, and for every time of the
scheduling horizon:

LSi∑

τ=t

xiτ +

min(LSj ,t+pi−1)∑

τ=ESj

xjτ ≤ 1, ∀(i, j) ∈ E, ∀t ∈ {ESi, . . . , LSi}. (11)

All the other constraints remain identical. Thus, as for DT, the extension of DDT to the
RCPSP/CPR that we propose simply requires adding stp variables and constraints (8) to (10).

These two models are known to involve a pseudo-polynomial number of variables and con-
straints. As a consequence, they yield disastrous performance when solving problems dealing with
a very broad time horizon. However, they are known (mainly DDT) to provide fairly good results
and interesting linear-relaxation bounds on the classical instances of the RCPSP (see [5]).

3.2 Flow-based continuous-time formulation

Inspired by the work of Balas et al. [6], and on the basis of the formulation of Alvarez-Valdes
and Tamarit [2], Artigues et al. [4] proposed a flow-based continuous-time (FCT) model for the

6

RCPSP that uses flow variables to manage the resources. The idea is as follows. All resources are
available and stored at the dummy activity 0. Each activity uses resources at the beginning of its
execution, and once completed, it transfers these resources to the activities that follow according
to the precedence constraints. The last activities to be executed finally forwards the resources to
the dummy activity n + 1. In the FCT model, continuous flow variables fijk are introduced to
denote the quantity of resource k that is transferred from activity i (at the end of its processing)
to activity j (at the start of its processing). Sequential binary variables xij are required to indicate
whether activity i is processed before activity j. Finally, a continuous start-time variable Si is also
needed for each activity i.

Since activity 0 acts as a resource source, and activity n+ 1 acts as a resource sink, we define
for each resource k: b̃ik := bik for all i ∈ A and b̃0k := b̃n+1,k := Bk.

We first recall below the flow-based formulation for the standard RCPSP, and then we extend
it to the RCPSP/CPR.

minSn+1 (12)

xij + xji ≤ 1, ∀(i, j) ∈ (A ∪ {0, n+ 1})2, i < j (13)

xik ≥ xij + xjk − 1 ∀(i, j, k) ∈ (A ∪ {0, n+ 1})3 (14)

Sj − Si ≥ pixij −Mij(1− xij) ∀(i, j) ∈ (A ∪ {0, n+ 1})2 (15)

fijk ≤ min (b̃ik, b̃jk)xij ∀(i, j) ∈ (A ∪ {0})× (A ∪ {n+ 1}) , ∀k ∈ R (16)
∑

j∈A∪{0,n+1}

fijk = b̃ik ∀i ∈ A ∪ {0, n+ 1}, ∀k ∈ R (17)

∑

i∈A∪{0,n+1}

fijk = b̃jk ∀j ∈ A ∪ {0, n+ 1}, ∀k ∈ R (18)

fn+1,0,k = Bk ∀k ∈ R (19)

fijk ≥ 0 ∀(i, j) ∈ (A ∪ {0, n+ 1})2, ∀k ∈ R (20)

S0 = 0 (21)

ESi ≤ Si ≤ LSi ∀i ∈ A ∪ {n+ 1} (22)

xij ∈ {0, 1} ∀(i, j) ∈ (A ∪ {0, n+ 1})2, (23)

where Mij is some large-enough constant, which can be set to ESi −LSj , and TE is the transitive
closure of E. Constraints (13) and (14) are redundant constraints (valid inequalities expressing
logical conditions on sequencing variables). Constraints (15) link the start-time variables and the
sequential binary variables. Constraints (16) link flow variables and xij variables. Constraints (17-
19) are resource flow-conservation constraints. Constraints (22) are also redundant; they restrict
the start time of any activity i ∈ A ∪ {0, n+ 1} to lie between its earliest start time (ESi) and its
latest start time (LSi). Furthermore, in a preprocessing we set xij = 1 and xji = 0 for every pair
(i, j) of activities in TE, the transitive closure of E.

Applegate and Cook [3] show that this formulation, ranked among the compact models, produces
bad linear-relaxation bounds due to the use of big-M constants in constraints (15). On the contrary,
this formulation may be preferable to time-indexed formulations to solve problems involving a
large time horizon. However, the use of sequential binary variables could be the cause of too
many symmetries, thereby affecting the performance of the model for solving strongly cumulative
problems (in the sense that many tasks can be processed in parallel).

7

Here is how we adapt this model to solve the RCPSP with consumption and production of
resources. We define a new continuous variable Dijp representing the amount of resource p ∈ P

that activity i (at the end of its processing) sends to activity j (at the beginning of its processing).
As expressed by constraints (24) below, this quantity cannot exceed the minimum between the
quantity produced by activity i and the quantity consumed by activity j, if activity i precedes
activity j. Thus, in accordance with the principle of this model, the storage resources are also
managed through flows, as follows:

Dijρ ≤ min (c+iρ, c
−
jρ)xij ∀(i, j) ∈ A2, ρ ∈ P (24)

∑

i∈A∪{0}

Dijρ = c−jρ ∀j ∈ A, ρ ∈ P (25)

∑

j∈A∪{n+1}

Dijρ = c+iρ ∀i ∈ A ∪ {0}, ρ ∈ P. (26)

Constraints (24) link our new flow variables Dijρ’s with the sequencing variables xij ’s by enforcing
the resource ρ flow from i to j to be zero as soon as xij = 0 (i does not precede j). If xij = 1 (i
precedes j), the flow of resource ρ from activity i to activity j cannot be larger than the minimum
between the amount produced by i and the amount consumed by j.

Constraints (25) require that the total amount of resource ρ ∈ P received by activity j from
previous activities, is equal to the amount this activity consumes during its processing. Note that
we do not impose any constraint on the amount received by activity n + 1, as unused produced
(or initially available) resource amount can be stocked. Conversely, constraints (26) state that the
quantity of resources sent by activity i to other activities, is equal to the amount it produces.

We set the resource production of activity 0 as: c+0ρ = Cρ for all ρ ∈ P , to model the resource
initial levels.

3.3 On/off event-based formulation (OOE)

In contrast with time-indexed formulations, we now propose a formulation for the RCPSP/CPR
that uses variables indexed by events. Inspired by previous papers on batch process problems [28]
or on flow-shop problems [16], an extension of event-based formulation was proposed in [34, 22] for
the RCPSP. We recall below some characteristics of the two existing event-based formulations for
the standard RCPSP. Then, we shall introduce its extension to the RCPSP/CPR.

Zapata et al. [34] propose such an event-based formulation for a multimode RCPSP. Their for-
mulation considers that an event occurs when an activity starts or ends. Transposed to the RCPSP,
this model involves three types of binary variables per activity and per event. The proposition of
[22] uses only one type of binary variable per activity and per event: a decision variable zie such
that zie = 1 if and only if activity i starts at event e or is still in process at event e. This variable
zie is similar to the variable introduced by Bowman [10] for the discrete-time based problem. A
continuous variable te represents the date of event e, and one single extra continuous variable,
Cmax, is used for the makespan. This model is called the on/off event-based formulation (noted
OOE). When compared with the formulation of [34], the number of binary variables is divided by
3, which drastically reduces the search space for integer solving. The OOE formulation involves
fewer variables when compared with the models indexed by time. Furthermore, it does not require
as many big-M constants as the flow-based formulation. Finally, the OOE model involves a number
of events that is lower than or equal to the number of activities: |E| ≤ n, where E denotes the set
of events.

8

To illustrate this, consider Figure 1 which displays the schedule of n = 5 activities (1, 2, 3, 4,
and 5) with a single resource. Here, a priori no more than n = 5 events are needed with the OOE
model. In fact, it requires only three events (events 0, 1, and 2) for the specific feasible solution
displayed in Figure 1. Since no activity starts at the end of the processing of activities 2, 3 and
5, it is not necessary to associate events to these times. Note that this minimal number of events
cannot be known a priori unless we are able to prove that activities 1, 2 and 4 can start at the
same time in the optimal solution. The number of events could be restricted a priori as a heuristic
to accelerate the search but when no information is available, the worst-case situation still only
involves n events.

For the illustrated solution, the event variables associated to activity 1 have values z10 = z11 = 1
and z12 = 0. Remark furthermore that in the CPR context, any resource produced at the end of
activity 2 can be considered available only at the subsequent events (from event 1 on).

1 Events0 2

Figure 1: On/off event-based formulation: a feasible solution and its associated events

Let us now introduce an extension of the OOE model for the RCPSP/CPR (we shall continue to
call OOE this extension). First, we model the renewable resource constraints in a straightforward
manner. The management of storage resources, still ensured by the material-balance constraints,
requires the introduction of the following continuous variables:

• seρ: stock level of resource ρ ∈ P at event e;

• uieρ: the amount of resources ρ ∈ P consumed by activity i at event e;

• vieρ: the quantity of resources ρ ∈ P produced by activity i at event e.

Here is the OOE formulation we are proposing:

9

minCmax (27)
∑

e∈E

zie ≥ 1 ∀i ∈ A (28)

Cmax ≥ te + (zie − zi,e−1)pi ∀e ∈ E , ∀i ∈ A (29)

t0 = 0 (30)

te+1 ≥ te ∀e ∈ E : e 6= n− 1 (31)

tf ≥ te + ((zie − zi,e−1)− (zif − zi,f−1)− 1)pi ∀(e, f, i) ∈ E2 ×A, f > e (32)

e−1∑

e′=0

zie′ ≤ e(1− (zie − zi,e−1)) ∀i ∈ A, ∀e ∈ E : e 6= 0 (33)

n−1∑

e′=e

zie′ ≤ (n− e)(1 + (zie − zi,e−1)) ∀i ∈ A, ∀e ∈ E : e 6= 0 (34)

e∑

e′=0

zje′ ≤ (e+ 1)(1− zie) ∀e ∈ E , ∀(i, j) ∈ E (35)

n−1∑

i=0

bikzie ≤ Bk ∀e ∈ E , ∀k ∈ R (36)

vieρ ≥ 0 ∀(e, i, ρ) ∈ E ×A× P (37)

vieρ ≥ c+iρ(zi,e−1 − zie) ∀(e, i, ρ) ∈ E ×A× P (38)

vieρ ≤ c+iρzi,e−1 ∀(e, i, ρ) ∈ E ×A× P (39)

vieρ ≤ c+iρ(1− zie) ∀(e, i, ρ) ∈ E ×A× P (40)

uieρ ≥ 0 ∀(e, i, ρ) ∈ E ×A× P (41)

uieρ ≥ c−iρ(zie − zi,e−1) ∀(e, i, ρ) ∈ E ×A× P (42)

uieρ ≤ c−iρzie ∀(e, i, ρ) ∈ E ×A× P (43)

uieρ ≤ c−iρ(1− zi,e−1) ∀(e, i, ρ) ∈ E ×A× P (44)

seρ = se−1,ρ +
∑

i∈A

vieρ −
∑

i∈A

uieρ ∀(e, ρ) ∈ E × P, e > 0 (45)

s0ρ = Cρ −
∑

i∈A

ui0ρ ∀ρ ∈ P (46)

seρ ≥ 0 ∀(e, ρ) ∈ E × P (47)

zie ∈ {0, 1} ∀i ∈ A, ∀e ∈ E .

First, remark that zie − zi,e−1 is equal to 1 if and only if activity i starts at event e, and it is −1 if
and only if i ends at e. Constraints (28) are used to ensure that each activity is processed at least
once during the project. Constraints (29) link the makespan with the event dates. Constraints
(30) and (31) impose the event sequencing. The duration constraints (32) are used to link the
binary optimization variables zie’s to the continuous optimization variables te’s. They also ensure
that, if activity i starts at event e and ends at event f , then the time difference between events
f and e is at least the processing time of activity i (tf ≥ te + pi). Constraints (33) and (34) are

10

called contiguity constraints. They ensure non-preemption since they force the events after which
an activity is being processed to be adjacent. We refer to [22] for a detailed explanation of the
contiguity constraints. Constraints (35) describe precedence constraints, modeling the implication
(zie = 1) =⇒ (

∑e
e′=0 zje = 0) for each event e and for each (i, j) ∈ E. Constraints (36) are the

renewable resource constraints limiting the total demand of activities in process at each event.

Constraints (37) to (40) amount to require, for any resource ρ ∈ P , that the value of variable
vieρ must be equal to c+iρ, if activity i finishes its process at event e, and is zero otherwise. Similarly,
the resource consumption variable uieρ is determined by constraints (41) to (44). Finally, balance
constraints (45) determine the stock level of p ∈ P at event e, taking into account productions
and consumptions at event e. Constraints (46) set the level of stock at event 0 to the initial level
minus the consumed amount for each resource ρ ∈ P . Constraints (47) ensure that the level of each
resource remains non negative.

We now propose OOE Prec, a preprocessed variant of OOE, directly extended from the pre-
processed variant introduced in [22] for the standard RCPSP. Roughly speaking, it is obtained from
OOE by removing, from the set of possible events for an activity, all the first events during which
the activity cannot or does not need to be in process because of its predecessors. Symmetrically, we
remove the last events during which the activity cannot, or does not need to, be in process because
of its successors.

More precisely, let A(i) = {j ∈ A|(j, i) ∈ TE} be the set of predecessors of activity i, and
D(i) = {j ∈ A|(i, j) ∈ TE} be the set of its successors.

Proposition 1 (extended from [22]) There is an optimal solution of OOE such that, for each

activity i,
|A(i)|∑
e=0

zie = 0 and
n∑

e=n−|D(i)|+1

zie = 0.

Proof : Considering n events, there is always an optimal solution for which activities begin at
distinct events. In other words, for two distinct activities i and j, and for any pair of events e and
f , we have:

zie − zi,e−1 = 1 ∧ zjf − zj,f−1 = 1 =⇒ e 6= f.

It is important to note that this does not preclude te = tf . Moreover, if j is a predecessor of i in
E, then the event f assigned to j will occur strictly prior to the event e assigned to i: te > tf .
Proposition 1 is a consequence of these two observations. Thus, in our OOE model, we can set the
following variables to 0:

zie = 0, i ∈ A, e ∈ {0, . . . , |A(i)|} ∪ {n− |D(i)|+ 1, . . . , n}. (48)

✷

Thus, equations (48) can be used to eliminate decision variables before setting up the OOE
formulation. We call this resulting formulation OOE Prec.

4 Computational results

In this section, we compare the results obtained by the different formulations on a set of randomly
generated problem instances.

The most popular instances used to test classical RCPSP propositions are KSD [20], BL [7],
and PACK [11]. Among these instances, the most used are the KSD instances, available on the

11

PSPLIB web site [21]. Among them, we only focus on the 480 KSD30 instances (n = 30 activities).
However, the KSD30 instances are generally not considered sufficiently cumulative. More precisely,
in the KSD instance set, the hard-to-solve instances are all highly disjunctive, in the sense that
there are many pairs of activities that cannot be processed in parallel. The highly cumulative
instances of this set (where many activities can be processed in parallel) are known to be easy to
solve [7]. The BL instances constitute a set of 39 instances involving between 19 to 25 activities,
for 3 resources with demands generated randomly ranging from 0 to 60% of the total availability.
The number of precedence relations varies from 15 to 45 (|E| ∈ [15, 45]). These instances are more
“cumulative” but still easy to solve due to their size. Last, the PACK instances constitute a set of
55 instances with a small number of precedence relations, from 17 to 35 activities, and 3 resources.
These are commonly considered as difficult-to-solve highly cumulative instances [22].

These three classes of instances contain short durations, very moderate scheduling horizons and
homogeneous processing times. Thus, we shall also consider here the modified instance sets PACK d
and KSD15 d (see [22]) obtained from the PACK and KSD30 instances by increasing the range of
processing times, since large scheduling horizons can be encountered in practical applications, as
mentioned in Section 1. The authors of [22] obtained these modified instance sets by proceeding as
follows.

To generate an instance B from an existing instance A, consider the following parameters a, b,
x and y, such that y ≤ x and:

1. One selects the first x non-dummy activities of instance A (leaving aside other activities and
the precedence constraints that are adjacent).

2. The selected activities without predecessors are connected to the dummy activity 0, and
similarly, activities without successors are also connected to activity x+ 1.

3. One randomly selects y of the x non-dummy activities, and their duration is multiplied by
a coefficient a + b, where b is a randomly generated number between 0 and 1, and a is a
multiplying factor duration.

For KSD15 d, the values for these parameters are: x = 15; y = 7; a = 25, and, for PACK d they
are x = n; y = 10; a = 50. The resulting durations are rounded to the nearest integer.

The resulting instance sets KSD15 d and PACK d are publicly available (see [31]).

Since benchmark instances for the RCPSP/CPR are not available, we used the RCPSP instances
(KSD30, PACK, BL, and KSD15 d, PACK d), to which we made some further modifications to
obtain the corresponding instance sets KSD30-CPR, PACK-CPR, BL-CPR, and KSD15 d-CPR,
PACK d-CPR. Typically, for each of these instances, the changes consist mainly in generating three
new storage resources for each activity. Each of these new resources is characterized by the quantity
consumed, c−iρ (respectively the quantity produced, c+iρ) at the beginning (respectively end) of the
processing of each activity, both randomly generated between 0 and 10. Each of these resources
is also associated with an initial stock (original capacity) Cρ. Given randomly-generated resource
productions and consumptions, the tightness of the storage resource constraints can be further
controlled by the chosen values of the initial stock. In [25], the tightness of the storage resource
constraints is controlled by the resource strength indicator (that we denote RSCPR for storage
resources) continuously varying from 0 to 1. The initial stock is given as a function of RSCPR by
the following formula:

−Cρ = RSCPR ×min
t

c̃ρ(ES, t) + (1− RSCPR)×
∑

i∈A

(c+iρ − c−iρ),

12

where c̃ρ(ES, t) denotes the stock level at time t when the activities are processed according to
the earliest start schedule ES and no initial stock is available. It can be seen from this expression

that when RSCPR = 0, the initial stock has the minimum value required to accommodate the
difference between the total consumption and the total production of a resource. Oppositely,

when RSCPR = 1, the expression ensures that the earliest start schedule is feasible with respect
to storage constraints. Moreover, the renewable resource constraints are kept in all instances so
that each instance involves the two considered resource types. In our setting, we used values of
RSCPR described in Table 1 through its minimum value, its maximum value, the average value
and the coefficient of variation (the ratio of the standard deviation to the mean, noted CV). The
RCPSP/CPR instance sets that we just described have a CPR suffix in Table 1 and are available
online [31]. The RSCPR values have been selected such that the average value is consistent with
the values selected in the instances proposed in [25].

Table 1: Distribution of the storage resource strength values of the generated instances
RSCPR KSD30-CPR BL-CPR PACK-CPR KSD15 d-CPR PACK d-CPR

min 0.7 0.73 0.73 0.7 0.73
max 1 1 1 1 0.97
av. 0.85 0.85 0.85 0.85 0.84
CV 7.8% 8.25% 7.67% 7.36% 7.6%

Tests were performed with IBM Cplex and Concert (version 12.2) on a dual core Intel x86-64
Xeon processor 5110 (1.60 GHz) with 1.96 GB RAM under GNU/Linux Centos release 5.8.

Furthermore, we also tested the constraint programming (CP) method proposed by Laborie
[24]. This method initially solves satisfaction problems. Thus, we embedded it in a dichotomic
search using the same initial lower and upper bounds as those of the MILP formulations. By
reference to [24], we tested the method with criticality function 3, order criticality function B, and
arc-consistency for temporal constraint enforcement. As before, 500 seconds are allocated to the
method.

For each instance, the CP method was able either to find a feasible solution or to prove infea-
sibility. Hence, we separate the presentation of the results between the feasible and the infeasible
instances. Table 2 displays the results we obtained on the feasible instances. Below each instance
set name, we display the number of feasible instances.

In Table 2, %Integer is the percentage of instances for which a (non-necessarily optimal) integer
solution was found within 500 seconds of CPU time. The percentage of instances for which an
optimal solution was found is noted %Optimal. Column %Dev Best provides the average deviation
of the obtained makespan (in the case where an integer solution is found) from the best solution
among all formulations, in percentage of the best solution. Column %Gap provides the difference
between the best upper bound and best lower bound found by the considered model (when an
integer solution is found) in percentage of the lower bound. Column #Nodes gives the average
number of nodes in the branch-and-bound tree for the case where an integer solution is found.
Last, Time is the average time (in seconds) when a solution is found, which cannot exceed the time
limit fixed to 500 seconds per instance. In the case where ILP solving fails due to memory overflow,
“mem” is displayed in the column.

We first compare the performance of the different MILP formulations independently of the
CP method. We observe that, in terms of number of (not necessarily optimal) integer solutions
found, the OOE model or its variant OOE Prec outperform the other formulations on instance sets
KSD30 d-CPR and PACK d-CPR. For the KSD15 d-CPR set, OOE, OOE Prec and FCT always

13

Table 2: Results of MILP formulations and CP method on feasible RCPSP/CPR instances
Inst. set Model %Integer %Optimal %Dev Best %Gap #Nodes Time (s)

KSD30-CPR DDT 64 49 2.3 4.2 1086 178.7
(456/480) DT 70 41 25.8 33.3 5701 254.8

FCT 76 39 6.5 14.0 2554 314.6
OOE 69 0 33.6 110 544 500.0

OOE Prec 92 1 18.5 64.4 3103 496.8
CP 100 68 6.9 28.3 – 183.2

BL-CPR DDT 100 95 0 0.003 893 60.9
(38/39) DT 100 95 0.001 0.004 4403 84.2

FCT 100 3 0.12 0.48 8100 489.7
OOE 100 0 0.17 1.89 8097 500.0

OOE Prec 100 0 0.14 1.47 12479 500.0
CP 100 39 0.08 0.3 – 348

PACK-CPR DDT 93 64 3.2 11.0 2276 258.0
(55/55) DT 100 24 5.0 37.0 16178 405.6

FCT 13 0 1.6 59.3 12554 500.0
OOE 89 0 11.6 2259.5 7750 500.0

OOE Prec 91 0 13.2 2699.2 5405 500.0
CP 100 0 55.8 385.4 – 500.0

KSD15 d-CPR DDT 22 15 22.9 26.4 238 363.1
(454/480) DT 28 22 29.5 32.6 350 303.7

FCT 100 91 0.1 3.5 2911 72.8
OOE 99.8 33 1.3 31.5 8891 395.8

OOE Prec 99.8 41 0.5 20.4 13256 345.2
CP 100 94 0.4 1.7 – 43.2

PACK d-CPR DDT 0 0 – – – mem
(54/55) DT 0 0 – – – mem

FCT 20 7.4 7.7 35.1 3338 325.3
OOE 81 5.6 9.1 1758.2 1825 484.4

OOE Prec 80 5.6 6.1 1353.5 2771 480.3
CP 100 3.7 22.8 234.5 – 486.0

find an integer solution and outperform the DDT and DT formulations. On the BL CPR sets, all
formulations find integer solutions. On the PACK-CPR set, DT and DDT obtain the largest number
of integer solutions but are closely followed by the OOE and OOE Prec formulations. On the other
side, the FCT formulation fails in obtaining integer solutions in a majority of cases. Moreover,
thanks to the preprocessing, OOE Prec obtains (almost) always better results than OOE. Overall,
these results allow us to conclude that OOE Prec is, on average, the best among all methods at
finding integer solutions. On instances with a high duration range, DDT and DT are obviously
disqualified but FCT is only competitive with OOE Prec on the KSD15 d-CPR instance set and
collapses on the highly cumulative PACK-CPR and PACK d-CPR instances.

In terms of optimal solutions found, OOE models are outperformed by DT and DDT for the
instances with small duration ranges. This is due to the weak linear relaxations induced by the
OOE models [22]. However, OOE models, as expected, are much better than DT and DDT for
the instance sets KSD15 d-CPR and PACK d-CPR involving high duration ranges. In fact, the

14

comparison between the time-indexed and the event-based formulations yields expected results
(also in line with the ones obtained for the standard RCPSP [22]). Indeed, on the one hand, the
linear relaxation of the time-indexed formulations is far better than the other ones. On the other
hand, the number of variables of the time-indexed formulations explodes for instances with a high
duration range. Consequently, as for the standard RCPSP, it is more meaningful to compare the
two compact formulations OOE(Prec) and FCT.

Again, the conclusions drawn for the standard RCPSP in [22] apply in the case of consumption
and production of resources. It appears that OOE(Prec) and FCT are complementary, consider-
ing the type of instances they are able to solve. The flow-based formulation FCT is superior to
OOE(Prec) for the KSD15 d-CPR instances, while the reverse applies to the PACK and PACK d-
CPR instances. For the KSD30-CPR instances, the two formulations cannot be compared, as
OOE Prec is better in terms of number of integer solutions found, while FCT is much better in
terms of number of optimal solutions found. Nevertheless, we may conclude with the following
suggestions for practitioners (similar to the ones obtained for the standard RCPSP [22]):

• For instances involving a small scheduling horizon, use time-indexed formulations.

• For instances with a high scheduling horizon and a high level of disjunctions, use the flow-
based formulation.

• For instances with a high scheduling horizon and a high level of parallelism (highly cumulative
instances), use the event-based formulation.

The CP method is clearly better than the MILP formulations on the KSD30-CPR and KSD15 d-
CPR (although the FCT formulation obtains close results). CP is outperformed by the time-indexed
formulations DDT and DT on the BL-CPR and the PACK-CPR instances. On the PACK d-CPR
instances, CP is the only method to find always a feasible solution but it is slightly worse than the
OOE(Prec) and FCT formulations for the number of optimum found. In terms of quality of the
solution found on this set, the OOE formulations find in average better solutions than CP when
both methods find a solution. Although the parameters of the CP method could be tuned to obtain
better results, this underlines the competitiveness of the proposed ILP formulations.

Table 3 presents the results of the compared method on the infeasible instances. We first remark
that for both sets BL-CPR and PACK d-CPR, only 1 instance is infeasible and that, for PACK-
CPR, all instances are feasible. For KSD30-CPR (KSD15 d-CPR) instances, 24 (26) instances are
infeasible, respectively. For the same storage resource strength distribution, infeasibility appears
almost only for the highly disjunctive instances. This could indicate that a higher level of par-
allelism allows a better combination of storage resource consumptions and productions. Because
of the small number of infeasible instances, it is difficult to draw conclusions on the BL-CPR and
PACK d-CPR. However, we remark that the OOE formulations are the only ones to prove infeasi-
bility of the PACK d-CPR instance in a very short time. On the KSD30-CPR and KSD15 d-CPR,
infeasibility is always proved at the root node for all formulations. It follows that the solving times
are much smaller than for finding a feasible solution. This questions the hardness of the feasi-
bility problem for the RCPSP/CPR (when infinite maximal stock is considered). On these sets,
FCT is always the best formulation to prove infeasibility. As for the feasibility problem, discrete-
time formulations are slightly better than event-based formulation for the KSD30-CPR set but the
OOE Prec formulation proves infeasibility faster. On KSD15 d-CPR, the OOE Prec formulation
is better than the time-indexed formulations with respect to both number of proved infeasibilities
and CPU time. OOE Prec is also faster than FCT. CP shows very good performance for proving
infeasibility, which is consistent with the principle of constraint propagation techniques used within

15

Table 3: Results of MILP formulations and CP method on infeasible RCPSP/CPR instances
Inst. set Model %Proved inf #Nodes Time (s)

KSD30-CPR DDT 63 0 61.2
(24/480) DT 63 0 20.2

FCT 96 0 41.8
OOE 50 0 3.9

OOE Prec 58 0 0.5
CP 100 – 0.3

BL-CPR DDT 100 0 0.1
(1/39) DT 100 0 0.02

FCT 100 39 48.2
OOE 100 0 0.05

OOE Prec 100 0 0.05
CP 100 – 0.12

KSD15 d-CPR DDT 8 0 20.1
(26/480) DT 54 0 56.9

FCT 100 0 4.9
OOE 58 0 14.9

OOE Prec 65 0 0.05
CP 100 – 0.2

PACK d-CPR DDT 0 – –
(1/55) DT 0 – –

FCT 0 – –
OOE 100 0 0.02

OOE Prec 100 0 0.03
CP 100 – 24.3

the CP approach.

We now provide more insight on the performance of FCT and OOE Prec, the best two formu-
lations for the high duration range instances with production and consumption of resources. We
select the smallest set (KSD15 d-CPR) to present the performance of these formulations in function
of the instance characteristics.

We first evaluate the impact of the standard RCPSP hardness indicators. As explained in [20],
the KSD instances were generated according to a full factorial design involving three indicators.
Roughly, network complexity (NC) measures the density of the precedence constraints. The indi-
cator NC has three different values indicating an increasing density: 1.5, 1.8 and 2.1. The resource
factor (RF) gives the average number of required renewable resources. As there are four resources
in the KSD set, RF has four possible values (0.25, 0.5, 0.75 and 1). Last, the resource strength
indicator measures resource scarceness. We distinguish the renewable resource strength RS which
takes four values (0.2, 0.5, 0.7 and 1) from the already-mentioned storage resource strength indi-
cator RSCPR whose values were generated according to the distribution detailed in Table 1. The
smaller the value, the smaller the average resource availability is when compared to activity require-
ments. Tables 4–7 present for each formulation and parameter value: the percentage of optimal
solutions found (%Optimal), the average number of branch-and-bound nodes (#Nodes) and the
average CPU time (Time) needed for finding an optimal solution (and proving its optimality),

16

the average gap from the best solution (%Dev Best) when an integer solution is found, and the
percentage of instances that are proved to be infeasible (%Inf).

Table 4: Impact of network complexity (KSD15 d-CPR)
NC Model %Optimal #Nodes Time (s) %Dev Best %Inf

1.5 FCT 90 1809 33.5 0 23
OOE Prec 49 3886 153.1 0.5 15

1.8 FCT 91 1593 27.9 0.1 35
OOE Prec 42 3498 214.1 0.5 19

2.1 FCT 93 2201 33.2 0.2 42
OOE Prec 32 5242 96.3 0.4 31

Table 5: Impact of resource factor (KSD15 d-CPR)
RF Model %Optimal #Nodes Time (s) %Dev Best %Inf

0.25 FCT 100 734 11.0 0 42
OOE Prec 45 4570 117.5 0.5 27

0.5 FCT 99 2302 32.9 0 19
OOE Prec 38 3262 105.8 0.31 12

0.75 FCT 87 2938 48.1 0.03 27
OOE Prec 37 3742 139.6 0.6 19

1 FCT 79 1542 36.5 0.3 12
OOE Prec 44 4661 149.5 0.5 8

Table 6: Impact of renewable resource strength (KSD15 d-CPR)
RS Model %Optimal #Nodes Time (s) %Dev Best %Inf

0.2 FCT 99 1748 31.2 0.2 19
OOE Prec 42 5360 139.3 0.4 12

0.5 FCT 91 2114 33.7 0 38
OOE Prec 36 4775 148.3 0.6 23

0.7 FCT 94 2098 37.4 0 0
OOE Prec 46 3674 126 0.5 0

1 FCT 91 1513 23.6 0.15 23
OOE Prec 40 2694 103.5 0.4 23

Table 7: Impact of storage resource strength (KSD15 d-CPR)
RSCPR Model %Optimal #Nodes Time (s) %Dev Best %Inf

[0.7, 0.8] FCT 90 1657 30.5 0.04 62
OOE Prec 36 4068 115.6 0.8 50

(0.8, 0.9] FCT 91 1936 31.7 0.1 35
OOE Prec 43 4518 139.9 0.4 12

(0.9, 1] FCT 93 2115 33.3 0.1 4
OOE Prec 47 2437 108.5 0.05 4

We can compare the results with the ones obtained for the standard RCPSP [18]. For the

17

standard RCPSP , the difficulty of the problem decreases as NC increases, since the increasing
number of precedence constraints reduces the search space. In our case, formulation FCT obtains
slightly more optimal solutions when NC increases, while the reverse occurs for OOE Prec. Also,
the deviation from the best solution increases as NC increases for FCT and is almost constant
for OOE Prec. We may conclude that the addition of storage resource reduces the impact of the
precedence constraint density on the problem difficulty. However, increasing this density clearly
increases the number of infeasible instances. For the standard RCPSP, increasing RF globally
increases the problem difficulty. We see from Table 4 that this is also the case for the RCPSP/CPR.
For the standard RCPSP, increasing RS also increases the problem difficulty. However, no clear
impact of RS on the problem difficulty nor on the the problem infeasibility can be derived from
Table 4.

More interestingly, Table 7 shows the impact of the tightness of the storage resource constraints.
For both formulations (but to a lesser extent for the FCT formulation), the percentage of optimal
solutions found increases as RSCPR increases, which could be expected. The number of infeasible
solutions is also clearly higher for small RSCPR, which is consistent with the experiments carried
out in [25].

5 Conclusions

In this paper, we extended three famous MILP formulations for the classical RCPSP to model the
RCPSP with consumption and production of resources (RCPSP/CPR). We also proposed a new
MILP formulation for the RCPSP/CPR by extending the on/off event-based model introduced in
[22] for the RCPSP. Computational tests on both benchmark and new instances (sets involving
increased ranges of processing times) provide encouraging results. These tests confirm those per-
formed on the standard RCPSP, and show that the on/off event-based model is more appropriate
than conventional models on instances involving large and disparate durations and allowing a high
level of parallelism. On the other hand, the on/off event-based formulation has a poor relaxation
which generally penalizes optimality proofs. In terms of solution quality, the proposed MILP for-
mulations are also competitive when compared with a dedicated method from the literature. This
motivates their use in an industrial environment. We have also illustrated through our experiments
that decreasing storage resource tightness increases the problem difficulty except when the problem
becomes infeasible, in which case infeasibility is proved rather quickly.

As in [24, 25, 27], a further extension of the RCPSP/CPR to problems involving maximum
stock constraints could be considered. Another interesting extension would be to consider the case
in which one has to follow a predefined stock profile. This is not a trivial issue for the on/off
event-based model, as illustrated in Figure 1 where the resource produced at the end of the process
of an activity is implicitly assumed to be delayed to the next event, thereby restricting the stock
profile adaptability.

Finally, we believe that future work should concentrate on designing MILP approaches to the
RCPSP/CPR that combine the advantages of both time-indexed and event-based formulations.

Acknowledgements

This project was partially funded by the CNRS Energy Interdisciplinary Program (PIE), GIMEP
project 2008–2010, and partially supported by French National Research Agency (ANR) through
COSINUS program (project ID4CS n̊ ANR-09-COSI-005).

18

The authors are grateful to Philippe Laborie who kindly provided his code for our computational
comparisons and to Emmanuel Hébrard for help in conducting some experiments. We also wish to
thank the anonymous referees for their numerous constructive remarks.

This research was initiated while the first author was with CIRRELT, Université de Montréal,
Canada.

References

[1] M. H. Agha, R. Thery, G. Hetreux, A. Häıt and J.-M. Le Lann, “Integrated production and
utility system approach for optimizing industrial unit operations”, Energy, 35(2):611–627,
2010.

[2] R. Alvarez-Valdès and J.M. Tamarit, “The project scheduling polyhedron: dimension, facets
and lifting theorems”, European Journal of Operational Research, 67(2):204–220, 1993.

[3] D. Applegate and W. Cook, “A computational study of job-shop scheduling”, ORSA Journal
on Computing, 3(2):149–156, 1991.

[4] C. Artigues, P. Michelon, and S. Reusser, “Insertion techniques for static and dy-
namic resource-constrained project scheduling”, European Journal of Operational Research,
149(2):249–267, 2003.

[5] C. Artigues, O. Koné, P. Lopez, M. Mongeau, E. Néron, and D. Rivreau, “Computational
experiments”, in C. Artigues, S. Demassey, and E. Néron, (Eds.), Resource-constrained
project scheduling: Models, algorithms, extensions and applications, ISTE/Wiley, pages 98-
102, 2008.

[6] E. Balas,“Project scheduling with resource constraints”, in E.M.L. Beale, (Ed.), Applications
of Mathematical Programming Techniques, pages 187-200, American Elsevier, 1970.

[7] P. Baptiste and C. Le Pape, “Constraint propagation and decomposition techniques for
highly disjunctive and highly cumulative project scheduling problems”, Constraints, 5(1-
2):119–139, 2000.

[8] J. Blazewicz, J. Lenstra, and A.H.G. Rinnooy Kan, “Scheduling subject to resource con-
straints: Classification and complexity”, Discrete Applied Mathematics, 5(1):11–24, 1983.

[9] H. Bouly, J. Carlier, A. Moukrim, and M. Russo, “Solving RCPSP with resources production
possibility by tasks”, In: MHOSI’2005, 24-26 April, 2005.

[10] E.H. Bowman, “The schedule-sequencing problem”, Operations Research, 7:621– 624, 1959.

[11] J. Carlier and E. Néron, “On linear lower bounds for resource constrained project scheduling
problem”, European Journal of Operational Research, 149:314–324, 2003.

[12] J. Carlier, A. Moukrim, and H. Xu, “The project scheduling problem with production and
consumption of resources: A list-scheduling based algorithm”, Discrete Applied Mathemat-
ics, 157(17):3631–3642, 2009.

[13] P. M. Castro and . E. Grossmann, “An efficient MILP model for the short-term scheduling
of single stage batch plants”, Computers and Chemical Engineering 30:1003–1018, 2006.

19

[14] N. Christofides, R. Alvarez-Valdès, and J.M. Tamarit, “Project scheduling with resource
constraints: A branch and bound approach”, European Journal of Operational Research,
29(3):262–273, 1987.

[15] S. Demassey, C. Artigues, and P. Michelon, “Constraint propagation based cutting planes:
An application to the resource-constrained project scheduling problem”, INFORMS Journal
on Computing, 17(1):52–65, 2005.

[16] S. Dauzère-Pérès and J.B. Lasserre, “A new mixed-integer formulation of the flow-shop
sequencing problem”, 2nd Workshop on Models and Algorithms for Planning and Scheduling
Problems, Wernigerode, Germany, May 1995.

[17] C. A. Floudas and X. Lin, “Mixed integer linear programming in process scheduling: Mod-
eling, algorithms, and applications”, Annals of Operations Research, 139:131–162, 2005.

[18] W. Herroelen, B. De Reyck, and E. Demeulemeester, “Resource-constrained project schedul-
ing: A survey of recent developments”, Computers and Operations Research, 25:279–302,
1998.

[19] R. Kolisch, “Serial and parallel resource-constrained project scheduling methods revisited:
Theory and computation”, European Journal of Operational Research, 90(2):320–333, 1996.

[20] R. Kolisch and A. Sprecher, “PSPLIB - A project scheduling library”, European Journal of
Operational Research, 96(1):205–216, 1997.

[21] PSPLIB. http://129.187.106.231/psplib/ .

[22] O. Koné, C. Artigues, P. Lopez, and M. Mongeau, “Event-based MILP models for resource-
constrained project scheduling problems”, Computers & Operations Research, 38(1):3–13,
2011.

[23] J.B. Lasserre and M. Queyranne, “Generic scheduling polyhedra and a new mixed-integer
formulation for single-machine scheduling”, Proceedings of the 2nd Integer Programming and
Combinatorial Optimization Conference, IPCO , pages 136–149, 1992.

[24] P. Laborie, “Algorithms for propagating resource constraints in a planning and scheduling:
Existing approaches and new results”, Artificial Intelligence, 143:151–188, 2003.

[25] K. Neumann and C. Schwindt, “Project scheduling with inventory constraints”, Mathemat-
ical Methods of Operations Research, 56:513–533, 2002.

[26] K. Neumann and C. Schwindt, N. Trautmann, “Advanced production scheduling for batch
plants in process industries”, OR Spectrum 24:251–279, 2002.

[27] K. Neumann, C. Schwindt, and J. Zimmermann, Project Scheduling with Time Windows
and Scarce Resources, Springer, 2003.

[28] J. M. Pinto and I. E. Grossmann, “A continuous time mixed integer linear programming
model for short term scheduling of multistage batch plants”, Industrial & Engineering Chem-
istry Research, 34(9):3037–3051, 1995.

[29] M. E. Pfund, S. J. Mason and J. W. Fowler, “Semiconductor manufacturing scheduling and
dispatching. State of the art and survey of needs”, in Handbook of Production Scheduling,
International Series in Operations Research & Management Science 89, 213–241, Springer,
2006.

20

[30] A. Pritsker, L. Watters, and P. Wolfe, “Multi-project scheduling with limited resources: A
zero-one programming approach”, Management Science, 16:93–108, 1969.

[31] High-duration RCPSP instances with consumption and production of resources.
http://www2.laas.fr/laas/files/MOGISA/RCPSP/instances/high_duration_range_

with_production.zip

[32] C. Schwindt, and N. Trautmann, “Batch scheduling in process industries: An application
of resource-constrained project scheduling”, OR Spektrum 22:501–524, 2000.

[33] M. Uetz, “Algorithms for Deterministic and Stochastic Scheduling”, PhD thesis, Technische
Universität Berlin, 2001.

[34] J. C. Zapata, B. M. Hodge, and G. V. Reklaitis, “The multimode resource constrained
multiproject scheduling problem: Alternative formulations”, AIChE Journal, 54(8):2101–
2119, 2008.

21

