
HAL Id: hal-00564443
https://hal.science/hal-00564443v1

Submitted on 8 Feb 2011 (v1), last revised 10 Jan 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of mixed integer linear programming
models for the resource-constrained project scheduling
problem with consumption and production of resources

Oumar Koné, Christian Artigues, Pierre Lopez, Marcel Mongeau

To cite this version:
Oumar Koné, Christian Artigues, Pierre Lopez, Marcel Mongeau. Comparison of mixed integer lin-
ear programming models for the resource-constrained project scheduling problem with consumption
and production of resources. Flexible Services and Manufacturing Journal, 2013, 25 (1-2), pp.24-47.
�10.1007/s10696-012-9152-5�. �hal-00564443v1�

https://hal.science/hal-00564443v1
https://hal.archives-ouvertes.fr

Comparison of mixed integer linear programming models for the

resource-constrained project scheduling problem with consumption

and production of resources

Oumar Koné1, Christian Artigues2,3, Pierre Lopez2,3, Marcel Mongeau4,5

1 CIRRELT, Université de Montréal,
C.P. 6128, succ. Centre-Ville, Montreal, QC, Canada H3C 3J7.

2 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France.
3 Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ; F-31077 Toulouse, France.

4 Université de Toulouse ; UPS, INSA, UT1, UTM ; Institut de Mathématiques de Toulouse, F-31062
Toulouse, France.

5 CNRS ; Institut de Mathématiques de Toulouse UMR 5219 ; F-31062 Toulouse, France.

e-mails: mr.okone@gmail.com, {artigues,lopez}@laas.fr, mongeau@math.univ-toulouse.fr

Abstract

This paper addresses an extension of the resource-constrained project scheduling problem,
which takes into account non-renewable resources. To solve this problem, we propose the gen-
eralization of two existing mixed integer linear programming models for the classical resource-
constrained project scheduling problem, as well as one novel formulation based on the concept
of event. Computational results are reported to compare these formulations with each other.

Keywords: Resource-constrained project scheduling, mixed integer linear programming, con-
sumption and production of resources, event-based on/off formulation.

1 Introduction

The resource-constrained project scheduling problem (RCPSP) is one of the best-known cumula-
tive scheduling problems due to the interest from the operational research community, and to its
numerous industrial applications. In this article we are concerned with the extension of the RCPSP
that, beyond renewable resources considered in its basic version, also allows resources that can be
produced and consumed during the execution of activities. This extension is called RCPSP with
consumption and production of resources, noted RCPSP/CPR throughout the paper.

There exist in the literature some works relating to the RCPSP/CPR. Among others, we can
cite Neumann and Schwindt [22] who formalize the problem of project scheduling with inventory
constraints and generalized temporal constraints, including both renewable and non-renewable re-
sources. The authors propose a branch-and-bound approach associated with a beam-search heuristic
to solve the problem. Carlier et al. [11] include generalized time-lag constraints and propose a new
list algorithm. Laborie [21] defines the concept of Resource Temporal Network, offering a powerful
modeling and providing a support for other authors such as Bouley et al. [8]. For more detail on
the state of the art in RCPSP/CPR, we refer the reader to [8, 21, 11].

Throughout this paper, we are interested in designing mixed integer linear programming (MILP)
formulations for the problem, which are passed to an MILP off-the-shelf branch-and-bound solver.
The solutions obtained with MILP formulations cannot generally compete with the above-cited

1

methods, all based on specialized scheduling models and algorithms, aiming at exploiting the prob-
lem structure inside the solving scheme. However, the interest of proposing (efficient) MILP for-
mulations is double. On the one hand MILP solvers have made gigantic progress in the last years.
In [19], the authors exhibit a class of specific but particularly hard standard RCPSP instances
for which MILP formulations yield in average better results than the best-known specialized ex-
act method. On the other hand, MILP solvers are often the only software available in industrial
applications. For instance, for scheduling problems occurring in the process industry, such as the
RCPSP/CPR, we show in the current paper that MILP models are well suited for modeling con-
sumption and production of specific utilities such as energy resources. Numerous research papers
aim at proposing MILP formulations for batch scheduling in the process industry, see [15, 27].

There exist roughly three categories of MILP formulations for the standard resource-constrained
project scheduling problem. Note that we do not consider here the formulations involving an
exponential number of variables and/or constraints. They can only be solved through branch-and
price and/or branch-and-cut techniques, which fall out of the scope of the paper, considering only
direct solving with an MILP solver.

The first category gathers 0 − 1 time-indexed formulations which involve binary variables xit,
where i is the activity index while t is the time index, such that xit = 1 if and only if activity i starts
at time t. Assuming integer activity durations and possible start times, t varies from 0 to T − 1,
where T is an upper bound of the schedule length. Time-indexed formulations were proposed in
Pritsker et al. [24] and refined in Christofides et al. [12]. They generally have a good LP relaxation
but as a counterpart they involve a pseudo-polynomial number of variables, since T depends on
activity durations.

The second category of formulations are called sequence-based or disjunctive MILP formulations
as they involve binary variables yij and continuous start-time variables Si, i and j being activity
indices, such that yij = 1 if and only if Si + pi ≤ Sj where pi is the duration of task i. Originally,
these formulations were proposed for machine or “disjunctive” scheduling [5, 2] where all activities
sharing the same machine must be fully sequenced. Additional variables modeling resource flows
are necessary to extend these formulations to the RCPSP (see [3]). That is why these formulations
are also named flow-based formulations. These formulations are compact, in the sense that they
involve a polynomial number of variables and constraints. On the other hand, they yield poor LP
relaxations. This is notoriously due to the big-M constraints needed to linearize the disjunctive
constraint.

The third category of formulations are named event-based formulations. They involve binary
variables zie, where either activity i starts, ends or is in process at event e. Each event corresponds
to the start or the end time of an activity. Continuous variables te are used for event start times. As
there is a polynomial number of events, these formulations are also compact. Originally proposed
for single machine scheduling in [20], they were extended to more complex problems including flow-
shop [14], batch sequencing [15], and variants of the RCPSP [27, 19]. Although these formulations
do not involve big-M constraints, the experiments carried out in [19] show that they yield poor LP
relaxations.

For integer solving, it is shown in [19] that flow-based and event-based formulations can be the
only alternative for RCPSP instances with high duration ranges. To our knowledge, no experiments
have been carried out yet in the literature to compare the performance of various MILP formulations
for the RCPSP/CPR. In this paper, we propose an extension to consumption and production of
resources for each of the three categories of MILP formulations and we carry out experimental
comparison.

We describe in detail in Section 2 the RCPSP/CPR. Section 3 is dedicated to our proposals.

2

In Sections 3.1 and 3.2, we propose two MILP models generalized to model the RCPSP/CPR. We
then present one model based on the notion of event (Section 3.3). Section 4 reports experimental
results on the performance of all the proposed models. We conclude in Section 5.

2 Problem description

Let V be a set of activities, p a vector of processing times, E a set of precedence relations, R

a set of renewable resources, B a vector of capacity (availability of resources), and b a matrix
of resource consumption. Typically, the RCPSP is a combinatorial optimization problem defined
by the tuple (V, p,E,R,B, b), aiming primarily at scheduling activities on resources available in
limited quantities. Its general character, due to many potential applications in the industry, yields
numerous possible extensions and variants that we cannot evoke here in detail. However, we will
focus on its basic version and a variant involving specific resources that can be consumed and
produced during the processing of activities.

2.1 Basic version (RCPSP)

Let n be the number of activities to schedule, and m the number of resources. The project under
study consists of n+ 2 activities defined by the set {0, . . . , n+ 1}, where activities 0 and n+ 1 are
dummy activities representing by convention the beginning and the end of the project, respectively.
The set of non-dummy activities, noted A = {1, . . . , n}, must be scheduled on the available renew-
able resources belonging to set R = {1, . . . ,m}. The processing times are represented by a vector
p of Nn+2, where the ith component, pi, is the processing time of activity i with the special values
p0 = pn+1 = 0 for the dummy activities. Each activity i also demands bik amount of each resource
k during its processing. Each resource k is available in quantity Bk. Let us define the decision
variable Si for indicating the starting time of activity i (with S0 = 0), for i = 0, 1, 2, . . . , n + 1.
Note that Sn+1 is the date of the project completion time, also called makespan.

The precedence relations (precedence constraints) are given by a set E of index pairs such that
(i, j) ∈ E means that the execution of activity i must precede that of activity j. This can be
formulated as follows:

Sj − Si ≥ pi ∀(i, j) ∈ E. (1)

Resource constraints dictate that at any time the sum of demands of activities being processed
does not exceed the resource availability:

∑

i∈At

bik ≤ Bk ∀k ∈ R,∀t ∈ H, (2)

where: At = {i ∈ A|Si ≤ t < Si+pi} represents all non-dummy activities in process at time t taking
into account the non-preemption of the activities; H = {0, 1, . . . , T} is the scheduling horizon, and
T its length (which may be regarded as an upper bound for the makespan).

A schedule S (with ith component Si), is said feasible if it is compatible with both the prece-
dence constraints and the resource constraints. The objective of the RCPSP consists in finding a
non-preemptive (with non interrupted activities) schedule S of minimal makespan subject to prece-
dence constraints and resource constraints. According to the computational complexity theory, the
RCPSP is NP-hard in the strong sense [7, 26].

3

2.2 RCPSP with consumption and production of resources (RCPSP/CPR)

The particularity of the RCPSP with consumption and production of resources is that, in addition
to using the renewable resources described above, it also involves specific resources. These resources,
described sometimes as cumulative by some authors [23], can be consumed (or not) at the start time
of an activity in a certain amount and/or then produced in another amount at the completion time
of this activity. More specifically, an activity i consumes c−ip units of resource p at the beginning

of its processing, and produces c+ip units at the end of its processing, where both c−ip and c+ip are
(given) input data of the problem. Furthermore, the total amount of each resource must remain
non-negative throughout the scheduling horizon.

Let P be the set of such resources and Cp represent the level of initial stock of resource p ∈ P .
We can distinguish the following cases:

1. If c−ip = c+ip, then p is simply a renewable resource, as in the basic RCPSP.

2. If c−ip 6= c+ip:

(a) if c−ip = 0 and c+ip > 0 (case of resource production). This case is usually encountered
in material transformation industries and sometimes in power production. In general,
the resource production is preceded by the consumption, in a given amount, of another
resource.

(b) if c−ip < c+ip, then we first consume a quantity of a given product before producing more.

(c) if c−ip > c+ip, then p is a non-renewable resource such as a budget, raw materials, etc.

3 Extended formulations & proposal

In this section, we introduce first an extension of two famous (time-indexed) MILP formulations
of the RCPSP to the RCPSP/CPR case. Second, we propose an adaptation formulation of the
RCPSP to the RCPSP/CPR problem. Finally, we introduce an MILP formulation based on the
concept of event [15, 19, 27].

Since some MILP formulations are highly sensitive to the cardinality of the scheduling horizon,
it is of great importance to develop efficient mechanisms to moderate its impact on the general
performance of such formulations. For each activity i, an earliest start time ESi (the date before
which activity i will certainly not start) and a latest start time LSi (the date before which it must
start) can be calculated (in polynomial time) by preprocessing (more detail in [13, 16]). Hence the
time interval [ESi, LSi] represents the time window during which activity i can start.

3.1 Time-indexed formulations

Discrete-time formulations are characterized by the use of variables indexed by discrete times.
Among these formulations, we can cite the basic discrete-time formulation (DT) introduced by
Pritsker in 1969 [24], and the disaggregated discrete-time formulation (DDT) proposed by Christofi-
des in 1987 [12]. These two formulations are very similar. The major difference between them lies
in the formulation of the precedence constraints. The DT formulation involves only one type of
binary decision variable, xit, indexed by both activities and time. Variable xit = 1 if activity i

4

starts at time t; xit = 0 otherwise. Here is the DT formulation of the RCPSP:

min

LSn+1∑

t=ESn+1

txn+1,t (3)

LSj∑

t=ESj

txjt ≥

LSi∑

t=ESi

txit + pi ∀(i, j) ∈ E (4)

n∑

i=1

bik

min(LSi,t)∑

τ=max(ESi,t−pi+1)

xiτ ≤ Bk ∀t ∈ H,∀k ∈ R (5)

LSi∑

t=ESi

xit = 1 ∀i ∈ A ∪ {n + 1} (6)

x00 = 1

xit = 0 ∀i ∈ A ∪ {n+ 1}, t ∈ H \ {ESi, LSi} (7)

xit ∈ {0, 1} ∀i ∈ A ∪ {n+ 1},∀t ∈ {ESi, LSi}. (8)

The values of the above-mentioned starting-time variables can be readily recovered through the
relation: Si =

∑
t∈H

txit, i ∈ A ∪ {0, n+ 1}. Constraints (4) and (5) simply express the precedence

constraints (1) and the resource constraints (2), respectively. Constraints (6) and (8) impose non-
preemption of the project activities. Constraints (7) mean that the start time of every activity
occurs between its earliest start time and its latest start time. They are actually used in a prepro-

cessing phase. This formulation involves
n+1∑
i=1

(LSi−ESi) binary variables, and |E|+(T+1)m+n+1

constraints.

To take into account resource consumption/production in this model, we introduce continuous
decision variable stp indicating the level of each resource p ∈ P at each time t. The additional
constraints required to model the RCPSP/CPR are:

s0p = Cp −

n∑

i=1

xi0c
−
ip ∀p ∈ P (9)

stp = st−1,p −

n∑

i=1

xitc
−
ip +

n∑

i=1

xi,t−pic
+
ip ∀(t, p) ∈ H × P, t > 0 (10)

stp ≥ 0 ∀(t, p) ∈ H × P. (11)

Constraints (9) state that the level of resource p at time 0 is equal to its initial value Cp minus the
sum of consumption of activities starting at time 0. Constraints (10) require at each time t that the
level of stock (stp) of each resource p ∈ P is equal to the level at previous time (t−1) of this resource,

plus the sum of output (
n∑

i=1
xitc

−
ip) of that resource for activities ending their processing at time t,

and decreased by the sum of consumption (
n∑

i=1
xi,t−pic

+
ip) of activities starting their processing at

same time t following (9) and (10).

Constraints (11) enforce non negativity of each resource level.

Note that the intermediate decision variables stp can be substituted out by their value as a
function of xit.

5

As previously announced, the DDT model proposed by Christofides [12] is very similar to DT,
but differs in the formulation of the precedence constraints. Typically, while the DT model defines
one constraint for each pair of activities and for each precedence relation, the DDT model requires
one constraint for each pair of activities, for each precedence relation, and for every time of the
scheduling horizon:

LSi∑

τ=t

xiτ +

min(LSj ,t+pi−1)∑

τ=ESj

xjτ ≤ 1, ∀(i, j) ∈ E,∀t ∈ {ESi, LSi}. (12)

All the other constraints remain identical. Thus, as for DT, the extension of DDT to the
RCPSP/CPR that we propose simply requires adding stp variables and constraints (9) to (11).

These two models are known to involve a pseudo-polynomial number of variables and con-
straints. As a consequence, they yield disastrous performance when solving problems dealing with
a very broad time horizon. However, they are known (mainly DDT) to provide fairly good results
and interesting bounds by linear relaxation on the classical instances of the RCPSP (see [4]).

3.2 Flow-based continuous-time formulation

Inspired by the work of Balas et al. [5], and on the basis of the formulation of Alvarez-Valdes
and Tamarit [1], Artigues et al. [3] proposed a flow-based continuous-time (FCT) model for the
RCPSP that uses flow variables to manage the resources. The idea is as follows. All resources
are available and stored at the dummy activity 0. Each activity uses resources at the beginning
of its execution, and once completed, it transfers these resources to the activities that follow. The
last activities to be executed finally forwards the resources to the dummy activity n + 1. In the
FCT model, continuous flow variables fijk are introduced to denote the quantity of resource k

that is transferred from activity i (at the end of its processing) to activity j (at the start of its
processing). Sequential binary variables xij are required to indicate whether activity i is processed
before activity j. Finally, a continuous start time-variables Si is also needed for each activity i.

Since activity 0 acts as a resource source, and activity n + 1 acts as a resource sink, we define
for each resource k: b̃ik := bik for all i ∈ A and b̃0k := b̃n+1,k := Bk.

We first recall below the flow-based formulation for the standard RCPSP, and then we extend
it to the considered problem.

6

minSn+1 (13)

xij + xji ≤ 1, ∀(i, j) ∈ (A ∪ {0, n + 1})2, i < j (14)

xik ≥ xij + xjk − 1 ∀(i, j, k) ∈ (A ∪ {0, n + 1})3 (15)

Sj − Si ≥ −Mij + (pi +Mij)xij ∀(i, j) ∈ (A ∪ {0, n + 1})2 (16)

fijk ≤ min (b̃ik, b̃jk)xij ∀(i, j) ∈ (A ∪ {0} ×A ∪ {n+ 1}),∀k ∈ R (17)
∑

j∈A∪{0,n+1}

fijk = b̃ik ∀i ∈ A ∪ {0, n + 1},∀k ∈ R (18)

∑

i∈A∪{0,n+1}

fijk = b̃jk ∀i ∈ A ∪ {0, n + 1},∀k ∈ R (19)

fn+1,0,k = Bk ∀k ∈ R (20)

xij = 1 ∀(i, j) ∈ TE (21)

xji = 0 ∀(i, j) 6= TE (22)

fijk ≥ 0 ∀(i, j) ∈ (A ∪ {0, n + 1})2,∀k ∈ R (23)

S0 = 0 (24)

ESi ≤ Si ≤ LSi ∀i ∈ A ∪ {n + 1} (25)

xij ∈ {0, 1} ∀(i, j) ∈ (A ∪ {0, n + 1})2, (26)

where Mij is some large-enough constant, which can be set to ESi −LSj, and TE is the transitive
closure of E. Constraints (14) and (15) are redundant constraints (valid inequalities expressing
logical conditions on sequencing variables). Constraints (16) link the start time variables and the
sequential binary variables. Constraints (17) link flow variables and xij variables. Constraints
(18-20) are resource flow-conservation constraints. Preprocessing constraints (21) and (22) set
the preexisting precedence constraints. Constraints (25) restrict the start time of any activity
i ∈ A ∪ {0, n + 1} to lie between its earliest start time (ESi) and its latest start time (LSi).

Applegate and Cook [2] show that this formulation, ranked among the compact models, produces
bad relaxations due to the use of big-M constants in constraints (16). On the contrary, this
formulation may be preferable to time-indexed formulations to solve problems involving a large
time horizon. However, the use of sequential binary variables could be the cause of too many
symmetries, hence affecting the performance of the model for solving strongly cumulative problems
(in the sense that many tasks can be processed in parallel).

Here is how we adapt this model to solve the RCPSP with consumption and production of
resources. We define a new continuous variable Dijp representing the amount of resource p ∈ P

that activity i (at the end of its processing) sends to activity j (at the beginning of its processing).
As expressed by constraints (27) below, this quantity cannot exceed the minimum between the
quantity produced by activity i and the quantity consumed by activity j, if activity i precedes
activity j. Thus, in accordance with the principle of this model, the non-renewable resources are

7

also managed through flows, as follows:

Dijp ≤ min (c+ip, c
−
jp)xi,j ∀(i, j) ∈ A2, p ∈ P (27)

∑

i∈A∪{0}

Dijp = c−jp ∀j ∈ A ∪ {n+ 1}, p ∈ P (28)

∑

j∈A∪{n+1}

Dijp = c+ip ∀i ∈ A ∪ {0}, p ∈ P. (29)

Constraints (27) link our new flow variables Dijp with sequencing variables xij by enforcing the
resource p flow from i to j to be zero as soon as xij = 0 (i does not precede j). If xij = 1 (i precedes
j), the flow of resource p from activity i to activity j cannot be larger than the minimum between
the amount produced by i and the amount consumed by j.

Constraints (28) require that the total amount of resource p ∈ P received by activity j from
previous activities, is equal to the amount this resource consumes during its processing. Conversely,
constraints (29) state that the quantity of resources sent by activity i to other activities, is equal
to the amount it produces.

We set the resource production of activity 0 such that c+0p = Cp,∀p ∈ P , to model the resource
initial levels. Since unused produced (or initially available) resource amount can be stocked, we set
the resource consumption of activity n+1 to a sufficiently large constant level c−(n+1)p = m,∀p ∈ P .
Last, resource production of activity n + 1 and resource consumption of activity 0 are set to
c−n+1,p = c+n+1,p = 0,∀p ∈ P .

3.3 On/off event-based formulation (OOE)

In contrast with time-indexed formulations, we now propose a formulation for the RCPSP/CPR
that uses variables indexed by events. Inspired by previous papers on batch process problems [15]
or on flow-shop problems [14], an extension of event-based formulation was proposed in [27, 19] for
the RCPSP. We recall below some characteristics of the two existing event-based formulations for
the standard RCPSP. Then, we shall introduce its extension to the RCPSP/CPR.

Zapata et al. [27] propose such an event-based formulation for a multimode RCPSP. Their
formulation considers that an event occurs when an activity starts or ends. Transposed to the
RCPSP, this model involves three types of binary variables per activity and per event. The propo-
sition of [19] uses only one type of binary variable per activity and per event: a decision variable
zie such that zie = 1 if and only if activity i starts at event e or is still in process at event e.
This variable zie is similar to the variable introduced by Bowman [9] for the discrete-time based
problem. A continuous variable te represents the date of event e, and one single extra continuous
variable, Cmax, is used for the makespan. This model is called the on/off event-based formulation
(noted OOE). Compared to the formulation of [27], the number of binary variables is divided by 3,
which drastically reduces the search space for integer solving. The OOE formulation involves fewer
variables compared to the models indexed by time and it does not require as many big-M constants
as the flow-based formulation. Furthermore, the OOE model involves a number of events that is
lower than or equal to the number of activities: |E| ≤ n, where E is the set of events. Figure 1
displays a schedule of four activities (g, h, i, and j) with a single resource. It requires only three
events (0,1, and 2) with the OOE model. Since no activity starts at the end of the processing of
activities i and j, it is not necessary to associate events to these times.

Let us now introduce an extension of the OOE model for the RCPSP/CPR (we shall continue
to call OOE this extension). First, we model the renewable resource constraints in a straightfor-

8

Events
Variables

0 1 2

g i

h j

zi1 = 1 zi2 = 1

Figure 1: Example of variables associated to activity i and events in the on/off event-based for-
mulation

ward manner. The management of non-renewable resources, still ensured by the material-balance
constraints, requires the introduction of the following continuous variables:

• sep: the level of stock for resource p ∈ P at event e;

• piep: the quantity of resources p ∈ P produced by activity i at event e;

• uiep: the amount of resources p ∈ P consumed by activity i at event e.

Here is the OOE formulation we are proposing:

9

minCmax (30)
∑

e∈E

zie ≥ 1 ∀i ∈ A (31)

Cmax ≥ te + (zie − zi(e−1))pi ∀e ∈ E ,∀i ∈ A (32)

t0 = 0 (33)

te+1 ≥ te ∀e 6= n− 1 ∈ E (34)

tf ≥ te + ((zie − zi,e−1)− (zif − zi,f−1)− 1)pi ∀(e, f, i) ∈ E2 ×A, f > e (35)

e−1∑

e′=0

zie′ ≤ e(1 − (zie − zi(e−1))) ∀i 6= A, ∀e 6= 0 ∈ E (36)

n−1∑

e′=e

zie′ ≤ (n− e)(1 + (zie − zi(e−1))) ∀i 6= A, ∀e 6= 0 ∈ E (37)

zie +

e∑

e′=0

zje′ ≤ 1 + (1− zie)e ∀e ∈ E ,∀(i, j) ∈ E (38)

n−1∑

i=0

bikzie ≤ Bk ∀e ∈ E ,∀k ∈ R (39)

piep ≥ 0 ∀(e, i, p) ∈ E ×A× P (40)

piep ≥ c+ip(zi,e−1 − zi,e) ∀(e, i, p) ∈ E ×A× P (41)

piep ≤ c+ipzi,e−1 ∀(e, i, p) ∈ E ×A× P (42)

piep ≤ c+ip(1− zi,e) ∀(e, i, p) ∈ E ×A× P (43)

uiep ≥ 0 ∀(e, i, p) ∈ E ×A× P (44)

uiep ≥ c−ip(zi,e − zi,e−1) ∀(e, i, p) ∈ E ×A× P (45)

uiep ≤ c−ipzie ∀(e, i, p) ∈ E ×A× P (46)

uiep ≤ c−ip(1− zi,e−1) ∀(e, i, p) ∈ E ×A× P (47)

sep = se−1,p +
∑

i∈A

piep −
∑

i∈A

uiep ∀(e, p) ∈ E × P, e > 0 (48)

s0p = Cp −
∑

i∈A

ui0p ∀p ∈ P (49)

sep ≥ 0 ∀(e, p) ∈ E × P (50)

zie ∈ {0, 1} ∀i ∈ A,∀e ∈ E .

First, remark zie − zi,e−1 is equal to 1 if and only if activity i starts at event e , and −1 if and
only if i ends at e. Constraints (31) are used to ensure that each activity is processed at least
once during the project. Constraints (32) link the makespan with the event dates. Constraints
(33) and (34) impose the event sequencing. The duration constraints (35) are used to link the
binary optimization variables zie to the continuous optimization variables te, and to ensure that,
if activity i starts at event e and ends at event f , then the time difference between events f

and e is at least the processing time of activity i (tf ≥ te + pi). Constraints (36) and (37) are
called contiguity constraints and ensure non-preemption since they force the events after which
an activity is being processed to be adjacent. We refer to [19] for a detailed explanation of the

10

contiguity constraints. Constraints (38) describe precedence constraints, modeling the implication
(zie = 1) =⇒ (

∑e
e′=0 zje = 0) for each event e and for each (i, j) ∈ E. Constraints (39) are the

renewable resource constraints limiting the total demand of activities in process at each event.

Constraints (40) to (43) amount to require that the value of variable piep must be equal to c+ip,
if activity i finishes its process at event e, for any resource p ∈ P and is zero otherwise. Similarly,
the resource consumption variable uiep is determined by constraints (44) to (47). Finally, balance
constraints (48) determine the level of p ∈ P at event e, taking into account productions and
consumptions at event e. Constraints (49) set the level of stock at event 0 to the initial level minus
the consumed amount for each resource p ∈ P . Constraints (50) ensure that the level of each
resource remains non negative.

We now propose OOE Prec, a preprocessed variant of OOE directly extended from the pre-
processed variant proposed in [19] for the standard RCPSP. Roughly speaking, it is obtained from
OOE by removing, from the set of possible events for an activity, all the first events during which
the activity cannot or does not need to be in process because of its predecessors. Symmetrically, we
remove the last events during which the activity cannot, or does not need to, be in process because
of its successors.

Let A(i) be the set of predecessors of activity i in the precedence graph G, and D(i) be the set
of its successors.

Proposition 1 (extended from [19]) There is an optimal solution of OOE such that, for each

activity i,
|A(i)|∑
e=0

zie = 0 and
n∑

e=n−|D(i)|+1

zie = 0.

Proof : Considering n events, there is always an optimal solution for which activities begin at
distinct events. In other words, for two distinct activities i and j, we have:

zie − zi,e−1 = 1 ∧ zjf − zj,f−1 = 1 =⇒ e 6= f.

It is important to note that this does not preclude te = tf . Moreover, if j is a predecessor of i
in G, then the event f assigned to j will be strictly prior to the event e assigned to i: te > tf .
Proposition 1 is a consequence of these two observations. Thus, we can set the following variables
to 0:

zie = 0, i ∈ A, e ∈ {0, . . . , |A(i)|} ∪ {n− |D(i)| + 1, . . . , n}. (51)

2

Thus, equations (51) can be used to eliminate decision variables before setting up the OOE
formulation. We call this resulting formulation OOE Prec.

4 Computational results

In this section, we compare the results obtained by the event formulations OOE and OOE Prec with
those obtained by the time-indexed formulations DT and DDT, and the flow-based continuous-time
formulation FCT on a set of randomly generated problem instances.

The most popular instances used to test classical RCPSP propositions are KSD [17], BL [6], and
PACK [10]. Among these instances, the most used are the KSD instances, available on the PSPLIB
web site [18]. Among them, we only focus on the KSD30 (n = 30 activities) and we select the first
100 out of the 480 instances involved in this class. However, the KSD30 instances are not considered

11

sufficiently cumulative. More precisely, in the KSD instance set, the hard-to-solve instances are
all highly disjunctive in the sense that there are many pairs of activities that cannot be processed
in parallel. Highly cumulative instances (where many activities can be processed in parallel) are
known to be easy to solve [6]. The BL instances are a set of 39 instances involving between 19
to 25 activities, for 3 resources with demands generated randomly ranging from 0 to 60% of the
total availability. The number of precedence relations varies from 15 to 45 (|E| ∈ [15, 45]). These
instances are more “cumulative” but still easy to solve due to their size. Last, PACK instances are
a set of 55 instances with a small number of precedence relations, from 17 to 35 activities, and 3
resources. These are considered as difficult-to-solve highly cumulative instances [19].

These three classes of instances contain short durations, very moderate scheduling horizons
and homogeneous processing times. Thus, we shall also consider here the modified instance sets
PACK d and KSD15 d (see [19]) obtained from the PACK and KSD30 instances by increasing the
range of processing times, as large scheduling horizon and disparate processing times are common
in the process industry [15]. The authors of [19] obtained these modified instance sets by proceeding
as follows.

To generate an instance B from an existing instance A, consider the following parameters a, b,
x and y, such that y ≤ x and :

1. One selects the first x non-dummy activities of instance A (leaving aside other activities and
the precedence constraints that are adjacent).

2. The selected activities without predecessors are connected to the dummy activity 0, and
similarly, activities without successors are also connected to activity x+ 1.

3. We randomly select y of the x non-dummy activities, and their duration is multiplied by
a coefficient a + b, where b is a randomly generated number between 0 and 1, and a is a
multiplying factor duration.

For KSD15 d, the values for these parameters are : x = 15; y = 7; a = 25, and, for PACK d they
are x = n; y = 10; a = 50. The resulting durations are rounded to the nearest integer, and so are
the increased values of durations.

The resulting instance sets KSD15 d and PACK d are publicly available (see [25]).

Since benchmark instances for the RCPSP/CPR are not available, we used the classical RCPSP
instances (KSD30, PACK, BL, and KSD15 d, PACK d), to which we made some further modi-
fications. Typically, for each of these instances, changes consist mainly in generating for each
activity, three new resources (consumed and produced). Each of these new resources (so-called
non-renewable) is characterized by the quantity consumed, c−ip (respectively the quantity produced,

c+ip) at the beginning (resp. end) of the processing of each activity, both randomly generated be-
tween 0 and 10. Each of these resources is also associated with an initial stock (original capacity)
Cp. These different characteristics of the new (non-renewable) resources are randomly generated
so that :

• No consumption should be greater than the initial stock. This not only ensures that any
activity can start the project, but especially that the project can start.

• The total sum of quantities produced is greater than the total sum of the quantities consumed
to avoid increasing disjunctions.

12

• All instances are feasible (when an instance is found infeasible, it is eliminated).

The RCPSP/CPR instance sets that we just described have a CPR suffix in Table 1 and are
available online [25]. Table 1 displays the results we obtained with ILOG-CPLEX (version 11) on
a Xeon 5110 biprocessor Dell PC clocked at 1.6 GHz with 4 GB RAM, running Linux Fedora as
operating system.

Table 1: Comparative results RCPSP/CPR instances
Instance set Model %integer %Optimal BestSol gap ∆CPM gap Time

KSD30-CPR DT 84 63 10 25 53
DDT 82 71 0.13 8 84

OOE Prec 78 1 53 76 416
FCT 69 20 47 70 289
OOE 1 0 66 66

PACK-CPR OOE 95 2 21 278 111
OOE Prec 93 4 13 258 449

DT 91 18 48 365 127
DDT 47 33 1 246 168
FCT 9 0 6 96

BL-CPR OOE Prec 100 0 18 73
DDT 95 49 1 48 126
DT 87 38 50 120 109

OOE 74 0 28 88
FCT 21 0 27 73

KSD15 d-CPR FCT 100 94 0.12 10 18
OOE Prec 100 81 0.05 10 31

OOE 100 80 0.10 10 62
DT 0 0

DDT 0 0

PACK d-CPR OOE Prec 96 5 2 250 252
OOE 96 5 6 264 321
FCT 5 2 0 44 100
DT 0 0

DDT 0 0

In Table 1, %integer is the percentage of instances for which a (non-necessarily optimal) integer
solution was found within 500 seconds of CPU time. We call these instances the “solved” (not
necessarily to optimality) instances. The percentage of instances for which an optimal solution
was found is noted %Optimal. BestSol gap represents the average deviation percentage for solved
instances from the value of the best known solution. ∆CPM gap is the average deviation percentage
(for solved instances) from the critical-path-method lower bound; and finally, Time is the average
time (in seconds) to find an optimal solution (average over the cases where optimal were found).

We observe that, in terms of number of (not necessarily optimal) integer solutions found, the
OOE model and its variant OOE Prec achieve the best performance on three instance sets (PACK-
CPR, BL-CPR, and PACK d-CPR), the second best performance on KSD15 d-CPR, and the third
best performance on KSD30-CPR. Overall, these results allow us to conclude that OOE and its
variant OOE Prec are the best at finding integer solutions. Moreover, thanks to the preprocessing,
OOE Prec obtains almost always better results than OOE.

13

In terms of optimal solutions found, OOE models are outperformed by DT and DDT for the
instances with small duration ranges. This is due to the weak relaxations of the OOE models [19].
However, OOE models are incomparably better than DT and DDT for the instance KSD15 d-CPR
and PACK d-CPR sets involving high duration ranges.

The comparison between the time-indexed and the event-based formulations yields in fact ex-
pected results (also in line with the ones obtained for the standard RCPSP [19]). Indeed, on the
one hand, the LP-relaxation of the time-indexed formulations is far better than the other ones. On
the other hand, the number of variables of the time-indexed formulations explodes for instances
with a high duration range. Consequently, as for the standard RCPSP, it is more meaningful to
compare the two compact formulations OOE(Prec) and FCT. Again, the conclusions drawn for
the standard RCPSP in [19] apply in the case of consumption and production of resources. It
appears that OOE(Prec) and FCT are complementary considering the type of instances they are
able to solve. The flow-based formulation FCT is superior to OOE(Prec) for the KSD15 d-PC in-
stances while the reverse applies to the PACK and PACK d-PC instances. For the KSD instances,
the two formulations cannot be compared, as OOE Prec is slightly better in terms of number of
integer solutions found, while FCT is much better in terms of number of optimal solutions found.
Nevertheless, we may conclude with the following suggestions for practitioners, (similar to the ones
obtained for the standard RCPSP [19]) :

• For instances with a small duration range, use time-indexed formulations.

• For instances with a high duration range and a high level of disjunctions, use the flow-based
formulation.

• For instances with a high duration range and a high level of parallelism (highly cumulative
instances), use the preprocessed event-based formulation.

Table 2 below now shows the impact of taking into account consumption and production of
resource on the performance of different formulations compared to data from the classical RCPSP.
This can also be seen as a preliminary analysis of the sensibility of the formulations studied,
since it is the variation in performance due to the disruption of input data. More precisely, if
*∈ {KSD30, PACK,BL,KSD15 d, PACK d}, we denote

• ∆ Integer% := %integer on the *-CPR instance set − % integer on the * instance set,

• ∆ Optimal% := %Optimal on the *-CPR instance set − % Optimal on the *-CPR instance
set.

It appears that adding non-renewable resources has a strong negative impact on the performance
of the models DDT and DT in terms of integer solutions found. For example, DT decreases from
100 % of integer solutions found for KSD15 to 45 % for KSD15-CPR. On the other hand, OOE
and OOE Prec improve strongly their performance when applied to RCPSP/CPR instance sets.
For example, the percentage of integer solutions for OOE Prec goes from 54 % for BL to 100 %,
for BL-CPR. Regarding the performance in terms of number of optimal solutions found, although
all formulations result in declines, DT and DDT remain superior.

5 Conclusions

In this paper, we extended three famous MILP formulations for the classical RCPSP to model the
RCPSP with consumption and production of resources (RCPSP/CPR). We also proposed a new

14

Table 2: Impact of resource consumption and production
∆ Integer% ∆ Optimal%

KSD30-CPR DT -2 -15
DDT -9 -11

OOE Prec 32 -29
FCT 2 -42
OOE -32 -24

PACK-CPR DT 6 -37
DDT -48 -43

OOE Prec 38 -1
FCT 7 0
OOE 46 -7

BL-CPR DT -13 -62
DDT -5 -51

OOE Prec 46 0
FCT 0 -3
OOE 25 0

KSD15 d-CPR DT -55 -54
DDT -1 -1

OOE Prec 0 -5
FCT 1 0
OOE 1 -3

PACK d-CPR DT 0 0
DDT 0 0

OOE Prec 36 -9
FCT -2 -5
OOE 36 -13

MILP formulation for the RCPSP/CPR by extending the on/off event-based model introduced in
[19] for the RCPSP. Computational tests on both benchmark and application-oriented instances
provide encouraging results. These tests confirm those on the standard RCPSP, and show that,
in addition to being more appropriate than conventional models on instances involving large and
disparate durations, our on/off event-based model solves the largest number of instances, whatever
their features. It is also clear from this study that our proposals are even more effective in solving
the RCPSP/CPR in terms of number of integer solutions found, better than those of the standard
RCPSP.

We believe that future work should consider designing MILP approaches to the RCPSP/CPR
that combine the advantages of time-indexed and event-based formulations.

Acknowledgment

This project was partially funded by the CNRS Energy Interdisciplinary Program (PIE), GIMEP
project 2008–2010, and partially supported by French National Research Agency (ANR) through
COSINUS program (project ID4CS n̊ ANR-09-COSI-005).

15

References

[1] R. Alvarez-Valdès and J.M. Tamarit, “The project scheduling polyhedron: dimension, facets
and lifting theorems”, European Journal of Operational Research, 67(2):204–220, 1993.

[2] D. Applegate and W. Cook, “A computational study of job-shop scheduling”, ORSA Journal
on Computing, 3(2):149–156, 1991.

[3] C. Artigues, P. Michelon, and S. Reusser, “Insertion techniques for static and dy-
namic resource-constrained project scheduling”, European Journal of Operational Research,
149(2):249–267, 2003.

[4] C. Artigues, O. Koné, P. Lopez, M. Mongeau, E. Néron, and D. Rivreau, “Computational
experiments”, in C. Artigues, S. Demassey, and E. Néron, (Eds.), Resource-constrained
project scheduling: Models, algorithms, extensions and applications, ISTE/Wiley, pages 98-
102, 2008.

[5] E. Balas, “Project scheduling with resource constraints”, in E.M.L. Beale, (Ed.), Applications
of Mathematical Programming Techniques, pages 187-200, American Elsevier, 1970.

[6] P. Baptiste and C. Le Pape, “Constraint propagation and decomposition techniques for
highly disjunctive and highly cumulative project scheduling problems”, Constraints, 5(1-
2):119–139, 2000.

[7] J. Blazewicz, J. Lenstra, and A.H.G. Rinnooy Kan, “Scheduling subject to resource con-
straints: Classification and complexity”, Discrete Applied Mathematics, 5(1):11–24, 1983.

[8] H. Bouly, J. Carlier, A. Moukrim, and M. Russo, “Solving RCPSP with resources production
possibility by tasks”, In: MHOSI’2005, 24-26 Avril, 2005.

[9] E.H. Bowman, “The schedule-sequencing problem”, Operations Research, 7:621– 624, 1959.

[10] J. Carlier and E. Néron, “On linear lower bounds for resource constrained project scheduling
problem”, European Journal of Operational Research, 149:314–324, 2003.

[11] J. Carlier, A. Moukrim, and H. Xu, “The project scheduling problem with production and
consumption of resources: A list-scheduling based algorithm”, Discrete Applied Mathemat-
ics, 157(17):3631–3642, 2009.

[12] N. Christofides, R. Alvarez-Valdès, and J.M. Tamarit, “Project scheduling with resource
constraints: A branch and bound approach”, European Journal of Operational Research,
29(3): 262–273, 1987.

[13] S. Demassey, C. Artigues, and P. Michelon, “Constraint propagation based cutting planes:
an application to the resource-constrained project scheduling problem”, INFORMS Journal
on Computing, 17(1): 52–65, 2005.

[14] S. Dauzère-Pérès and J.B. Lasserre, “A new mixed-integer formulation of the flow-shop
sequencing problem”, 2nd Workshop on Models and Algorithms for Planning and Scheduling
Problems, Wernigerode, Germany, May 1995.

[15] J. M. Pinto and I. E. Grossmann, “A continuous time MILP model for short term scheduling
of batch plants with pre-ordering constraints”, Industrial & Engineering Chemistry Research,
34(9):3037–3051, 1995.

16

[16] R. Kolisch, “Serial and parallel resource-constrained project scheduling methods revisited:
Theory and computation”, European Journal of Operational Research, 90(2):320–333, 1996.

[17] R. Kolisch and A. Sprecher, “PSPLIB - A project scheduling library”, European Journal of
Operational Research, 96(1):205–216, 1997.

[18] PSPLIB. http://129.187.106.231/psplib/ .

[19] O. Koné, C. Artigues, P. Lopez, and M. Mongeau, “Event-based MILP models for resource-
constrained project scheduling problems”, Computers & Operations Research, 38(1):3–13,
2011.

[20] J.B. Lasserre and M. Queyranne, “Generic scheduling polyhedra and a new mixed-integer
formulation for single-machine scheduling”, Proceedings of the 2nd Integer Programming and
Combinatorial Optimization Conference, IPCO , pages 136–149, 1992.

[21] P. Laborie, “Algorithms for propagating resource constraints in a planning and scheduling:
Existing approaches and new results”, Artificial Intelligence, 143:151–188, 2003.

[22] K. Neumann and C. Schwindt, “Project scheduling with inventory constraints”, Mathemat-
ical Methods of Operations Research, 56:513–533, 2002.

[23] K. Neumann, C. Schwindt, and J. Zimmermann, “Project Scheduling with Time Windows
and Scarce Resources”, Springer, 2003.

[24] A. Pritsker, L. Watters, and P. Wolfe, “Multi-project scheduling with limited resources: A
zero-one programming approach”, Management Science, 16:93–108, 1969.

[25] High-duration RCSPSP instances with consumption and production of resources.
http://www2.laas.fr/laas/files/MOGISA/RCPSP/instances/high_duration_range_

with_production.zip .

[26] M. Uetz, “Algorithms for Deterministic and Stochastic Scheduling”, PhD thesis, Technische
Universität Berlin, 2001.

[27] J. C. Zapata, B. M. Hodge, and G. V. Reklaitis, “The multimode resource constrained
multiproject scheduling problem: Alternative formulations”, AIChE Journal, 54(8):2101–
2119, 2008.

17

