
Fast minimum float computation in activity

networks under interval uncertainty

Thierry Garaix1,2,3, Christian Artigues1,2 and Cyril Briand1,2

1 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse,

France
2 Université de Toulouse ; UPS, INSA, INP, ISAE, UT1, UTM ;

LAAS ; F-31077 Toulouse, France
3 D.A.I., Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129,

Torino, Italy

Abstract

This paper considers the following basic problem in scheduling un-
der uncertainty: given an activity-on-node network where each activ-
ity has an uncertain duration represented by an interval, compute the
minimum float of each activity over all duration scenarios. For solving
this NP-hard problem, Dubois et al. [5] and Fortin et al. [7] have
recently proposed an algorithm based on path enumeration. In this
paper, we establish structural properties of optimal solutions and a
new lower bound allowing us to design an efficient branch-and-bound
procedure. We also propose two mixed integer programming formula-
tions. The methods are compared experimentally on a large variety of
randomly generated problem instances. The results show that the pro-
posed branch-and-bound procedure is very fast and consistently out-
performs the MIP formulations and the path enumeration algorithm.

1 Introduction

An important part of recent scheduling research aims at tackling uncer-
tainty, which occurs, under various forms, in practical applications. Dealing
with activity scheduling, a basic form of uncertainty involves uncertain du-
rations. There are several ways to model such uncertainty. The duration
of each activity can be seen as a random parameter is given by a distri-
bution of probability, which falls in the category of stochastic scheduling
[11, 1]. However, when probability distributions are not available, another
category of approaches, gathered under the robust scheduling category, con-
siders uncertainty scenarios and aims at providing performance guarantee
on a worst-case analysis basis [10, 8].

1

In the latter category, we consider interval uncertainty for activity du-
ration. Each activity has a duration that belongs to a given closed interval,
which yields to an infinite number of scenarios [9]. We consider in this con-
text one of the simplest scheduling problem: the (resource-unconstrained)
project scheduling problem with simple precedence constraints, (or PERT
scheduling). This central problem consists in computing the activity earliest
start times, latest start times and total floats. When durations are precisely
known, these values are easily computed by solving longest path problems
in the corresponding activity-on-node (or activity-on-arc) network. Under
interval uncertainty, the underlying best- and worst-case scenario analysis
aims at computing the minimum and maximum values of the activity earliest
start times, latest start times and floats. Indeed, it is of interest for a deci-
sion maker to know what would be the optimistic of pessimistic latest start
time of an activity without questioning the announced project completion
time. Similarly, computing the minimum float of an activity allows to known
its degree of potential criticality under the worst-case scenario. According
to Chanas and Zieĺınski [2], computing the minimum float of an activity
is strongly NP-hard, and remains NP-hard in an acyclic planar network of
node degree 3 [3], all other problems remaining polynomial. Complexity
results and their origin are synthesized in a recent paper by Fortin et al [7].

In the present paper, we focus on the NP-hard minimum float compu-
tation problem. In [5], Dubois et al. propose an algorithm based on path
enumeration. Computational experiments reported in [7] show the so-called
path algorithm works well for low-to-medium density precedence networks
but its performance collapses for high density networks. In this paper, we
exhibit structural properties of optimal solutions that allow us to propose
alternative methods, able to compute efficiently the minimum float for all
types of networks, including high density precedence networks.

In Section 2 we formally define the minimum activity float problem.
Section 3 recalls some previously established structural properties of optimal
solutions of the problem and proposes new ones. Section 4 presents the
path algorithm of Dubois et al and the new proposed methods which are
an improved variant of the path algorithm, a branch-and-bound method
and two mixed-integer programming formulations. Section 5 is devoted to
intensive computational experiments to compare the different algorithms.
Concluding remarks are drawn in Section 6.

2 Notations and problem definition

2.1 Activity-on-node network

A directed and acyclic activity-on-node network G(V,A) is considered. The
set of nodes V = {0, . . . , n + 1} represents activities and the set of arcs A

represents simple precedence relations among the activities.

2

2.2 Duration scenarios

Let di denote the duration of an activity i ∈ V . We assume di is an uncer-
tain parameter belonging to a given interval [dmin

i , dmax
i]. As 0 and n + 1

correspond to dummy start and end activities, respectively, we consider that
dmin
0 = dmax

0 = dmin
n+1 = dmax

n+1 = 0. Let D denote the set of possible realiza-
tions of duration vector d. We have

D = {d ∈ R
n+2|dmin ≤ d ≤ dmax}.

2.3 Paths

A path in G is an ordered set of activities (i1, i2, . . . , iz) of V
z, z ≥ 1 where

(iq, iq+1) ∈ A for z ≥ 2 and 1 ≤ q ≤ z − 1. For ease of notation, a path
made of a single activity i ∈ V may be denoted i in place of (i).

Let P denote the set of paths in G and let Pi denote the set of paths
p in P such that i ∈ p. We also define P+

i as the set of paths starting
with i and P−

i as the set of paths terminating at i. Pi,j is the set of paths
from i to j, i.e. Pi,j = P+

i ∩ P
−
j . Let o(p) (e(p)) denote the first (last)

activity of path p, respectively. For ease of notation a path p may also be
denoted (s1, s2, . . . , sr), where each sq is a path and e(sq) = o(sq+1) for
q = 1, . . . , r − 1. For example, consider paths p = (1, 3, 4) and s = (3, 4),
(1, s) is a possible notation for (1, 3, 4).

2.4 (Longest) path lengths, start times and floats

Consider a realization (or scenario) d ∈ D. We define the following values
as functions of scenario d. The length of a path p is equal to the sum of the
duration of the activities located on p, except the last-one i.e.:

lp(d) =
∑

i∈p\e(p)

di

The length of the longest path from activity a to activity b for scenario
d is denoted by

l∗a,b(d) = max
p∈P+

a ∩P−

b

lp(d)

The earliest start time of an activity, denoted esti is equal to the length
of the longest path terminating at i.

esti(d) = l∗0,i(d) = max
p∈P−

i

lp(d)

The latest start time of an activity, denoted lsti is equal to the length
of the longest path in G (the minimum project duration) minus the length

3

of the longest path from i to n + 1 (minimum elapsed time from the start
of i to the end of the project).

lsti(d) = l∗0,n+1(d)− l∗i,n+1(d) = max
p∈P

lp(d)− max
p∈P+

i

lp(d)

The float of an activity i for realized duration vector d is equal to the
difference between the lastest start time and the earliest start time of the
activity.

fi(d) = lsti(d)− esti(d)

Equivalently, the float can be expressed as the difference between the length
of the longest path in G and the length of the longest path in G traversing
i.

fi(d) = l∗0,n+1(d)− l∗i,n+1(d)− l∗0,i(d) = max
p∈P

lp(d)−max
p∈Pi

lp(d)

Given a scenario d, all the above-defined values can be computed in
polynomial time by computing the relevant longest paths.

2.5 Problem statement

We consider the n following minimization problems that amount to compute
the minimum float of each activity over the scenario set:

min
d∈D

fi(d), ∀i ∈ V \ {0, n+ 1}.

As already mentionned the problem is strongly NP-hard [2, 3].

3 Structural properties of optimal solutions

3.1 Extreme scenarios

We first recall some previously established structural properties of optimal
solutions. Let D̂ denotes the set of extreme scenarios, i.e.:

D̂ =
{

d ∈ D|∀i ∈ V, di ∈ {d
min
i , dmax

i }
}

Dubois et al [6] established the following fundamental property

Proposition 1 ([6]). For each i ∈ V , there always exists an optimal extreme

scenario:

min
d∈D

fi(d) = min
d∈D̂

fi(d)

This is an important result since the solution space, initially containing
an infinite number of scenarios, can be reduced to a set of 2n scenarios.

4

3.2 Path-induced extreme scenarios

Given a path p, let dmax(p) denote the path-induced extreme scenario where
all activities of i ∈ p are set to dmax

i whereas all activities i ∈ V \ p are set
to dmin

i .
If p′ is the longest path in G while p denote the longest path in G

traversing an activity i, recall the float fi(d) for a scenario d is equal to
the length of p′ minus the length of p. Hence, to minimize the float, one
intuitively seeks to minimize the duration of the activities along p′ while
maximizing the duration of the activities along p. Dubois et al [5], show
that for each candidate path p along i, there is actually a dominant path-
induced extreme scenario, which is stated below in Proposition 2.

Proposition 2 ([5]). For each i ∈ V , we have

min
d∈D

fi(d) = min
p∈Pi

fi (d
max(p))

Proof. Suppose that for all p ∈ Pi, fi (d
max(p)) > mind∈D fi(d). Let d

∗ such
that fi(d

∗) = mind∈D fi(d) and d∗ 6= dmax(p), ∀p ∈ Pi. Let p
′ denote one of

the longest paths in Pi for scenario d∗. The minimal float of i is equal to
the difference between the length of the longest path in P and the length of
p′ in scenario d∗. Consider now scenario dmax(p′), obtained by increasing to
dmax
j all activities j ∈ p′ and decreasing to their minimum duration all other

activities. p′ stays one of the longest paths traversing i in scenario dmax(p′)
and its lengths strictly increases by v =

∑

j∈s(d
max
j − dmin

j) where s is the
subset of activities in p′ which were not set at their maximal duration in
scenario dmax(p∗). All other paths in P cannot have their lengths increased
by more by v, including the longest one. So, the float of i cannot be increased
by switching to scenario dmax(p′), which contradicts the hypothesis.

It follows from Proposition 2 that the search for an optimal scenario
can be replaced by the search for an optimal path, i.e. the path p∗ that
minimizes fi (d

max(p)). Thus, Dubois et al [5] designed the so-called path

algorithm, consisting in enumerating all paths p ∈ P, and, for each of them,
in computing fi (d

max(p)), for all i ∈ V , through standard longest path
computations. However the number of paths can be huge as the number of
precedence constraints increases and, as experienced in [7], the path algo-
rithm fails in producing solutions in reasonable time for dense networks. To
illustrate this drawback, consider the network displayed in Figure 1, decom-
posed in φ levels such that each level contains q activities and each activity
of a level q is a successor of each activity of level p − 1. This graph has qφ

disctinct paths, so the enumeration becomes intractable as φ and q increase,
even reasonably.

5

Figure 1: Intractable graph for the path algorithm

3.3 Path structure in path-induced extreme scenarios

We propose a structural analysis refining Proposition 2, so as to hopefully
find further space search-reducing techniques. We first present a Corollary
of Proposition 2 that allows to exclude dominated paths.

Proposition 3 (Corollary of Proposition 2). For each task i, there exists

an optimal 0− n+ 1 path p∗ such that,

lp∗ (d
max(p∗)) = max

p∈Pi

lp (d
max(p)) .

Proof. This is derived from the proof of Proposition 2 since path p′ con-
structed by the argument is the longest path traversing i under scenario
dmax(p′).

It follows that the solution space of the minimum float problem of an
activity i can be further restricted to those paths which are longest path in
Pi for their induced extreme scenario. In the sequel, we call a valid path,
any path verifying this property. For each valid path p, considering activity
i and scenario dmax(p), the float is given by

fi (d
max(p)) = l∗0,n+1 (d

max(p))− lp (d
max(p))

Given a valid path p, computing the float of i requires the computation of
the longest path in G and of the length of p under scenario dmax(p) .

Actually, this longest path has a special structure, which allows simpliy-
ing the computation, as illustrated in Figure 2. Indeed, if p′ denotes the
longest path, p and p′ are identical from activity 0 to an activity a (subpath
pa), then differ from activity a to activity b (subpaths pa,b = (pa,i, pi,b) for
p and p′a,b for p′), and coincide again from b to n + 1 (subpath pb). The
float is then equal to the length of p′a,b (at minimum duration except for a)
minus the length of pa,b (at maximum duration). This is stated formally by
Proposition 4.

6

Figure 2: Structure of a valid path and of the longest path

Proposition 4. For each activity ∈ V and a valid 0−n+1 path p = (s−, s+)
with e(s−) = o(s+) = i,

fi (d
max(p)) = max

a∈s−,b∈s+
{l∗a,b(d

min) + dmax
a − dmin

a − lpa,b(d
max)},

where pa,b denote the subpath of p between a and b.

Proof. We first show that there exists an activity pair (a, b) with a ∈ s−

and b ∈ s+ such that fi (d
max(p)) = l∗a,b(d

min) + dmax
a − dmin

a − lpa,b(d
max).

Path p being a valid path, consider the longest path p′ in P under scenario
dmax(p). There are actually only two possibilities. The first one is that p and
p′ are identical. Then, float fi (d

max(p)) = 0, which is obtained by setting
a = b = i. The second possibility is that p and p′ differ. In this case, let a
denote the first activity, located at or after 0 both on p and p′, after which
p and p′ differ. Let b denote the last activity, located at or before n+1 on p

and p′, after which p and p′ are identical. As illustrated on Figure 2, p and
p′ cannot have any activity in common from a to b and i must be located on
p between a and b. Indeed, according to Bellman’s principle of optimality,
any other deviation from p to p′ (as the deviation from u to v or the one
from w to x illustrated in Figure 3) contradicts the maximality of the length
of the subpath of p before or after i. Hence the slack of i under scenario
dmax(p) is equal to

lp′
a,b

\a (d
max(p))− lpa,b\a (d

max(p)) = l∗a,b(d
min) + dmax

a − dmin
a − lpa,b(d

max).

We show now that for each pair (a, b) with a ∈ s− and b ∈ s+, we have
fi (d

max(p)) ≥ l∗a,b(d
min)+dmax

a −dmin
a −lpa,b(d

max). Suppose (a∗, b∗) such that

fi (d
max(p)) < l∗a∗,b∗(d

min)+dmax
a∗ −d

min
a∗ −lpa∗,b∗ (d

max). Consider the subpath

s from a∗ to b∗ having the shortest path at minimal duration l∗a∗,b∗(d
min).

The length of s under dmax(p) is larger than or equal to l∗a∗,b∗(d
min). So

we can derive a path p′′ identical to p from 0 to a∗, then following s, then
identical to p from b∗ to n + 1. We have lp′′ (d

max(p)) − lp (d
max(p)) ≥

l∗a∗,b∗(d
min)+ dmax

a∗ − dmin
a∗ − lpa∗,b∗ (d

max). Consider now the longest 0−n+1
path p′ under (dmax(p)). We have fi (d

max(p)) = lp′ (d
max(p))− lp (d

max(p)).
Combined with the previous expression, the length of p′′ is larger than that
of p′, a contradiction.

7

Figure 3: A dominated path structure

Finally, the problem of computing the minimal float of activity i can be
stated as the search for a valid 0−n+1 path (s−, s+) with e(s−) = o(s+) = i,
such that

max
a∈s−,b∈s+

{l∗a,b(d
min) + dmax

a − dmin
a − lpa,b(d

max)}

is minimal.

3.4 Float lower bound given a valid partial path

A direct consequence of Proposition 4 is to obtain a lower bound of the float
obtained by extending a valid partial path px,y = (s−, s+) with e(s−) =
o(s+) = i, o(s−) = x, e(s+) = y (see Figure 4 with s− = (px,a, pa,i) and
s+ = (pi,b, pb,y)). We assume px,y is valid in the sense that s− is the shortest
path in dmax(px,y) between x and i and s+ is the shortest path in dmax(px,y)
between i and y. Then, according to Proposition 4, if there exists a valid
path p = (σ−, s−, s+, σ+) with o(σ−) = 0 and e(σ+) = n+ 1, it verifies

fi (d
max(p)) ≥ max

a∈s−,b∈s+
{l∗a,b(d

min) + dmax
a − dmin

a − lpa,b(d
max)},

where pa,b is the subpath of px,y from a to b.

Figure 4: Partial path structure for float computation

4 Algorithms

4.1 Path Algorithm and improved variant

In this section we describe the Path algorithm proposed in [5] and an im-
proved variant.

8

The proposed algorithm by Dubois et al. [5] computes all 0 − n + 1
paths p, and, for each scenario dmax(p), the associated floats of all activities
through a classical PERT-CPM algorithm.

From Proposition 2, we remark that only activities on p need to be
updated since durations of other activities are set to dmin. Now, the floats
of activities set to dmin are necessarily not larger in a scenario that fixes
their duration to dmax (keeping other unchanged) and, such scenarios will
be necessarily evaluated since all paths are enumerated. In order to compute
the float associated to activities of p, we compute the longest path p′ in G

under scenario dmax(p). The minimum floats of activities on p are updated
with the upper bound l′p(d

max(p))− lp(d
max(p)).

For both algorithms a topological sort is run as a preprocessing. Then, a
recursive method explores each extreme scenario by building all the paths of
the activity-on-node network. The pseudo-codes are detailed in algorithm 1
and 2, respectively. In the original version of the algorithm, at each complete
path joining the last activity, we can expect to run 2m operations computing
all earliest and latest starting times plus n operations updating all the floats.
Our variant only runs m operations to compute the longest path (since the
network is a DAG) and |p| operations to update the floats of activities along
p. Moreover, the longest path procedure is truncated since some partial
longest paths can be reused exploring all the extreme scenarios.

Algorithm 1 original path(p)

1: i := last activity of p;
2: if i = N + 1 then

3: compute all earliest starting time est in dmax(p);
4: compute all latest starting time lst in dmax(p);
5: for all j ∈ V do

6: fj := min{fj , lstj − estj};
7: end for

8: else

9: for all j ∈ Γ(i) do
10: p′ := (p, j);
11: original path(p′);
12: end for

13: end if

4.2 Specific branch-and-bound method

Propositions 3 and 4 allow to design an efficient branch-and-bound procedure
for the computation of the minimum floats. In the procedure, the nodes of
the search tree correspond to valid partial paths, related to a given activity
i, and are stored inside a stack Q for depth-first search. Given a valid partial
path px,y = (s−, s+), with e(s−) = o(s+) = i, o(s−) = x, e(s+) = y, the
branching scheme consists in alternatively extending the path to the left or

9

Algorithm 2 improved path(p)

1: i := last activity of p;
2: if i = N + 1 then

3: p′ := longest path in dmax(p);
4: for all j ∈ p do

5: fj := min{fj , l
′
p(d

max(p))− lp(d
max(p))};

6: end for

7: else

8: for all j ∈ Γ(i) do
9: p′ := (p, j);

10: improved path(p′);
11: end for

12: end if

to the right, by considering either all the immediate predecessors of x, or
all the immediate successors of y, discarding the non-valid path extensions
(with respect to Proposition 3). Thus, considering a given path-extension
direction δ, a node has always as many children as immediate valid path-
extensions. Each node of the search tree, memorizes also the next direction
δ (δ ∈ {left, right}) to consider for the path extension. A leaf of the search
tree corresponds to a valid path p ∈ Pi from 0 to n+ 1 and is evaluated by
fi (d

max(p)). Classically, a partial path px,y = (s−, s+) is deleted only if its
current evaluation, maxa∈s−,b∈s+{l

∗
a,b(d

min)+ dmax
a − dmin

a − lpa,b(d
max)} (see

Proposition 4), is lower than the best float fi already found.
Let us comment in details Algorithm 3. We remark first that the longest

path values l∗i,j(d
min) can be precomputed very fastly using the variant of

Bellman-Ford’s algorithm for directed acyclic graphs. Computing of the
minimum float of all activities requires to run the branch-and-bound pro-
cedure n times (see step 1). At the beginning of each run (steps 2-3), fi
is set to ∞, stack Q contains only a single partial path px,y = i, and the
path-extension direction is set to left by default. The branch-and-bound
procedure is implemented in steps 4-34. While stack Q is not empty, a par-
tial path px,y is taken from the stack, with its path-extension direction δ

(step 5). Preliminarily, with respect to Proposition 4, the activities (a, b)
for which the longest path from x to y differs from px,y are determined (see
step 6). Note that this can be done incrementally in linear time: if x (y) is
the last activity to which the path has been extended to the left (right), then
for a possible update of the pair (a, b) found for the father path, we only
need to consider pairs (u, v) such that u = x (v = y) and v ∈ s+ (u ∈ s−),
respectively.

If the evaluation of px,y fails (i.e., l∗a,b(d
min)+dmax

a −dmin
a − lpa,b(d

max) ≥
fi), the path is deleted (see step 7). Otherwise, if px,y is a complete path
(i.e., x = 0 and y = n+1), then the new fi value is memorized (see steps 8-
9). If px,y is not a complete path, it is extended with respect to direction

10

δ. We only comment here the case where δ=left (see steps 10-20), the
case where δ =right (see steps 21-32) being symmetrical. If δ=left, all the
immediate predecessors x′ of x are considered for possible path extension
(see step 11). If the partial path px′,y = (s′−, s+) with s′− = (x′, s−) is valid
(i.e., if Proposition 3 is verified, a new child is generated and pushed in Q
(see steps 12-18). To verify Proposition 3, the obtained path s′− = (x′, s−)
from x′ to i must remain a longest path in dmax(s′−). This is not the case
if we can find an activity u such that s− = (s−x,u, s

+
u,i) between x and i such

that the path (x, s−x,u) has a smaller length than the deviation from x′ to u

via the longest path at minimal duration, i.e.

dmax
x′ + l

s−x,u
(dmax) < l∗x′,u(d

min) + dmax
x′ − dmin

x′ .

We underline again that the validity of a path extension can be checked in
linear time since all longest path at minimum duration have been precom-
puted. Once a new left-path-extension is made, the next extension direction
is set to right unless y = n+ 1 (see steps 12-17).

4.3 Mixed integer programming

In this section, we propose mixed integer programming (MIP) formulations
exploiting also Proposition 2 and the concept of path-induced extreme sce-
nario. For each activity, a binary variable xi indicates if i is located on
the optimal path (xi = 1) or not (xi = 0). The formulations also involve
earliest start time continuous variables Si, whose value is the length of the
longest path from 0 to i in the scenario that minimizes the float. We propose
two different models: an activity independent formulation and an activity
dependent formulation.

4.3.1 Activity-independent MIP

The activity-independent formulation is solved iteratively. At iteration k, a
set Uk of activities with unknown floats is considered (at iteration 0, U0 =
V \ {0, n + 1}). MIP Q(k) finds the minimal float for a set Fk ⊂ Uk of
activities, with its related path-induced extreme scenario dmax(p), where
Fk is the set of activities belonging to the computed path p, (i.e., such
that xi = 1). At the next iteration, Uk+1 is set to Uk \ Fk. Due do the
minimization objective, note that, if i ∈ Uk \Fk and if j ∈ F0∩F1∩· · ·∩Fk,
then mind∈D fi(d) ≥ mind∈D fj(d). It follows that at iteration 0, a path of
activities having a null float will be issued. Then, the floats are issued in non
decreasing order along the iterations, until all activities get their minimal
float computed. This mechanism ensures that at most n iterations will be
needed.

Q(k) :

min z(k) = Sn+1 −
∑

i

dmax
i xi (1)

11

Algorithm 3 branch-and-bound

1: for all i ∈ V \ {0, n+ 1} do
2: fi ←∞;
3: push(P, (i, left));
4: while P 6= ∅ do
5: (px,y = (s−, s+), δ)←pop(P);
6: (a, b)← argmax

{u∈s−,v∈s+}

(

l∗u,v(d
min) + dmax

u − dmin
u − lpu,v

(dmax)
)

;

7: if l∗a,b(d
min) + dmax

a − dmin
a − lpa,b

(dmax) < fi then

8: if x = 0 AND y = n+ 1 then

9: fi ← l∗a,b(d
min) + dmax

a − dmin
a − lpa,b

(dmax);
10: else if δ =left then
11: for all x′ ∈ Γ−1(x) do
12: if dmax

x′ + ls−x,u
(dmax) ≥ l∗x′,u(d

min) + dmax
x′ − dmin

x′ , ∀u ∈ s− then

13: if y 6= n+ 1 then

14: δ ←right;
15: else

16: δ ←left;
17: end if

18: push(P, ((x′, px,y), δ);
19: end if

20: end for

21: else if δ =right then
22: for all y′ ∈ Γ(y) do
23: if ls+v,y

(dmax) + dmax
y ≥ l∗v,y′(dmin) + dmax

v − dmin
v , ∀v ∈ s+ then

24: if x 6= 0 then

25: δ ←left;
26: else

27: δ ←right;
28: end if

29: push(P, ((px,y, y
′), δ);

30: end if

31: end for

32: end if

33: end if

34: end while

35: end for

12

subject to

z(k) ≥ z(k − 1), (2)

Sj ≥ Si + dmin
i + (dmax

i − dmin
i)xi ∀(i, j) ∈ A, (3)

xi ≤
∑

j∈Γ−1

i

xj ≤ 1 ∀i 6= 0, n+ 1, (4)

xi ≤
∑

j∈Γi

xj ≤ 1 ∀i 6= 0, n+ 1, (5)

x0 = xn+1 = 1, (6)
∑

i∈Uk

xi ≥ 1, (7)

xi ∈ {0, 1} ∀i ∈ V. (8)

Objective (1) gives the difference between the longest path in G, given
by Sn+1, and the length of path p represented by xi values, on which all
activities are set to their maximal duration. Constraint (2) states that the
float is non decreasing between two successive iterations (this constraint is
redundant). Constraints (3) implement precedence relations between activi-
ties (i, j) ∈ A, that is Sj−Si ≥ dmax

i if i is on p (i.e., xi = 1), Sj−Si ≥ dmax
i

otherwise(i.e., xi = 0). Constraints (4-6) enforce the xi values to define a
path from 0 to n+1. Sets of predecessors (successors) of i being denoted Γ−1

i

(Γi), an activity can be located on p only if exactly one of its predecessors
(successors) belongs also to p, respectively. Constraints (6) state that 0 and
n+1 are the extremities of path p. Constraint (7) enforces the selected path
to traverse at least one activity with unknown float (set Uk).

4.3.2 Activity-dependent MIP

The activity-dependent MIP P(k) below is just a particular case of Q(k),
where at each iteration k, the set Uk is reduced to the single activity k.
Hence, for each activity k, P(k) minimizes float fk. To obtain all minimal
floats, exactly n iterations are needed. Giving this definition, the MIP can
be rewritten as follows. The only difference with Q(k) lies in constraint (14)
stating that k must be located on path p.

P(k) :

min fk = Sn+1 −
∑

i

dmax
i xi (9)

13

subject to

Sj ≥ Si + dmin
i + (dmax

i − dmin
i)xi ∀(i, j) ∈ A, (10)

xi ≤
∑

j∈Γ−1

i

xj ≤ 1 ∀i 6= 0, n+ 1, (11)

xi ≤
∑

j∈Γi

xj ≤ 1 ∀i 6= 0, n+ 1, (12)

x0 = xn+1 = 1, (13)

xk = 1, (14)

xi ∈ {0, 1} ∀i ∈ V. (15)

Note that computing all minimum floats with Q(k) may need less it-
erations than with P(k). However, the search space for P(k) is reduced
since only ancestors and descendants of k may belong to p. Section 5 com-
pares experimentally the two formulations together with the proposed spe-
cific branch-and-bound method and the path algorithm of Dubois et al. [5]
and Fortin et al. [7].

5 Computational experiments

This section presents computational results to compare the efficiencies of
the Path algorithm (Path) of Dubois et al. [5] and Fortin et al. [7] (orig-
inal path), its improved variant (improved path), the activity dependent
(MIPd) and independent (MIPi) mixed-integer programs and our specific
branch-and-bound procedure (BB). All the experiments were performed on
the same Intel 2.6 GHz processor having 3 Go RAM running on a Linux
XUbuntu operating system. The MIP approaches were implemented using
Cplex 12.0.

5.1 Randomly generated problem instances

Two sets of robust-PERT problem instances were used. The first set, also
considered in [7], is built up from the 120 problem instances of the PSPLIB,
that was originally designed for comparing solving approaches for the Resource-
Constrained Project Scheduling Problems (RCPSP). Each problem instance
is defined by an activity network, each activity i being characterized by a
deterministic duration di and a resource consumption vector. As in [7],
for building up robust-PERT instances, we omit the resource characteristics
and the interval uncertainty of the activity duration were set to [di, di×1.2].
These benchmarks are named PSPLIB−instances.

As in [7], using RanGen1 software ([4]), we also generated a set of 9
series of 100 activities networks called RG-instances, each of them being
identified by its order strength. The order strength measures the density

14

of directed acyclic graphs. Therefore, networks with a high order strength
have a high number of paths. An order strength of 0 means a full parallelism
while an order strength of 1 gives a total order. We parametrized RanGen1
for order strengths ranging from 0.1 to 0.9 by steps of 0.1. For determining
the uncertainty interval [dmin

i , dmax
i] of each activity, the benchmarking pro-

cedure described in [7] was used to generate the RG-instances. It suggests
to randomly set a duration dmin

i ∈ [10, 50], then to set dmax
1 to dmin

i × 1.2 (as
done with the PSPLIB−instances).

Nevertheless, we point out that this interval generation scheme intro-
duces a bias since it yields the property that for any path p and p′, lp(d

min) >
lp′(d

min) =⇒ lp(d
max) > lp′(d

max). Consequently, we also use a more gen-
eral interval generation scheme for an activity j, using two parameters α

and β, such that

[

dmin
j ∈ {10, α50} , dmax

j ∈
{

dmin
j , (1 + β)dmin

j

}]

.

Parameters α and β have been picked in the set {0.3, 0.6, 0.9}, the possi-
ble combinations defining, for each order strength, 9 set of 100-activities
instances denoted α− β−instances.

5.2 Algorithm comparison

We first present a comparison between the two path algorithms, the orig-
inal and the improved one on the PSPLIB− and RG− instances. The
computing times (in seconds) compiled in Table 1 confirm the theoretical
dominance of our variant of the Path algorithm. Computing times are di-
vided by almost 2 on every problem instance. Furthermore for the instnaces
with OS = 0.9, the improved variant is able to obtain solutions in less than
2 hours while the original variant cannot. For the remaining of the tests, we
keep only the improved variant of the path algorithm.

The two MIP formulations are compared in Table 2 on the PSPLIB−
and RG−instances. The activity-dependent MIP runs faster on all tested
instances. On the most difficult instances with order strength at 0.8, MIPd
needs 98.80 seconds to compute all the floats whilst MIPi needs 197.49 in
average and 671.45 in the worst case. The high number of iterations of
MIPi – at least 50 – is the main reason of the MIPd dominance, since each
iteration of MIPi is expected to be harder to solve. In the following, MIPi
results are discarded and only MIPd is compared to other algorithms.

Table 3, reports for each algorithm (improved path, MIPd, BB), the
average and maximal computing times grouped by series of instances. CPU
times were limited to one hour. The α − β-instances are grouped by order
strength and β values since α is not discriminant for all algorithms.

The MIPd algorithm is dominated by the Path algorithm on all se-
ries of instances but the 0.9 OS series. Actually, the Path algorithm fails
to compute minimal floats after one hour. The results obtained on the

15

serie average time sec. maximum time
original improved original improved

PSPLIB

OS ∈ [0.1, 0.5] 0.01 < 0.005 0.03 0.01

RG

OS = 0.1 0.00 0.00 0.01 0.01
OS = 0.2 0.01 0.00 0.02 0.01
OS = 0.3 0.03 0.02 0.04 0.02
OS = 0.4 0.07 0.04 0.11 0.05
OS = 0.5 0.21 0.12 0.32 0.19
OS = 0.6 0.72 0.43 1.02 0.62
OS = 0.7 4.02 2.50 6.03 3.79
OS = 0.8 52.71 33.96 90.98 55.99
OS = 0.9 5465.00 2843.00 10524.00 6726.00

Table 1: Comparison of the two path algorithms

serie average time sec. maximum time average iterations
MIPi MIPd MIPi MIPd MIPi MIPd

PSPLIB

OS ∈ [0.1, 0.5] 22.34 4.55 130.84 23.02 50 120

RG

OS = 0.1 4.65 0.25 8.89 0.33 83 100
OS = 0.2 12.28 0.54 17.93 0.69 81 100
OS = 0.3 19.37 1.08 26.85 1.61 80 100
OS = 0.4 28.21 2.29 43.52 3.40 77 100
OS = 0.5 44.62 4.99 110.74 7.71 75 100
OS = 0.6 70.42 9.22 169.90 16.51 73 100
OS = 0.7 140.19 14.95 255.91 21.13 70 100
OS = 0.8 197.49 23.12 671.45 98.80 66 100
OS = 0.9 99.52 17.43 430.94 111.45 58 100

Table 2: Comparison of MIP formulations

16

PSPLIB−instances reveal that the MIPd suffers a lot of the increase of the
number of activities. The BB procedure outperforms the other algorithms.
The dominance of the BB algorithm increases with the order strength.

We can also state that RG−instances can be quickly solved by the
MIPd algorithm, and to a lesser extent by the BB algorithm. Indeed,
the MIPd algorithm effort increases with the order strength and β values.
It requires at the worst case 78.14, 590.17 and 1776.73 seconds to solve
α − β−instances with β = 0.3, 0.6 and 0.9, respectively. MIPd has similar
results on PSPLIB−, RG− and α − β = 0.3−instances where the ratio
between dmax and dmin is close to 1.2. In those sets of instances, the dom-
inance between paths can easily overpass scenarios because of their similar
duration increase from dmin to dmax. We assume that this property can
strengthen the branch-and-bound procedure in the MIP solver.

The α−β−instances are derived from the RG−instances and their trans-
formation keeps the underlaying network unchanged. The Path algorithm
therefore has the same performance on every duration interval patterns of
each instance. Regarding the number of nodes explored, we also found that
the results are similar for the BB algorithm on every duration interval pat-
terns of each instance. For those reasons the results concerning different
series of instances are merged in the Table 4, which gives the average and
maximum number of paths and the number of nodes explored by the Path
and BB algorithms, respectively.

As expected, the Path algorithm is able to solve quickly instances with
low-to-medium order strength (up to 0.7). Considering the order strength
definition and the Table 4, it is obvious that a high order strength enforces
a high number of paths which is the critical aspect of the Path algorithm.
We remark that the maximum number of nodes explored in BB is not so
sensitive to the order strength, smoothly varying from 2279 to 87113. It
means that the dominance rules implemented in BB are strong enough to
prune many scenarios. Computing times of BB slightly increase with the
order strength – it run from 0.01 to 0.08 seconds – since, in the worst case,
all the paths of the network are visited. However, the number of explored
nodes in average is surprisingly decreasing from OS = 0.8 to OS = 0.9.
We explain that phenomenon by the following reasoning. Let us consider
an optimal scenario for the minimum float of the activity i. Let p be the
longest path traversing i and p′ the longest path for the extreme scenario
p. The paths p′ and p diverge at the activities a and b. As the activity-
network order strength is increasing, the probability to find a and b close to
i is also increasing. As the BB algorithm starts to evaluate pairs of possible
diverging activities from i to the extremities 0 and N + 1, we can expect to
find optimal floats – then cut many nodes – early.

Though the BB procedure seems to be sensitive to the order strength,
we can not state on the impact of the values of parameters α and β. In our
implementation of BB, no rule guides the exploration of activities (the list

17

serie average time sec. maximum time
Path MIPd BB Path MIPd BB

PSPLIB

OS ∈ [0.1, 0.5] < 0.005 4.55 < 0.005 0.01 23.02 0.01

RG

OS = 0.1 < 0.005 0.25 < 0.005 0.01 0.33 0.01
OS = 0.2 < 0.005 0.54 < 0.005 0.01 0.69 0.01
OS = 0.3 0.02 1.08 < 0.005 0.02 1.61 0.01
OS = 0.4 0.04 2.29 < 0.005 0.05 3.40 0.01
OS = 0.5 0.12 4.99 0.01 0.19 7.71 0.02
OS = 0.6 0.43 9.22 0.01 0.62 16.51 0.02
OS = 0.7 2.50 14.95 0.02 3.79 21.13 0.04
OS = 0.8 33.96 23.12 0.02 55.99 98.80 0.04
OS = 0.9 > 1800 17.43 0.02 > 1800 111.45 0.03

α− β = 0.3

OS = 0.1 < 0.005 0.24 < 0.005 0.01 0.33 0.01
OS = 0.2 < 0.005 0.51 < 0.005 0.01 0.67 0.01
OS = 0.3 0.02 1.03 < 0.005 0.02 1.58 0.01
OS = 0.4 0.04 2.17 < 0.005 0.06 3.6 0.01
OS = 0.5 0.12 4.86 0.01 0.22 8.64 0.02
OS = 0.6 0.44 9.04 0.01 0.62 14.07 0.02
OS = 0.7 2.51 15.65 0.02 3.83 24.78 0.04
OS = 0.8 34.37 24.62 0.02 58.01 73.29 0.06
OS = 0.9 > 1800 17.12 0.02 > 1800 78.14 0.04

α− β = 0.6

OS = 0.1 < 0.005 0.26 < 0.005 0.01 0.35 < 0.005
OS = 0.2 < 0.005 0.56 < 0.005 0.01 0.72 0.01
OS = 0.3 0.02 1.15 < 0.005 0.02 1.71 0.01
OS = 0.4 0.04 2.37 < 0.005 0.05 3.67 0.01
OS = 0.5 0.12 5.34 0.01 0.17 8.08 0.02
OS = 0.6 0.43 10.71 0.01 0.65 17.49 0.02
OS = 0.7 2.5 23.43 0.02 4.03 52.17 0.04
OS = 0.8 34.35 63.89 0.02 56.45 157.07 0.06
OS = 0.9 > 1800 94.61 0.02 > 1800 590.17 0.04

α− β = 0.9

OS = 0.1 < 0.005 0.27 < 0.005 < 0.005 0.34 0.01
OS = 0.2 < 0.005 0.6 < 0.005 0.01 0.82 0.01
OS = 0.3 0.02 1.25 < 0.005 0.02 1.85 0.01
OS = 0.4 0.04 2.55 < 0.005 0.05 3.82 0.01
OS = 0.5 0.12 5.77 0.01 0.22 9.49 0.02
OS = 0.6 0.43 12.12 0.01 0.66 23.89 0.02
OS = 0.7 2.52 34.76 0.01 3.87 84.68 0.03
OS = 0.8 34.38 124.22 0.02 57.71 267.88 0.05
OS = 0.9 > 1800 338.98 0.01 > 1800 1776.73 0.08

Table 3: Computing times comparison on all instances18

P is unsorted). We can imagine that such rules can speed-up the procedure
exploiting the regularity of the instances with low value of α and β.

6 Conclusion

We have proposed a very fast method for computing the minimum float of
activities in activity-on-node networks, under interval duration uncertainty.
Thanks to newly established structural properties of optimal solutions and
lower-bound on partial solutions, the method consistently outperforms the
methods it has been compared with: new mixed integer programming formu-
lations solved by a commercial solver and the path enumeration algorithm
of Dubois et al. [5] and Fortin et al. [7].

References

[1] F. Ballest́ın. When it is worthwhile to work with the stochastic rcpsp?
Journal of Scheduling, 10(3):153–166, 2007.

[2] S. Chanas and P. Zieĺınski. The computational complexity of the crit-
icality problems in a network with interval activity times. European

Journal of Operational Research, 136:541–550, 2002.

[3] S. Chanas and P. Zieĺınski. On the hardness of evaluating criticality of
activities in planar network with duration intervals. Operation Research

Letters, 31:53–59, 2003.

[4] E. Demeulemeester, M. Vanhoucke, and W. Herroelen. Rangen: a ran-
dom network generator for activity-on-the-node networks. Journal of

Scheduling, 6(1):17–38, 2003.

[5] D. Dubois, H. Fargier, and J. Fortin. Computational methods for de-
termining the latest starting times and floats of tasks in interval-valued
activity networks. Journal of Intelligent Manufacturing, 16:407–422,
2005.

[6] D. Dubois, H. Fargier, and V. Galvagnon. On latest starting times and
floats in activity networks with ill-known durations. European Journal

of Operational Research, 147:266–280, 2003.

[7] J. Fortin, P. Zieliński, D. Dubois, and H. Fargier. Criticality analysis
of activity networks under interval uncertainty. Journal of Scheduling,
2010. DOI: 10.1007/s10951-010-0163-3.

[8] W. Herroelen and R. Leus. Project scheduling under uncertainty: Sur-
vey and research potentials. European journal of operational research,
165(2):289–306, 2005.

19

[9] Adam Kasperski. Discrete Optimization with Interval Data. Springer,
2008.

[10] P. Kouvelis and G. Yu. Robust discrete optimization and its applica-

tions. Springer, 1997.

[11] R. H. Möhring, F. J. Radermacher, and G. Weiss. Stochastic scheduling
problems i – general strategies. Mathematical Methods of Operations

Research, 28(7):193–260, 1984.

20

serie Paths explored by Path Nodes explored by BB
order strength avg. max. avg. max.

PSPLIB

OS ∈ [0.1, 0.5] 326 1277 5352 12422

RG and α− β

OS = 0.1 404 438 1806 2279
OS = 0.2 804 890 3253 4245
OS = 0.3 1644 1929 5160 7066
OS = 0.4 3793 4783 8161 12253
OS = 0.5 10527 14208 12265 21144
OS = 0.6 38024 50672 16970 30696
OS = 0.7 228018 346082 21191 47532
OS = 0.8 3325121 5595599 23131 75232
OS = 0.9 298930149 707330531 18063 87113

Table 4: Number of paths and nodes explored by Path and BB algorithms,
respectively

21

