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Abstract

We propose a non-parametric statistical procedure for detecting multiple change-points in

multidimensional signals. The method is based on a test statistic that generalizes the well-

known Kruskal-Wallis procedure to the multivariate setting. The proposed approach does not

require any knowledge about the distribution of the observations and is parameter-free. It is

computationally efficient thanks to the use of dynamic programming and can also be applied

when the number of change-points is unknown. The method is shown through simulations

to be more robust than alternatives, particularly when faced with atypical distributions (e.g.,

with outliers), high noise levels and/or high-dimensional data.

Keywords: Change-point estimation, multivariate data, Kruskal-Wallis test, robust statistics,

joint segmentation.

1 Introduction

Retrospective multiple change-point estimation consists in partitioning a non-stationary series

of observations into several contiguous stationary segments of variable durations [1]. It is par-

ticularly appropriate for analyzing a posteriori time series in which the quantity driving the
behavior of the time series jumps from one level to another at random instants called change-

points. Such a task, also known as temporal signal segmentation in signal processing, arises
in many applications, ranging from EEG to speech processing and network intrusion detection

[2, 3].

The classic setting for change-point detection and estimation is the case where the sequence
of observations is univariate and the use of the least-squares criterion is considered to be ade-

quate, for instance, in the presence of Gaussian noise [4, 5]. When there are multiple change-
points to be detected, the composite least-squares criterion can be efficiently optimized using a

dynamic programming recursion whose computational cost scales like the square of the number

of observations [6, 7, 8]. The approach can be generalized to multivariate settings [9].
In this work, we consider methods that can be applied to high-dimensional data without

requiring strong prior knowledge of the underlying distribution of the observations. To the
best of our knowledge, there are very few approaches in the literature that are suitable for this

task. The first option is the kernel-based approach of [10] which uses a general kernel metric to

evaluate distances between multivariate observations. This approach is powerful but requires
the choice of an appropriate kernel function and, furthermore, it is not robust in situations
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where the noise level is very significant as will be illustrated in Section 4. The other relevant

reference is [11] which combines univariate rank statistics using a weighting matrix derived from
an asymptotic analysis. This approach, which is based on the principle of the Mann-Whitney

Wilcoxon two-sample test, is however limited to the case where, at most, a single change-point is

present in the observed signal. Our contribution with this paper is to show that the test statistic
of [11] can be modified so as to deal with multiple change-points (in analogy with the way the

classical Kruskal-Wallis test generalizes the Mann-Whitney Wilcoxon statistic to multiple group
testing [12]. Furthermore, we show that the proposed test statistic is amenable to dynamic

programming and can thus be optimized efficiently despite the combinatorial nature of the

multiple change-point detection task. We will show in particular that the proposed method,
termed dynMKW (for “dynamic programming multivariate Kruskal-Wallis”), is more efficient

than greedy strategies based on repeated use of single change-point tests as suggested in [13].
When dealing with multiple change-points, one needs a criterion for estimating the number

of change-points which is an instance of a model selection problem. Traditional approaches

include the use of a complexity penalty that is added to the test statistic [5, 7, 14] or the use
of priors on the locations of change-points when adopting the Bayesian point of view, see,

e.g., [15, 16] and references therein. An original approach adopted in [17, 18] is to consider

the penalty associated to the use of the ℓ1 norm (or block-ℓ1 norm in [18]). In this paper, we
propose a simple construction which relies on the so-called “slope heuristic” and is a variant of

the procedure described in [14]. Although heuristic this approach is preferable to off-the-shelf
Schwarz-like penalties (AIC, BIC, etc.) which are most often found to be badly-calibrated for

the type of problems considered here.

The paper is organized as follows. The statistical methodology for testing homogeneity
in several groups of multivariate observations is described in Section 2. The procedure for

estimating the change-points derived from this testing procedure is then described in Section 3.
In Sections 4, we report the results of numerical experiments carried out on synthetic and real

data.

2 Testing homogeneity within several groups of multivariate

data

Let X1, . . . , Xn be n L-dimensional observed random vectors such that Xj = (Xj,1, . . . , Xj,L)
′,

where A′ denotes the transpose of the matrix A. We assume in the following that X1, . . . , Xn are
independent. In this section, we first consider testing the hypothesis (H0) that K given groups,

X1, . . . , Xn1 , Xn1+1, . . . , Xn2 , . . . , XnK−1+1, . . . , XnK , have the same distribution, where we will use

the convention that n0 = 1 and nK = n.

For j in {1, . . . , n} and ℓ in {1, . . . , L}, let R
(ℓ)
j denote the rank of Xj,ℓ among (X1,ℓ, . . . , Xn,ℓ)

that is R
(ℓ)
j = ∑

n
k=1 1{Xk,ℓ≤Xj,ℓ}

. Also define R̄
(ℓ)
k , for k in {0, . . . , K − 1}, by

R̄
(ℓ)
k = (nk+1 − nk)

−1
nk+1

∑
j=nk+1

R
(ℓ)
j .

We propose to use the following statistic:

T(n1, . . . , nK−1) =
1

n2

K−1

∑
k=0

(nk+1 − nk)R̄′
k Σ̂−1

n R̄k , (1)

where R̄k is defined by

R̄k = (R̄
(1)
k − n/2, . . . , R̄

(L)
k − n/2)′ , (2)
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and Σ̂n is the L × L matrix whose (ℓ, ℓ′)–th element is defined by

Σ̂n,ℓℓ′ =
1

n2

n

∑
i=1

{R
(ℓ)
i − n/2}{R

(ℓ′)
i − n/2} . (3)

Note that Σ̂n,ℓℓ′ can be rewritten as

Σ̂n,ℓℓ′ =
1

n

n

∑
i=1

{F̂n,ℓ(Xi,ℓ)− 1/2}{F̂n,ℓ′(Xi,ℓ′)− 1/2} , (4)

where F̂n,ℓ(t) = n−1 ∑
n
j=1 1{Xj,ℓ≤t} denotes the empirical cumulative distribution function (c.d.f.)

of the ℓth coordinate X1,ℓ. The matrix Σ̂n thus corresponds to an empirical estimate of the

covariance matrix Σ with general term

Σℓℓ′ = Cov
(

Fℓ(X1,ℓ); Fℓ′(X1,ℓ′)
)

, 1 ≤ ℓ, ℓ′ ≤ L , (5)

Fℓ denoting the c.d.f. of X1,ℓ which we shall assume in the sequel to be continuous.

Observe that (1) extends to the multivariate setting the classical Kruskal-Wallis test [12]

which applies to the univariate data. Indeed, when L = 1, (1) is equivalent to

T(n1, . . . , nK−1) =
12

n2

K−1

∑
k=0

(nk+1 − nk)
(

R̄
(1)
k − n/2

)2
, (6)

where we have replaced Σ̂n,11 by Σ11 = Var(F1(X1,1)) = Var(U) = 1/12, where U is a uniform

random variable on [0, 1], F1 being a continuous cumulative distribution function. In the case

where there is only one change-point, i.e. when K = 2, (1) reduces to the test statistic proposed
in [11] to extend the Mann-Whitney/Wilcoxon rank test to multivariate data. We state below

(without proof for reasons of space) a result which shows that (1) is properly normalized in the
sense that under the null hypothesis it converges, as n increases, to a fixed limiting distribution

that only depends on K and L.

Theorem 1. Assume that (Xi)1≤i≤n are R
L-valued i.i.d. random vectors such that, for all ℓ, the c.d.f.

Fℓ of X1,ℓ is a continuous function. Assume also that for k = 0, . . . , K − 1, there exists λk in (0, 1) such

that (nk+1 − nk)/n → λk+1, as n tends to infinity. Then, T(n1, . . . , nK−1) defined in (1) satisfies

T(n1, . . . , nK−1)
d

−→ χ2 ((K − 1)L) , as n → ∞ , (7)

where d denotes the convergence in distribution and χ2((K − 1)L) denotes the chi-square distribution

with (K − 1)L degrees of freedom.

3 Detecting change-point locations

In this section, we consider applying the test statistic described in the previous section to deter-

mine the positions of the segment boundaries n1, . . . , nK−1, starting with the simpler case where

the number of change-points K is known.

3.1 Estimation of a known number of change-points

To estimate the change-point locations, we propose to maximize the statistic T(n1, . . . , nK−1)
defined in (1) with respect to the segment boundaries n1, . . . , nK−1:

(n̂1, . . . , n̂K−1) = argmax
1≤n1<···<nK−1≤n

T(n1, . . . , nK−1) . (8)
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Of course, direct maximization of (8) is impossible as it corresponds to a combinatorial

problem whose complexity is exponential in K. We can however perform this maximization
efficiently using the dynamic programming algorithm described in [6]. More precisely, using

the notations

∆(nk + 1 : nk+1) = (nk+1 − nk)R̄′
k Σ̂−1

n R̄k ,

and

IK(p) = max
1<n1<···<nK−1<nK=p

K−1

∑
k=0

∆(nk + 1 : nk+1) ,

we have

IK(p) = max
nK−1

{IK−1(nK−1) + ∆(nK−1 + 1 : p)} . (9)

Thus, for solving the optimization problem (8), we proceed as follows. We start by computing

the ∆(i : j) for all (i, j) such that 1 ≤ i < j ≤ n. All the I1(E) are thus available for E = 2, . . . , n.
Then I2(E) is computed by using the recursion (9) and so on. The overall numerical complexity

of the procedure is thus proportional to K × n2.

3.2 Estimation of the number of change-points

In practice the number of change-points can rarely be assumed to be known. Although it is

not the main focus of this paper, we propose a heuristic algorithm to find the optimal number

of change-points. Values of the statistics IK(n), for K = 0, . . . , Kmax, are first computed using
the procedure described in the previous section. The algorithm is based on the principle that

in the presence of K⋆ ≥ 1 change-points, if IK(n) is plotted against K, the resulting graph
can be decomposed into two distinct linear trends: a first one, for K = 0, . . . , K⋆ where the

criterion is growing rapidly; and a second one, for K = K⋆, . . . , Kmax, where the criterion is

barely increasing. Hence, for each possible value of K in K = 1, . . . , Kmax, we compute least
square linear regressions for both parts of the graph (before and after K); the estimated number

of change-points is the value of K that yields the best fit, that is, the value for which the sum
of the residual sums of squares computed on both parts of the graph is minimal (see Figure

1). The case K = 0 is treated separately and the procedure that has just been described is

used only when the value of T(n̂1) is significant, based on the asymptotic p-value for the single
change-point case obtained in [11].

4 Numerical experiments

In this section, the performance of the dynMKW algorithm is assessed using simulated signals
and we next consider its application to data arising from a biological context.

4.1 Simulated data

The simulation reported is this section is based on a fixed 5-dimensional piecewise constant
signal of length 500 with a predefined set of four shared breakpoints. Note that this signal

reproduces an important feature of many applications (see [3] as well as the example of the

cancer data below) in that only a subset of its coordinates actually change simultaneously. To
this baseline signal is added some moderately correlated Gaussian noise with marginal variance

σ2, see Figure 2 for an example corresponding to a marginal SNR of 16 dB, where the SNR is
defined as the ratio of the jump amplitude over σ. The performance of the algorithms is assessed

from 1000 Monte-Carlo replications of the data for each value of σ2 and measured in terms of

precision (proportion of correctly estimated changes found among the detected change-points)
and recall (proportion of actual change-points that have been correctly estimated). We used a
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Figure 1: Determining the optimal number of change-points. Here, the actual number of change-points is K⋆ = 4; the
optimal regression is displayed in solid lines, while a non-optimal alternative (for K = 6) is displayed in dashed lines.

±1 sample tolerance for deciding whether a change-point has been correctly estimated but the

conclusion were qualitatively the same for larger values of this tolerance.
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Figure 2: Baseline signal with superimposed noise at an SNR of 16 dB.

4.1.1 Known number of change-points

We compare our algorithm with two other different methods – which also rely on a dynamic

programming step – for multiple change-points detection: first, with the kernel-based approach
of [10] that computes “intra-segment scatter” using an isotropic Gaussian kernel function and

second, the parametric method corresponding to the multivariate Gaussian assumption.
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As shown in Figure 3 left, the parametric method (“Linear”) yields the best results, as the

noise added to the signal is indeed Gaussian. Unsurprisingly, the proposed dynMKW approach
performs slightly worse in this scenario but is certainly preferable than the kernel test, par-

ticularly when the level of noise increases. In Figure 3 right, we repeat the experiment with

significant contamination by outliers. The dynMKW method demonstrates its robustness as,
contrary to both alternatives, its performance barely suffer from the presence of outliers.
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Figure 3: Precision curves of the dynMKW, kernel-based and linear algorithms at different levels of noise for a known
number of change-points. Left: signals with no outliers; right: signals with 5% of outliers (whose variance is 10 dB
higher than that of the background noise). Recall curves are not displayed as they are identical in the known number
of change-points case.

4.1.2 Unknown number of change-points

Using the same signal as previously, we suppose in the experiments presented here that the

number of change-points is unknown. Our algorithm, combined with the approach for estimat-

ing the number of change-points presented in Section 3.2 is compared with a greedy hierarchical
method suggested by [13]: Breakpoints are detected by iteratively testing for the presence of a

single change-point in the sub-segments determined in previous stages. This method (“Vost”)
is applied using (8) restricted to K = 1 as a single change-point detector, where the asymptotic

p-value determined in [11] is computed to decide whether the current segment should be seg-

mented any further (segmentation stops whenever the p-value is larger than a threshold, say 1
or 5%).

Results are shown in Figure 4 with precision and recall measures. It is observed that dyn-
MKW outperforms the Vost procedure both in precision and recall. From a more qualitative per-

spective, the Vost procedure tends to systematically over-segment the signal while our method,

when faulting, is more inclined to miss some change-points.

4.2 Bladder tumor CGH profiles

We consider the bladder cancer micro-array aCGH dataset1 of [18]. The objective here is to
jointly segment data recorded from different subjects so as to robustly detect regions of frequent

deletions or additions of DNA which could be characteristic of cancer. Each of the 57 profiles

provides the relative quantity of DNA for 2215 probes measured on 23 chromosomes. We ran
the dynMKW algorithm on each chromosome separately, thus treating 23 different 9- to 57-

dimensional signals (depending on the selected groups of patients at different stages of cancer)

1http://cbio.ensmp.fr/~frapaport/CGHfusedSVM/index.html
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Figure 4: Precision (top) and recall (bottom) for dynMKW with estimates of the number of change-points and Multi-
Rank with binary segmentation (Vost.) with threshold of 0.01 and 0.05.

of length 50 to 200 (the number of probes varies for each chromosome). Results are shown for a

group of 9 individuals corresponding to Stage T1 of a tumor. In Figure 5, the smoothed version

of the whole set of probes resulting from the segmentation is displayed, while a focus is given
on the 10th chromosome in Figure 6. In each case, the segmentation result is represented by a

signal which is constant (and equal to the mean of the data) within the detected segments.
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Figure 5: Superposition of the smoothed bladder tumor aCGH data for 9 individuals in Stage T1 cancer that results
from the segmentation. Vertical dashed lines represent the separation between the different chromosomes.
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