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Abstract

Visual attention is a complex concept that includes many
processes to find the region of concentration in a visual
scene. In this paper, we discuss a spatio-temporal visual
saliency model where the visual information contained in
videos is divided into two types: static and dynamic that are
processed by two separate pathways. These pathways pro-
duce intermediate saliency maps that are merged together
to get salient regions distinct from what surround them. Evi-
dently, to realize a more robust model will involve inclusion
of more complex processes. Likewise, the dynamic path-
way of the model involves compute-intensive motion estima-
tion,that when implemented on GPU resulted in a speedup
of up to 40z against its sequential counterpart. The imple-
mentation involves a number of code and memory optimiza-
tions to get the performance gains, resultantly materializing
real-time video analysis capability for the visual saliency
model.

1. Introduction

The motivation behind the mimicking human vision sys-
tem is to develop a complete computer vision system. The
research in this field includes methods to extract useful in-
formation for proper characterization of a visual scene, thus
making possible its analysis for a computer system. One of
these many techniques are by estimating the motion to find
the regions of attention.

Motion estimation is a process to examine movement of an
object by generating motion vectors for a sequence of im-
ages. The motion estimator implemented in this paper is
proposed by Bruno et al. [3], which afterwards is incorpo-
rated into the spatio-temporal visual saliency model devel-
oped by Marat et al. [7]. The model proposed focuses on
the information extracted from the visual field, without any
top-down modalities, and in the end resulting in a region of
attention.

The saliency model is inspired from Feature Integration

Theory [13] that involves the decomposition of the visual
field into various simple attributes. These are afterwards
treated using several processes, and at the end are com-
bined to find the regions that dominate others. The complete
model is compute-intensive, hence it is a perfect candidate
for parallelization to be used for real-time video analysis.
GPU presents us with an inherently parallel architecture
for image-based algorithms that are often complex and
time-consuming. The desired performance can be ex-
tracted off these highly parallel GPUs by employing vari-
ous methods to optimize the memory usage and thread al-
location/synchronization. In this paper, we implement the
dynamic pathway of the visual saliency model on the GPU.
We concentrate on the optimization of the most compute-
intensive kernel, the motion estimator, to achieve the de-
sired speedup. The paper is organized as follows: In sec-
tion 2, we presented a short introduction to the two path-
way spatio-temporal visual saliency model. In section 3,
we summarize the dynamic pathway of the model with a
brief description of the motion estimator used. Afterwards,
the section summarizes our implemented algorithm with the
different optimizations made. In section 4, we report the
achieved speedups, profiling, and validity of these results
is evaluated. In the end, a conclusion of the article and its
future prospects are discussed.

2. Spatio-temporal visual saliency model

The bottom-up model [7] illustrated in figure 1 is linearly
modeled from the retina to the visual cortical cells. More-
over, the separation of useful information into two distinct
signals makes the processing of the information relatively
easier. Furthermore, the partial maps from the two path-
ways are fused together into a single saliency map. All
these features contribute in developing a model based on
the human visual system.

Static pathway The static pathway is based on retinal fil-
tering, which then is followed by a bank of Gabor filters.



The main modalities used here are frequencies and orienta-
tions. The retinal model imitates the horizontal, bipolar, and
ganglion cells to expose more detail by increasing the lumi-
nance of higher frequencies in the visual input. The primary
visual cortex is a model of simple cell receptive fields sen-
sitive to visual signal orientations and spatial frequencies.
This is modeled as a 2D Gabor filter bank that processes
the visual information in different frequencies and orien-
tations, resulting in 24 partial maps. These filters demon-
strate optimal localization properties and good compromise
of resolution between frequency and spatial domains. In
primate visual system, the response of cells is dependent on
their neuronal environment; its lateral connections. Thus,
this activity is modeled as a linear combination of simple
cells interacting with their neighbors. Afterwards, interme-
diate energy maps are strengthened by normalization and
summed up to extract a saliency map for the static pathway.

Dynamic pathway On the other hand, the dynamic path-
way finds a saliency map from a moving scene. As a prepro-
cessing, this pathway uses camera motion compensation [9]
for estimation of dominant motion of the salient regions ac-
cording to their background. This estimation is followed
by a 2D motion estimation [3] to find local motion with re-
spect to the background. The motion vectors are calculated
with modalities of speed, orientation and direction, which
are then treated with a temporal median filtering to remove
noise and to produce a saliency map. Ultimately, the re-
sulting maps from both pathways are fused together into a
master map with salient regions; one’s with highest energy.

3. Implementation of the dynamic pathway

CUDA [1] and OpenCL [5] threading model virtually
launches a sea of light-weight threads onto the stream-
ing multiprocessors on the graphics hardware. All in all,
this provides fine-grain data parallelism across threads and
coarse-grain data and task parallelism across thread blocks.
Therefore, almost any algorithm exhibiting data-parallelism
is suited to be ported on to graphics processors, and exploit-
ing its raw computational power.

The first step is to develop a sequential version, which can
be used to select and code the compute-intensive functional
units as kernels that are to be executed on graphics proces-
sors. This task is fairly easier as this version acts as a well-
structured reference.

The main functions of the dynamic pathway of the vi-
sual saliency model include: applying the retinal filtering,
convolving with the Gabor filter bank to decompose the
rescaled images into sub-bands with different orientations,
solving the over-determined system of equations, applying
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Figure 1. Block diagram of spatio-temporal
visual saliency model

Gaussian prefiltering, calculating spatial, and temporal gra-
dient maps. All these functions are coded and tested indi-
vidually.

The algorithm 1 presents the various steps of the dynamic
pathway, where the first step is camera motion compensa-
tion done on the host. This compensation is then followed
by other functions implemented on GPU like retina filter,
Gabor filter, motion estimator, Gaussian prefiltering, and
many others. At the end of this pathway, we get the dy-
namic saliency map.



input : Input images Im(t) and Im(t-1)
output: Dynamic saliency map M

1 Im(t-1) + MotionCompensation (Im(t-1));

2 (pyr(t) ,pyr(t-1) ) + CalculatePyramid (Im(t)
Jim(t-1) );

3 RetinalFilter (pyr(t) ,pyr(t-1) );
4 V() «+ MotionEstimation (pyr(t) ,pyr(t-1) );
5 My + TemporalFilter (V(t, t-1,t-2,1-3) );

Algorithm 1: Dynamic pathway of visual saliency model

3.1. Motion estimator

The motion estimator [3] presented here employs a dif-
ferential method using Gabor filters to estimate local mo-
tion. This estimation is done by solving a robust system of
equations of optical flow. The method employed is to find
the pixels that conserve their luminance for some interval
of time. The motion vector v(p) = (v, v,) can be found
using the equation of optical flow:

dI (p,t)
dt

oI (p,t)

ot

=vI(p,t) v (p)+

where /I (z,y,t) represents the spatial gradients of lumi-
nance [(x,y,t). We can use the direction of the velocity
component from these gradients to find the direction of the
motion of an object.

The motion vectors are calculated by averaging the
movement to its spatial neighborhood. This spatial continu-
ity within the optical flow is achieved by the convolving the
spatio-temporal image sequence with a Gabor filter bank:
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the 2D filter bank comprises of N filters GGi with the same
radial frequencies. Hence, resulting in a system of N equa-
tions for each pixel:
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this over-determined system is solved using least squares
method(Biweight Tuckey test) [3].

The approximation begins with a sub-sampled image from
the highest level of the pyramid. This multi-pattern ap-
proach allows robust estimation of motion for every pixel.

Input: Pyramid of sub-sampled images
Output: Velocity vectors V'

foreach Level k of pyramid do

if k. == K then

Gabor filtering I(z,y,t)

Gabor filtering I(x,y,t-1)

else

Projection V/

Interpolation I(x,y,t)

Gabor filtering I(z,y,t)

10 Gabor filtering I(x,y,t — 1)

11 end

12 (Gz, Gy, Gy)¢ Calculate gradients

13 Vector v <Resolution I(z,y,t), I(x,y,t-1), G
14 if K == K then

1
2
3
4
5 end
6
7
8
9

15 | Vo

16 end

17 else

18 | V< V+o

19 end

20 Gaussian filtering V/
21 end

Algorithm 2: Motion estimator algorithm

3.2. Different optimizations

Reducing global accesses After convolving with Gabor
filters and applying the spatial and temporal gradients, we
get an over-determined system of N solutions for each
pixel of the image. This system is resolved using itera-
tive weighted least-square estimations. This method in-
volves the calculation of N(2N — 1) intermediate values
that are stored as local array variables. Furthermore, these
values are accessed at different multiple times, which leads
to higher global memory accesses because these arrays are
placed on the device memory. To reduce these accesses, we
use shared memory. However, the amount of shared mem-
ory is limited that makes it impossible to eliminate all the
local array variables. As a result, this improvement is not
visible because shared memory allocated affects the number
of active thread blocks residing on a single multiprocessor.

Reducing register count The estimator kernel is involv-
ing several steps that are complex, and causes the register
count on the boundary. The higher register count results in
a limited number of active thread blocks per streaming mul-
tiprocessor, thus the occupancy is low.

In our first implementation, the register count is 22 that is
reduced to 15 with the use of shared memory to store some
of the local variables. As a result, the number of active



thread blocks increases to 8 per streaming multiprocessor,
and the device occupancy increases from 0.33 to 0.67. The
use of constant memory would be a preferable solution, in
case if each variable is accessed by all the threads simulta-
neously. Here, they happen to be used and modified in sev-
eral instructions, thus the candidate variables to be placed
in the shared region are carefully selected to minimize the
need for synchronization barriers.

Using texture memory The estimation kernel comprises
of two operations: one to find N(N-1) equations for the
pixel, and then averaging them to get components of its mo-
tion vector. To reduce the complexity of the kernel, we cut
and place these two operations into separate device kernels.
This result is reduced complexity of the kernel for further
optimizations and tweaks. On the other hand, it results in
calculating and storing of the intermediate equations from
the application of spatial and temporal gradients on to the
device memory. These equations are used by the second
kernel to approximate the motion. Here, the use of texture
memory provides faster accesses to these prefetched values,
rather than using local arrays that resulted in slower device
memory accesses. Therefore, it helps to avoid global mem-
ory latency by taking advantage of caching mechanisms of
the texture memory, hence, it results up to 10% performance
improvement.

Table 1. Profile of motion estimator kernel

No. of  Occupancy GPU
registers time
Naive solution 18 0.75 32
Shared memory 29 0.5 31.5
Shared + prefetching 32 0.5 31.7
Shared + textures 17 0.375 32

3.3. Multi-GPU solution

In such a multi-threaded model, there is complexity in-
volved in selecting an efficient strategy for creation and
destruction of threads, resource utilization, and load bal-
ancing. Furthermore, inter-GPU communication between
GPUs might be an overhead affecting the overall perfor-
mance. This overhead can be tackled by overlapping com-
munications with computations using streaming available in
the CUDA programming model.

In our implementation of the saliency model, we find that
the static pathway is faster than the dynamic pathway of
the model. To test for more improvement, we employ a
three GPU shared system, where the first GPU executes the
static pathway while the dynamic pathway is divided into
two halves with almost the same execution times as shown

in figure 2. We launch the threads executing their portion of
the calculation of the saliency model on their assigned GPU.
The threads are initially in sleep mode, and they wait for a
signal from the main thread that their inputs are available
to be processed. The threads copy their inputs onto their
assigned GPU’s device memory, and then invoke the device
kernels. After the completion of the kernels, the results are
copied back to the host, where the next frame is waiting to
be fetched for processing.

The estimator kernel takes about 120ms, hence we cut the
kernel into two almost equal portions of 60ms as shown in
figure 2. The first kernel applies the retina and Gabor fil-
tering, while the other performs the approximation of lo-
cal motion using the resulting system of equations from the
previous kernel. Evidently, there is an expensive device to
device transfer within thread 1 and thread 2, which involves
the data to be copied on to host memory. Afterwards, thread
2 is responsible for the estimation.

In our multi-GPU implementation, we have three threads
for the three available graphics devices each responsible
for their portion of the visual saliency model as follow-
ing: thread O calculates the static saliency map, thread 1
applies the two filters, while thread 2 uses the outputted sys-
tem of equations from thread 1 to estimate the motion vec-
tors. After the temporal filtering, thread two results in dy-
namic saliency map that is copied back to the host memory.
Finally, the main thread fuses the resulting saliency maps
from thread 0 and thread 2 into the final visual saliency map.

Temporal filtering

Retinal filtering

pyr Vi Vy

A A

A 4

Gabor bank

pyr . .
M-estimation

Figure 2. Block diagram for partitioned dy-
namic pathway

4. Results

All implementations are tested on a 2.67 GHz quad-core
system with 10GB of main memory, and Windows 7 run-
ning on it. The parallel version is implemented using lat-



est CUDA v3.0, and is evaluated on a NVIDIA GeForce
GTX 285 graphics card. The static and dynamic pathways
are evaluated with various image sizes, including standard
640x480 pixels, whereas the result of the estimator is eval-
uated using several datasets of image sequences with sizes
ranging from 150150 to 316x252 pixels.

4.1. Speedup

The CUDA implementation is tested against on the
newest GeForce GTX 285. The device has 30 stream-
ing multiprocessor with total 240 cores of clock rates 1.48
GHz each, providing 1.062 TFLOPS of single-precision
and 89 GFLOPS of double precision computational power
with memory bandwidth 159 GB/sec.The figure 3 shows the
gains achieved for the static and dynamic pathway with dif-
ferent image sizes against their sequential versions.

50
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Figure 3. Speedups for two pathways versus
sequential C implementation

4.2. Profiling of the pathway

Table 2 illustrates GPU time for different steps of the dy-
namic pathways of the visual saliency model on a GTX 285
graphics card with test image sequences of size 640x480
pixels.

Figure 4 shows the timings for the static and dynamic
pathway on a GTX 285 graphics card using various image
sizes. The timing for both pathways starts up at about the
same level but as the image size gets bigger the computation
time for dynamic pathway increases. The reason is due to
the increased complexity of the estimator algorithm involv-
ing more computations and device memory accesses.

4.3. Evaluation of results

To evaluate the correctness of the motion estimator, we
calculate error between estimated and real optical flows us-

Table 2. Computational cost of each step in
dynamic pathway

GeForce GTX GPU

Kernel Name 285 (ms) time(%)
Estimator 26.91 33.15
Horizontal Gaussian recursive 25.73 31.71
Vertical Gaussian recursive 18.04 22.68
Retinal Filtering 5.35 6.02
Demodulation 1.63 2.00
Calculate gradients 1.37 1.67
Modulation 0.76 0.93
High pass filter 0.15 0.17
Median filter 0.12 0.14
Interpolation 0.10 0.12
Projection 0.04 0.04
Memory transfers 0,47 0.24
Total 81.26
/

0.9
0.8 /
0.7
e &
2 05 /
g 04
03 /

N A e

128 256 384 512 640 768 896 1024

conds)

=—4=Static path

-m—Dynamic path

image size(N?)

Figure 4. Timings for two pathways on GTX
285 for various image sizes

ing the equation below:

uly +vv, + 1
Qe = arccos
‘ Vu2 + 02 + 1 /u2 + 02 + 1

where a. is the angular error for a given pixel with (u,v)
the estimated and (u,., v,-) the real motion vectors. We used
“treetran” and "treediv’’ image sequences for the evaluation,
showing translational and divergent motion respectively [3].
The results illustrated in table 3 are obtained using tree-
tran” and "treediv” image sequences of sizes 150 x 150 pix-
els.



Table 3. Evaluating the M-estimator
Angular error

treetran treediv

T o T o
Matlab 1.63 527 6.06 822
C 1.10 099 4.15 2.69
CUDA 1.19 1.00 573 391

4.4. Real-time solution

OpenCV [2] and OpenVIDIA [4] are open source plat-

forms providing functions for interfacing to video input and
output devices. It also facilitates the programming on GPU
through a collection of utility functions, and various imple-
mentations of image processing and computer vision algo-
rithms. These algorithms range to include feature detection
and tracking, skin tone tracking, projective panoramas, and
a lot more.
After the parallel implementation of the spatio-temporal vi-
sual saliency model, we used OpenCYV for interfacing with
webcam and videos to demonstrate the real-time process-
ing of the model. This demonstration resulted in execu-
tion of the model at 25 fps on GeForce 285GTX. Therefore,
the performance gains achieved shows that GPUs can be a
strong candidate for parallelization of computer vision al-
gorithms.

4.5. Conclusion

The GPU implementation for dynamic pathway of the vi-
sual saliency model comprises of several compute-intensive
kernels like recursive Gaussian filters, the motion estimator,
and many others. After various optimizations and tweaks in
the code, the final solution resulted in a speedup of up to
40 times against its sequential implementation. Hence, it is
now possible to achieve real-time video analysis using the
model. Furthermore, the acceleration allows us to add more
attributes to enhance the quality of information extracted
from a visual scene like the integration of depth proposed
in [10]. Moreover, it will be interesting to investigate the
inclusion of top-down processes as proposed in [11]. Fi-
nally, the performance gains on GPU will enable our model
to be used for various applications such as scene recognition
for mobile robots [12], video compression [6, 8], computer
graphics rendering [14, 15]. The idea, here is to determine
a region with better saliency requiring good spatial resolu-
tion.
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