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Abstract — This paper proposes a new method for inductance 

calculation of induction motors (IM) based on the convolution 
theorem. The integral form leading to the inductance expressions 
is derived from the 2D modified winding function approach (2D-
MWFA). As first application, a model allowing teeth saturation 
to be taken into account by the corresponding air-gap permeance 
variation is proposed. The work points out that appropriate 
arrangements make it possible to use convolution theorem in 
favor of integral calculation leading to IM inductances. It is 
shown that the implication of the convolution concept in such a 
task reduces strongly the calculation process. Moreover, this 
method proves to be faster than integrations based on 
conventional methods. Simulation and experimental results 
confirm the performance and utility of the proposed technique.  

Index Terms— Induction motor, 2D-MWFA, MCCM, slot 
skewing, saturation, convolution, FFT.  

I. INTRODUCTION 
Among the undesirable effects of magnetic saturation in IM 

is the reduction of the fundamental torque with rise of 
synchronous, asynchronous and parasitic torques [1]. 
However, whether in machine corps or teeth, reduction of the 
magnetic permeability of iron paths is the immediate result of 
saturation. This gives rise primordially to a third harmonic, but 
also to a series of odd harmonics in the magnetic field 
distribution. As reported by Stavrou et al. in [2], the set of 
frequency components arising from the asymmetries caused 
by the slotting, saturation and eccentricity can be described by  
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where fs is the line frequency, Nb the number of rotor bars, p 
the pole pair number, s the slip in per unit, k is any positive 
integer and nd is the eccentricity order. nd=0 in case of pure 
static eccentricity and nd=1,2,…in presence of dynamic 
eccentricity component. nsat and ν are the saturation integer 
and the order of the time harmonics respectively (nsat =1,2…,ν 
=1,2,…). The rotor slot harmonics (RSHs) correspond to 
nsat=0, nd=0 and ν =1 while the particular case of k=1 gives 
the principal slot harmonics (PSHs). Despite many of its 
proprieties, saturation modeling has deserved a particular 
interest since eighties.   

In [3], the saturation effect was accounted at the level of the 
magnetizing branch and leakage path, while [4] and [5] 
discussed the spatial dependency of saturation. As the air-gap 
flux and stator voltages contain the predominant third and 

higher frequency slot harmonics, Moreira et al. in [6] 
described a function between the third harmonic stator voltage 
and air-gap voltage for use in determining the fundamental of 
air-gap flux-linkage. Still in d,q axis, Levis in [7] introduced 
the concept of generalized flux and generalized inductances 
being the origin of various models of saturated smooth air-gap 
machines. Bispo et al. in [8] take account of the saturation by 
means of the magnetic harmonic functions obtained 
experimentally through the measure of the stator voltages and 
currents of the unloaded machine. A model proved to be 
adequate for diagnosis purposes was presented by Nandi in [1] 
where he discusses the influence of saturation on the spectral 
contents of the line current. Afterwards, for obtaining the air-
gap flux position, Ojaghi et al. in [9] were based on the fact 
that the peak value of the air-gap flux density is within the arc 
of a rotor mesh which has the most flux-linkage.  

It should be noted that if the model topology is the first 
concern for the software designers, the data processing is 
another one. In the last decades, digital signal processing 
(DSP) is recognized as an important technologic component 
emerging in the field of electrical engineering. The knowledge 
of the basic theoretical concepts involved in the perfection of 
many signal processing systems may be of great interest in 
diverse purposes. Convolution operation is among the most 
involved basic techniques. Joined to the fast Fourier transform 
(FFT), convolution constitutes one of the powerful tools used 
in DSP and proves to be helpful for various tasks [10]. This 
work demonstrates that appropriate arrangements make it 
possible to perform a fast and easy inductance calculation of 
IM using the convolution theorem. As first application, the 
modeling of saturated IM taking into account the slot skewing 
and the multiple coupled circuit model (MCCM) is presented.  

II. INDUCTANCE CALCULATION USING CONVOLUTION 
CONCEPT  

Thanks to the 2D-MWFA, IM inductances can be evaluated 
using the known spatial winding and turn functions of the 
motor windings [11]. Then, one can predict IM transient and 
steady state behaviors by considering the radial and axial 
nonuniformities [12]. Although in case of air-gap eccentricity 
all inductances may be rotor position functions, rotor-stator 
mutual inductance remains the case of interest since it 
expresses mostly the magnetic interaction between the two 
armatures. In start, the method can be explained through the 
calculation of the mutual inductance LArj between the first 
stator phase A and the jth rotor loop rj in case of unsaturated 
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IM with unskewed rotor bars.  So 
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 µ0 is the permeability in vacuum, g0 the air-gap length in 
symmetrical condition, θr is the rotor angle with respect to a 
stator reference, φ a particular angular position along the stator 
inner surface, l the main rotor length, r0 the average air-gap 
radius and NA and nrj are the winding function of stator phase 
A and turn function of rotor loop rj respectively. Taking 
x=φ.r0 and xr=θr.r0 for a plane representation yields [13]  
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As described in [13], the inductance will depend on an implicit 
definition of the common surface areas 

ijDS resulting from the 

crossing of rj under the field of the stator coils Ai (Fig.1). Thus  
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υ is the number of coils per stator phase, wAi is the number of 
turns of coil Ai, λr is the rotor slot pitch while (x1i,x2i) and 
(x1j,x2j) are the sides coordinates of coil Ai and loop rj 
respectively. Note that the rotor loop sides depend on xr 
because of the rotor relative displacement. Often we need the 
first derivative of the inductance so as to calculate the 
electromagnetic torque [12], [13]. From (4) derives 
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While nAi and consequently NA depend from x, nrj depends 
from x and xr. Following Fig. 1, it is possible to see that, if we 
substitute the linear displacements (xr,x) by the time variables 
(t,τ), two similarities arise; one between the rotor loop turn 
function and a shifted step function a(t-τ), and the other 
between the inductance and a step response of a system whose 
impulse response is NA. This is most evident when considering 
in (3) a dummy variable ( )x-xr=ξ  [10]. That leads to 
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Knowing that LArj is periodic and xr is time function, it is 
possible to observe now that the form and mathematical aspect 
of (7) can be described by the following convolution product   
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Fig.1. Stator coil and rotor loop turn functions (top). Crossing of the jth rotor 
loop under the field of the ith coil of stator winding A in a plane representation 
(bottom). 

As it appears, (9) may lead to some ambiguity as for the 
definition of NA. This is because NA should depend only from 
x. Therefore, one must recall that only the integral forms like 
(3) could express clearly the known physical meanings of the 
turn and winding functions.   

Based on the convolution theorem, the FFT of NA∗nrj is the 
same as multiplying the FFT of NA and that of nrj [14]. So 
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F denotes the FFT operator. For this basic case, the use of (9) 
by means of (10) offers a rapid calculation of the inductances, 
but not really valuable compared to (4). However, the 
usefulness of the convolution theorem becomes very obvious 
when the integral proves to be difficult or we won't even be 
able to evaluate it in a simple analytical formula. As example, 
if we choose to model the air-gap eccentricity or/and the 
saturation taking into account the skew effect, the proposed 
method turn out to be very helpful. 

III. MODELING OF SATURATED IM 

A. The inverse of air-gap function  
Since in most practical machines, most of the saturation 

occurs at the stator and rotor teeth, only teeth saturation will 
be considered here. As reported and described in [5], we 
assume a pseudo air-gap length variation while the inverse of 
air-gap function is defined in dealing with multiplication of 
functions instead of division in the inductance expression. So 
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and 
 

eKg =−1  .                                                                           (14) 
 

Ks is the saturation factor while 
0ff /rxθ = is the air-gap field 

position with respect to a chosen reference axis.  

B. Stator-rotor mutual inductances 
According to the 2D-MWFA, LArj results from a double 

integration through a surface region S=2π.r0.l between the 
stator inner surface and the rotor outer surface so as [13] 
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When considering the skew angle of the rotor bars γ yields 
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Note that nA is obtained taking into account the linear rise of 

the magnetomotive force (MMF) across the slots [12]. 
Introducing )( xxr −=ξ , the equation set (17) and (18) become  
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In case of axial air-gap uniformity, (16) can be written as 
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Now, for any position of the air-gap field xf, defining functions 

fxf and h as in (22), allows mutual inductance to be written 

as  
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From (20) and (21), a definition of h holds 
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In order to achieve the numerical convolution, a discrete 

form of (23) results from division of an interval of size 2.π.r0 
into m sampled values at equal intervals. Thus, the vector 
corresponding to the inductance values with respect to the 
rotor position is  

 ( ) h.fΔ.μL
fj xmA.r ∗= 0                                                        (25) 

with /mπ.rΔ 02= . If we take both fxf and h m×1 vectors, 

jA.rL will be (2.m-1)×1 vector elements. Since we speak about 

periodic sequences, only the m appropriate values will be 
considered. Thanks to the convolution theorem, FFT provides 
fast and efficient calculation of inductances. Comparing this 
method and classical numerical integration illustrates a crucial 
distinction. If we take m sampled values along the air-gap 
periphery, for a fixed value of xf and a chosen rotor position, 
classical numerical integration of (22) or (25) requires m 
operations. Therefore, we need at least m2 operations in order 
to sweep one cycle revolution of the rotor (2.π.r0). However, 
with the convolution theorem, the cost is only around 
m.log(m) operations [10],[14]. Besides, it should be noted that 
the complexity of the air-gap function expression and its 
inverse is not a concern now. Once functions depending from 
x and (xr-x) (called here f and h) are adequately chosen, often 
the integrals are efficiently solved thanks to numerical 
convolution and FFT based algorithm.        

C. Stator inductances  

Practically, since stator magnetizing inductances does not 
vary with respect to xr, there is no need to use convolution or 
to search analytical expressions of stator magnetizing 
inductances [12]. Accordingly, for any value of xf, the stator 
inductances can be calculated only once using a simple 
numerical technique.         

D. Rotor inductances 
As in [12] and [13], rotor magnetizing and mutual 

inductances are computed using the developed forms  
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and 
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The inductances are calculated using (26), (27) and (28). fxf is 
chosen as indicated in (28) while h keeps the same definition 
as in (22) and (24). 

The described technique was applied to a 2-pole IM, 3-
phase stator winding with 2/3 pitch.  The motor has 28 skewed 
rotor bars and 36 stator slots [16]. Fig. 2 depicts the calculated 
stator-rotor mutual inductance and rotor loop magnetizing 
inductance as function of the rotor and air-gap field positions.  

  
Fig.2. Mutual inductance LAr1 between the first rotor loop and stator phase A  
(left) and rotor loop self inductance Lmr1 (right) in saturation conditions. 
Ks=1.1.  

 
Fig.3. Derivative of the mutual inductance LAr1 with respect to the rotor 
position (left) and that of rotor loop self inductance Lmr1 (right) in saturation 
conditions Ks=1.1.  

 
Fig.4. Derivative of the mutual inductance LAr1 with respect to the air-gap field 
position θf (left) and that of rotor loop self inductance Lmr1 (right) in saturation 
conditions of Ks=1.1.  

 
Fig.5. Magnetizing inductance of stator phase A as function of θf and Ks (left) 
and its derivative with respect to θf  (right).     

The added part of the permeance function due to the 
saturation can be seen to affect the shape of the inductances 
and their derivatives (Fig. 3 and Fig. 4). On the other sides, 
this effect is noticeable at the level of the stator magnetizing 
inductance and its derivative with respect to θf as Fig. 5 shows. 
A decreasing on the average value of the stator magnetizing 
inductance as the saturation factor increase can also be noted. 

E. Position of the air-gap field   
Let us consider a 2-pole IM in the remaining parts of the 

paper. Donesco et al. in [17] have reported that the 
magnetizing inductance depends principally on the stator flux. 
Such an approximation is better at low slip where the induced 
rotor flux is low. Therefore, if we admit that the rotating air-
gap field can be represented with a complex phasor, its spatial 
position is related to the real and imaginary part of the stator 
flux-linkage phasor. Thus, having  
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[ ]sI  and [ ]rI are 3×1 and bN ×1 vector element of the motor 
stator and rotor currents respectively, [Ls] and [Lsr] are the 
stator inductance matrix and stator-rotor mutual inductance 
matrix respectively defined as in [15],[16], while θψs is the 
instantaneous phase angle of the stator flux-linkage phasor.  

 

Fig.6. Stator magnetic flux vectors in polar coordinates 
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Fig. 6 depicts both angular position of the rotating field θf as 
described in [5] and needed is (11), and θψs the argument of 
the corresponding complex phasor. Referring to Fig. 6, a 
relationship between the magnetic field angles holds    
 

2
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When considering only the fundamental component of the 
flux-linkage, it should be noted that equivalent result arises 
using the argument of the first derivative of the main flux 
since it is shifted with π/2 from the main flux itself [1].   

IV. DYNAMIC SIMULATION 
In the system equation of IM based on the MCCM and 

described in [15], we need to perform time derivative of the 
inductances. In previews works, the computation of all partial 
derivative terms with respect to θf and θr is required [1],[9]. 
Moreover, a decoupling showing the saturation constants and 
the field position in separated terms in the inductance 
expressions is welcome. That is desirable in a dynamic tool 
able to handle any saturation level for every magnetic field 
position using the same stored inductances. Hence, from 
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it is easy to verify that the second term of (33) gives zero. 
Thus, from (14), (19) and (33), NA depends only from x. On 
the other hand, we can write (11) like 
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Then, the use of (15) and (34) gives 
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Next, taking f0,1,2 like shown in (36),(37) and (38), allows L0, 
L1 and L2 to be evaluated independently from Ke,Km and xf 
using the resulting convolution products 

hfμL ii ∗= .0       with      i=0,1,2.                                   (39) 
 

Note that h is the same as in (22) and (24). Now, starting from 
(35) and the following expression giving the time derivative of 
the rotor-stator mutual inductance  
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where ωs is the line frequency and ωr is the rotor rotational 
frequency both in rad/s. LArj and its partial derivatives can be 
easily evaluated inside the iteration loop starting from simple 
(one dimensional) look-up tables, (35), (40) and the following:  
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The simulation results are done using the same 2-pole 3-

phase IM in load conditions (the load torque Cr=10 N.m) fed 
by idealized supply voltages (ν=1). All spectra were drawn in 
the logarithmic magnitude scale and normalized format. The 
stator winding is Y-connected (floating neutral). Since the 
main goal of this work is to describe the new method of 
inductance calculation, we have just considered an arbitrary 
saturation level of Ks=1.2 in order to verify the characteristic 
frequency components. The current spectra of the unsaturated 
(Ks=1) and saturated (Ks=1.2) cases are shown in Fig. 7 and 
Fig. 8 respectively. In Fig. 7 and the top of Fig. 8, it is clear 
that only RSHs and saturation components associated to 
nontriplen harmonics are visible since no zero sequence can 
flow in Y-connected stator windings [5].      

     
Fig.7. Simulated normalized spectra of the stator current at steady state. 
Unsaturated IM, s=0.036. 

The components predicted by (1) with nsat=1 followed by 
the subsequent spectral lines corresponding to nsat=2 can be 
clearly seen in the current spectra of Fig. 8. Similar effects 
take place besides the line frequency where the 5×fs harmonic 
component arises due to saturation followed by the 7×fs which 
can be obviously seen as a consequence of the chosen level of 
saturation. Also, it is shown that in reason of 5% of supply 
unbalance, all presumed triplen harmonics show up. As 
predicted, the flux-linkage contains the predominant third 
harmonic and this is depicted in Fig. 9 related to the winding 
with 1/3 pitch, while windings with 2/3 shorted pitch can not 
generate any triplen component [16].   

770



 

   
Fig.8. Simulated normalized spectra of the stator current: 1- Saturated IM with 
Ks=1.2, s=0.0441and balanced supply (top and middle). 2- Ks=1.2 and some 
inherent supply unbalance (5%), s=0.0462 (bottom). 

 
Fig.9. Simulated normalized spectra of the stator flux-linkage. Saturated IM 
with Ks=1.2. Winding with 2/3 pitch (left), winding with 1/3 pitch (right). 

V. EXPERIMENTAL VERIFICATION 
The experimental tests are made with the same IM used in 

simulation. The spectra of Fig. 10 show that even in a healthy 
state, some frequency components of low amplitudes are 
perceptible. This is due to the inherent level of rotor 
asymmetry able to generate component such as 

sb fsf ).21( −= which coincides with a residual mixed 

eccentricity component seccmix fsf .)1.(21_ −−= . Moreover, 
noises introduced by the power supply have a great influence 
on the stator line current spectra. Even under Y-connection of 
the stator windings, the 3.fs component appears clearly in the 
line current spectra as well as all saturation harmonics. As was 
reported in [1], this may be due to the supply unbalance and 
the inherent machine constructional asymmetries. 

 
Fig.10. Experimental normalized spectra of the stator current at steady state of 
the IM with some inherent rotor and supply asymmetries, s=0.045. 

VI. CONCLUSION 
The work reported in this paper has successfully applied the 

theorem of convolution in the time processing optimization of 
the motor inductances. Such a concept was before intended 
mainly for time series sampled data analysis. To test the 
efficiency and applicability of the proposed method, the 
modeling and simulation of IM in case of rotor and magnetic 
field position dependency of the inductances (magnetic 
saturation) were performed.  

Last but not least, it must be pointed out that the proposed 
method of inductance calculation may be extended to 
incorporate a lot of machine constructional asymmetries and 
faults as a competitive alternative to the existing solutions.  
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