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Abstract

The aim of this paper is to provide a comprehensive introduction for
the study of ¢i-penalized estimators in the context of dependent obser-
vations. We define a general ¢;-penalized estimator for solving problems
of stochastic optimization. This estimator turns out to be the LASSO
[Tib96] in the regression estimation setting. Powerful theoretical guaran-
tees on the statistical performances of the LASSO were provided in recent
papers, however, they usually only deal with the iid case. Here, we study
this estimator under various dependence assumptions.

Keywords: estimation in high dimension; weak dependence; sparsity; de-
viation of empirical mean; penalization; LASSO; regression estimation;
density estimation.
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1 Introduction

1.1 Sparsity in high dimensional estimation problems

In the last few years, statistical problems in large dimension received a lot of
attention. That is, estimation problems where the dimension of the parameter
to be estimated, say p, is larger than the size of the sample, usually denoted by
n. This setting is motivated by modern applications such as genomics, where
we often have n < 100 the number of patients with a very rare desease, and p
of the order of 10° or even 10° (CGH arrays), see for example [RBV08] and the
references therein. Other examples appear in econometrics, we refer the reader
to Belloni and Chernozhukov [BC11a, BC11b].

Probably the most famous example is high dimensional regression estimation:
one observes pairs (x;,y;) for 1 <i <n with y; € R, z; € RP and one wants to
find a § € R? such that for a new pair (z,y), 8’z would be a good prediction for
y. If p > n, it is well known that a good estimation cannot be performed unless
we make an additional assumption. Very often, it is quite natural to assume
that there exists such a 6 that is sparse: most of its coordinates are equal to 0.
If we let ||0]|o denote the number of non-zero coordinates in 6, this means that
0]l < p. In the genomics example, it means that only a few genes are relevant
to explain the desease. Early examples of estimators introduced to deal with
this kind of problems include the now famous AIC [Aka73] and BIC [Sch78].
Both can be written

arg min {Z(yZ H’zi)2+/\n||9||o} (1)

OcRP | 4
=1

where A, > 0 differs in AIC and BIC. Despite AIC and BIC may give poor
results when p > n (see [BMO1]), taking A > 20 log(p) leads to estimators with
very satisfying statistical properties (62 being the variance of the noise). See for
example [BM01, BTWO07] for such results, and [BGHO09] in the case of unknown
variance.

The main problem with this so-called ¢y penalization approach is that the ef-
fective computation of the estimators defined in (1) is very time consuming. In



practice, these estimators cannot be used for p more than a few tens. This moti-
vated the study of the LASSO introduced by Tibshirani [Tib96]. This estimator

is defined by
. ;N2
argeneller}) {Z_Zl(yz 91‘1) +)‘n|9||1}

The convexity of this minimization problem ensures that the estimator can
be computed for very large p, see Efron et al. [EHJTO04] for example. This
motivated a lot of theoretical studies on the statistical performances of this
estimator. The results with the weakest hypothesis can be found in the work
of Bickel et al. [BRT09] or Koltchinksii [Kol|]. See also very nice reviews in the
paper by Van de Geer and Biihlmann [vdGB09| or in the PhD Thesis of Hebiri
[Heb09]. Also note that a quantity of variants of the idea of ¢;-penalization
were studied simultaneously to the LASSO: among others the basis pursuit
[Che95, CDS01], the Dantzig Selector [CT07], the Elastic Net [ZHO05]...

Another problem of estimation in high dimension is the so-called problem of
sparse density estimation. In this setting, we observe n random variables with
(unknown) density f and the purpose is to estimate f as a linear combination
of some functions ¢1, ..., ¢p. If p>n and

f()~ Z‘%sﬁj(')

we can use the SPADES (for SPArse Density Estimator) by Bunea et al. [BWTO07,
BTWBI10] or the iterative feature selection procedure in [Alq08].

One of the common features of all the theoretical studies of sparse estima-
tors is that they focus only on the case where the observations are independent.
For example, for the density estimation case, in [BTWB10] and [Alq08] the ob-
servations are assumed to be iid. The purpose of this paper is to propose a
unified framework. Namely, we define a general stochastic optimization prob-
lem that contains as a special case regression and density estimation. We then
define a general ¢1-penalized estimator for this problem, in the special case of
regression estimation this estimator is actually the LASSO and in the case of
density estimation it is SPADES. Finally, we provide guarantees on the statisti-
cal performances of this estimator in the spirit of [BRT09], but we do not only
consider independent observations: we want to study the case of dependent ob-
servations, and prove that we can still recover the target 6 in this case, under
various hypothesis.

1.2 General setting and /;-penalized estimator

We now give the general setting and notations of our paper. Note that the cases
of regression and density estimation will appear as particular cases.

We observe n random variables in Z : Z1,..., Z,. Let IP be the distribution
of (Z1,...,Z,). We have a function @ : £ x R? — R such that for any z € Z,
0 € RP — Q(z,0) is a quadratic function. The objective is the estimation of a
value @ that minimizes the following expression which only depends on n and 6:

R(0) = L ZEQ(Zi, 0) = / 1 ZQ(ZZ', 0)YdP (21, ..., 2n)-
s zn i



All the results that will follow are intended to be interesting in the case p > n
on the condition that ||0||o := card{j : 8; # 0} is small.
We use the following estimator:

R
argengigj EZQ(ZiaH)‘F)‘HeHl
i=1

and 0 denotes any solution of this minimization problem.
We now detail the notations in the two examples of interest:

1. in the regression example, Z; = (X;,Y;) with the X; € R? deterministic,
and
Y:i=X[0+¢; (2)
where E(g;) = 0 (the &; are not necessarily iid, they may be dependent
and have different distribution). Here we take Q((z,vy),0) = (y — 2'0)2.
In this example, 0y is known as the LASSO estimator [Tib96].

2. in the density estimation case, Z; € R have the same density wrt Lebesgue
measure (but they are not necessarily independent). We have a family of
functions (¢;)?_; and we want to estimate the density f of Z; by functions
of the form

fo() = zp:@'%'(')-
In this case we take -
Qe.0) = [ 730 - 242
and note that this leads to
R(O) = [ (o)~ @) do ~ [ Parde= [ (fota) - 1) dn = est

Then 0y is the estimator known as SPADES [BTWB10].

1.3 Overview of the paper

In Section 2 we provide a sparsity inequality that extend the one of Bickel et al.
[BRT09] to the case of non iid variables. This result involves two assumptions:
the first one is about the function @ and is already needed in the iid case. It is
usually refered as Restricted Eigenvalue Property. The other hypothesis is more
involved, it is specific to the non iid case. It roughly says that we are able to
control the deviations of empirical means of dependent variables around their
expectations.

In Section 3, we provide several examples of classical assumptions on the
observations that can ensure that we have such a control. These assumptions
are expressed in terms of weak dependence coefficients, so in the beginning
of this section we briefly introduce weak dependence. We also provide some
references.

We apply the results of Sections 2 and 3 to regression estimation in Section
4 and to density estimation in Section 5.

Finally the proofs are given in Section 7.



2 Main result

2.1 Assumptions and result
First, we need an assumption on the quadratic form R(-).

Assumption A(x) with k > 0. As Q(z,-) is a quadratic form, we have the

matrix
0?1 &
=22 n ZQ(ZMQ)
i=1

that does not depend on 0, and we assume that the matriz M has only 1 on its
diagonal (actually, this just means that we renormalize the observations X; in
the regression case, or the function ¢; in the density estimation case), that it is
non-random (here again, this is easily checked in the two examples) and that it
satisfies

M

> jesvi

Note that this condition, usually referred as restricted eigenvalue property (REP),
is already required in the iid setting, see [BRT09, vdGB09] for example. In these
paper it is also discussed why we cannot hope to get rid of this hypothesis.

/ P ]
. < inf v My veRP, Jc{l,....,p}, |JI <90 '
ngfJ |vj| < 3ZjeJ v

We set for simplicity
W = =Eoh 2 e {10}, je{l,...,p}

Recall that as Q(z,6) is a quadratic function it may be written as Q(z,0) =
0’ A(2)0 +b(z)'0 + ¢(z) for a p x p-matrix valued function A on R? and a vector
function b : R? — R? so that
() ). 4 L
Wi = (A(Z:)0); + 5 (b(Z:));-

Theorem 2.1 Let us assume that Assumption A(k) is satisfied. Let us assume
that the distribution P of (Z1,...,Zy) is such that there is a constant o € [0, 3]
and a decreasing continuous function (-) with

. L= 0) _1
v 1,... Pl|=) W/ |> toap ] <(t). 3
j el ph (n; O 20 >_w<> 3)
Let us put
A >\ = dAn®TEg ! (E) .
p
Then -
A — 41°||0
R(0y) - R@) < 21
K
P and, simultaneously >1—e.
N 2)(|60
Hez\_e”l < H ”O
K




The arguments of the proof of Theorem 2.1 are taken from [BRT09]. The proof
is given in Section 7, page 18.

Note that the hypothesis in this theorem heavily depend on the distribution
of the variables 71, ..., Z,, and particulary on their type of dependence. Section
3 will provide some examples of situations where this hypothesis is satisfied.

Also note that the upper bound in the inequality is minimized if we make
the choice A\ = A*. Then

R(6y) - k(@) < AP [0 /D]

P and >1—e.

_ 818l [ (e/p)])"

1
n2-%

16x — 8]

It is important to remark that the choice A = 4n0‘_%1/1_1 ( %) may be impossible

in practice, as the practitionner may not know a and ¢ (-). Moreover, this choice
is not necessarily the best one in practice: in the regression case with iid noise
N(0,0?%), we will see that this choice leads to A = 401/2nlog(p/e). This choice
requires the knowledge of o¢. Moreover it is not usually the best choice in
practice, see for example the simulations in [Heb09]. Even in the iid case, the
choice of a good A\ in practice is still an open problem. However, note that

1. the question is in some sense meaningless. For example the value of A that
minimizes the quadratic risk R(fy) is not the same than the value of A
that may ensure, under some supplementary hypothesis, that 0, identifies
correctly the non-zero coordinates in 6, see for example Leeb and Pétscher
[LPO05] on that topic. One has to be careful to what one means when one
say a good choice for \.

2. some popular methods like cross-validation seem to give good results for
the quadratic risk, at least in the iid case. An interesting open question
is to know if one can prove theoretical results for cross validation in this
setting. See also the bootstrap method proposed in [BC11b].

3. the LARS algorithm [EHJT04] compute @ for any A > 0 in a very short
time (coordinate descent algorithms [FHHTO07] are valuable alternative to
LARS).

2.2 Remarks on the density and regression estimation set-
ting

First, note that in the regression setting (Equation 2), for any i € {1,...,n}
and j € {1,...,p} we have



Then, in the density estimation context,

wo = / o3(2) Fy () — p3(Z:) = / o3(2) f(@)dz — p5(Z:)
— Elp;(Z)] - 0;(Z).

So, in both cases, the assumption given by Equation 3 is satisfied if we have
a control of the deviation of empirical means to their expectation. In the next
sections, we discuss some conditions to obtain such controls with dependent
variables.

3 Models fitting conditions of Theorem 2.1

In this section, we give some results that allow to control the deviation of em-
pirical means to their expectations for general (non iid) obsrevations. The idea
will be, in the next sections, to apply these results to the processes W) =
(Wi(J))lgign for 1 < j < p. For the sake of simplicity, in this section, we deal
with a generic process V = (V;);ez and the applications are given in the next
sections. Various examples of pairs («, 1) are given. We will use the classical

notation .
Sp=> Vi
i=1

3.1 Weak dependence (a = 0)

We are going to introduce some coefficients in order to control the dependence
of the V;. The first example of such coefficients are the a-mixing coefficients
first introduced by Rosenblatt [Ros56],

ay (r) = sup sup P(UNU")-PU)PU.
teZ Ueco(V;,i<t)
U €o(V;,i>t+r)

The idea is that the faster oy (r) decreases to 0, the less dependent are V; and
Vitr for large r. Assumptions on the rate of decay allows to prove laws of large
numbers and central limit theorems. Different mixing coefficients were then
studied, we refer the reader to [Dou94, Rio00] for more details.

The main problem with mixing coefficients is that they exclude too many
processes. It is easy to build a process V satisfying a central limit theorem with
constant ay (1), see [DDLT07] Chapter 1 for an example. This motivated the
introduction of weak dependence coefficients. The monograph [DDL107| pro-
vides a comprehensive introduction to the various weak dependence coefficients.
Our purpose here is not to define all these coefficients, but rather to introduce
some examples that allow to satisfy condition (3) in Theorem 2.1.

Definition 3.1 We put, for any process (V;)icz,

cy,m(r) = max sup  |cov (Va, - Vi, Vi -+ Vi) |-
ISU<mgy <0<ty
tpy1 — typ > 7



We precise in §-3.1.1 and in §-3.1.2 that suitable decays of those coefficients
yield (3). Those two sections will provide quite different forms of the function

1.

Definition 3.2 Let us assume that for any r > 0, for any g1 and gs respectively
L1 and Lo-Lipschitz, where eg.,

Ll = sup gl(yla"-vyf)_gl(wl,...,l‘g)
(@150 z0)#(Y1,--5Ye) |y1 7$1|+"'+|y2*$2|

We also assume that for any ty < - <ty <tpp1 < - <ty with typy —tg >,

’COV [91(‘/;51, Ty ‘/155)392(‘/15@+13 e a‘/tm):l ‘ S ’lp(Ll, LQaE,m - E)T]V(T)
with ¥(Ly, La,0,¢") = {Ly + {'Ly. Then V is said to be n-dependent with n-
dependence coefficients (n(r),r > 0).

Remark 3.1 Other functions (L1, La,¢,¢) allow to define the A, k and (-
dependence, see [DDLT07].

We finally provide some basic properties, proved in [DDLT07]. The following
result allows a comparison between different type of coefficients.

Proposition 3.1 If sup, ||Vi|lco < M then

cvm(r) < mM™ny(r) (5)
< Mmav(r).

Finally the following property will be useful in this paper.
Proposition 3.2 If V is n-dependent and f is L-Lipschitz and bounded, then
f(V) is also n-dependent with

ngv)(r) = Ly (r).

3.1.1 Moment inequalities

In Doukhan and Louhichi [DL99] it is proved that if for an even integer 2q we
have
3C > 1 such that: cvq(r) < C(r+1)7% VYr>0 (6)

then Marcinkiewicz-Zygmund inequality follows:
E((Vi+ -+ Vo)) = O(n?)

and thus o = 0 and 1(t) is of the order of 1/t?¢ in (3). However, explicit
constants are needed in Theorem 2.1. We actually have the following result.

Proposition 3.3 Assume that coefficients (4) fit the relation (6) for some in-
teger q > 1, then Marcinkiewicz-Zygmund inequality follows

E[(Vi+ -+ V)] < Cldzq(29)In7

where

(2m — 2)!

1
o m ((m —1)12’

m=2,3,...



The proof follows [DL99], it is given in Section 7.

Remark 3.2 Sharper constants aszq are also derived in the proof (Equation
(20), page 20), one may replace the constants 2ds,24d,,720dg by 1, 4 and 17
and using the recursion (21) also improves the above mentioned bounds.

Various inequalities of this type where derived for alternative dependences (see
Doukhan [Dou94|, Rio [Rio00] and Dedecker et al. [DDLT07] for an extensive
bibliography which also covers the case of non integer exponents).

3.1.2 Exponential inequalities

Using the previous inequality, Doukhan and Louhichi [DL99] proved exponen-
tial inequalities that would lead to t(t) in exp(—+/t). Doukhan and Neumann
[DNO7] use alternative cumulant techniques to get 1 (¢) in exp(—t?) for suitable
bounds of the previous covariances (4).

Theorem 3.4 [DN07] Let us assume that sup; ||Villeo < M. Let ¥ : N> - N
be one of the following functions:

(a)  Y(u,v)=2v,
(b))  V(u,v)=u+w,
(c) Y(u,v)=uv,

(d)  TU(u,v)=afu+v) + (1—a)u, for some o € (0,1).
We assume that there exist constants K, L1, Lo < 0o, > 0, and a nonincreasing
sequence of real coefficients (p(n))n>0 such that, for all u-tuples (s1,...,s,) and
all v-tuples (t1,...,t,) with 1 < s3 < -+ <5, <t <--- <t, <n the
following inequality is fulfilled:
cov (Vi -+ Vi Vi -+ Ve, )| € K2 MU 720 (u, 0)p(t — su), (7)

where -

D (s+1)Fp(s) < LyLE(RY*  VE>0.

s=0
Then

]P(Sn > t) < exp ( t2/2 ) )

A, + BY W+ 2u+3)/(n+2)

where A, can be chosen as any number greater than or equal to o2 := Var(Vy +
<+ V) and

An
Remark 3.3 One can easily check that if V is n-dependent then (7) is satisfied
with ¥ as in (b), K> = M and p(r) = n(r), see Remark 9 page 9 in [DNO7].
So if V' is n-dependent and n(r) decreases fast enough to 0 then we have an
exponential inequality.

24 en K21
By = 2(KV M)Ls ((#) vV 1) .

This result yields convienient bounds for the function 1. A recent paper by
Olivier Wintenberger [Win09] is also of interest: it directly yields alternative
results from our main result. In this paper, we do not intend to provide the
reader with encyclopedic references but mainly to precise some ideas and tech-
niques so that this will be developed in further papers.



3.2 Long range dependence (a €0, %[)
3.2.1 Power decays

Assume now that V is a centered series satisfies ), supy, [cov(Vi, Viqi)| = 00
then o > 0 may occur, eg. if

(i) = sup |cov(Vi, Viyi)| ~ i ?
k
for 8 €]0,1] then var(S,) ~ n?~#; then a = (1 — 8)/2 holds.

3.2.2 Gaussian case

In the special case of Gaussian processes (V;);, tails of S,, are classically de-
scribed because S,, ~ N(0,02) and here v(t) = exp(—t?). We thus may obtain
simultaneously subGaussian tails and o = (1 — 3)/2 > 0.

3.2.3 Non subGaussian tails

Assume that that for each i,j, G; ~ N(0,1) and (G;); is a stationary Gaussian
processes with, for some B, f3,

r(i) = cov(Gy, Gpri) ~ Bi~P. (8)
Let V; = P(G;) for a function with Hermite rank m > 1, and since
cov(H,(Go), Hmn(G;)) = m! (r(i))™

their covariance series is non m-th summable in case 3 6]%, 1.
The case P(x) = 22 — 1 and f8 G]%, 1[ is investigated by using the following
expansion in the seminal work by Rosenblatt [Ros61].

Set R,, for the covariance matrix of the Gaussian random vector (G1,...,Gy):
Eetn’ 'Sn — et qet~3 (In - 2tnﬂ_1Rn)
11
= exp (5 kZ_Q E(Qtnﬁ_l)k trace (Rn)k> .

Quoting that
n*B=1 trace (Rn)k — oo Ck >0

1 1
Ck :Bk/ / |21 —2o| Plog —as| 7P - ap1 — x| P |ag — 21| Pday - - day
0 0

(B is given by Equation (8)), this is thus clear that for small enough || < 7 =

%Supk22,j21 (),

— j 1 > Ck
B0 Lo (13 (2 ).
e —00 XD | 5 (2t) -

k=2

Here the conditions in the main theorem hold with ¢(t) = e fanda = 3-8 > 0
for any M > 1/7.

10



4 Application to regression estimation

In this section we apply Theorem 2.1 and the various examples of Section 3 to
obtain results for regression estimation. Note that the results in the iid setting
are already known, they are only given here for the sake of completeness, in
order to provide comparison with the other cases.
Let us remind that in the regression case, we want to apply the results of
Section 3 to ‘
W = (X;)ei.

For the sake of simplicity, in this whole session dedicated to regression, let us
put

max(X) := 11;1%)(” 11;1;2{}) [(X5);]-

4.1 Regression in the iid case

Under the usual assumption that the ¢; are iid and subGaussian,

2 2
Vs, E[exp(ss?)] < exp (820 )

for some known o2, then we have
t2

P ( %iWF” > %) < W(t) = exp(— 5 5).

So we can apply Theorem 2.1 in order to obtain the following well known result:

Corollary 4.1 (|BRTO09]) In the context of Equation 2, under Assumption
A(k), if the (g;) are #id and subGaussian with variance upper bounded by o2,
the choice A = 40+/2log(p/e)/n leads to

A - 2(|6]|olog 2
]p(R(gA)R(@)SﬁM) >1—c¢.

K n
4.2 Regression estimation in the dependent case

4.2.1 Marcinkiewicz-Zygmund type inequalities

Let us remark that, for any 1 < j <p,

cwnn(r) < en(r) (x| )1 = max(C) e 1)

%,

Thus, we apply Theorem 2.1 and Proposition 3.3 to obtain the following result.

Corollary 4.2 In the context of Equation 2, under Assumption A(k), if the
(e:) satisfy, for some even integer 2q,

3C > 1 such that: Vr >0, Ceoq(r) < C(r+1)79,
the choice

A=

4C%maX(X)q dagq'p %
NG 5

11



leads to

. _ 2 N [[8]lope
P<R(9A)_R(9)<64cmax<x> (d2q0) " [Pllop )Zl_&__

N K gan

Remark 4.1 This result aims at filling a gap for non subGaussian and non iid
random variables.

The result still allows to deal with the sparse case p > n in case ¢ > 1. In
this case we deal with the case p = n9/? and we get a rate of convergence in
probability O(1/+/n).

If =1 and £ — 0 the least squares methods apply which make such sparsity
algorithms less relevant.

Moreover if g < 1 the present method is definitely not efficient. Hence in the case
of heavy tails, such as considered in the paper by Bartkiewicz et al. [BJIMW10],
our results are useless. Anyway, using least squares for heavy tailed models
(without second order moments) does not look to be a good idea!

4.2.2 Exponential inequalities

Using Theorem 2.1 and Theorem 3.4 we prove the following result.

Corollary 4.3 Let us assume that the (g;) satisfy the hypothesis of Theorem
3.4: let ¥ : N2 = IN be one of the functions of Theorem 3.4, we assume that
there are constants K, L1, Lo < 0o, u > 0, and a nonincreasing sequence of real
coefficients (p(n))n>0 such that, for all u-tuples (si,...,sy) and all v-tuples
(t1,... ty) with 1 <s1 <---<s, <t1 <---<t, <n the following inequality
is fulfilled:

|cov (esy - Es,r60, wer, )| S KPMY T2 (u, 0)p(ts — su),

where
oo

> (s+1)Fp(s) < LiLE(RD" Yk > 0.
s=0

Let ¢ be a positive constant and let us put

pt3
C := 4K?max(X)*¥(1,1)L1 + ¢2Lo max(X)(K vV M) <\I/2(1 0 Y 1) .

Let us assume that € > 0, p and n are such that

<€ Anire
—e
P> 5 Xp C

then for
Clog (2
A gy Clos ()
n
we have B )
. _ 4C 1|0]]o log (=2
]P{R(GA) R(G)g%” ”O‘f(f)}x e



So the rate is the same than in the iid case. The only difference is in the
constant, and a restriction for very large values of p.

Proof: For the sake of shorteness, let us put

ou+3
Cy = 4K?max(X)*¥(1,1)L; and Cy = 2Ly max(X)(K V M) (q/(1 ) % 1>
and note that C = Cy + ¢Cy. First, note that for any j € {1,...,p},
‘cov (W(j) WD WD Wt(j))’
S1 Su ) 1 v
. u+v
< (suwf”) K2 M 720 (u,0)p(ty — 51,)
< B2 20 (u,v)p(ts — su)

if we put K = max(X)K and M = max(X)M. Using Theorem 3.4, we obtain

for any j,
; t2/2
P ZWZ@ >t]| <2exp|— /1 P
: A, + Biftuez

where A, = 02 < 2nK?¥(1,1)L; and
24 K2
B, =2(KV M)Ls ((#) v 1) :

Ay
in other words:

t2/2
P >t] <2exp ,—/W .
Cin + Cot w2
Now, let us put u = t//n, we obtain
1 ; 1 2/2
P ZWi(]) Zun"2 | <2exp | — = /2u+3 213
n i C’ln + anmum

u?/2
<2exp| — — 573 | -
C1 + Con™ 2etiqy ute

Remark that we cannot in general compute explicitely the inverse of this function
but we can upper-bound the range for u:

S W)

K2

1
u < c-n2etd

In this case,

1 )

2 2
> un_%> < 2exp (—%) = 2exp (—;—C) =: ¢ (u)
1 2€

13



and so
vt = fenox (2).
Yy

So we can take, following Theorem 2.1,

A=dn iy (5) =4n"%,[Clog <2—p)
P 9

as soon as ¥~ 1(e/p) < n'/(?#+1) For example, for a fixed number of observa-
tions n and a fixed confidence level €, we have the restriction:

<5 cni
—e .
p_2 Xp C

Under this condition we have, by Theorem 2.1,

) —_ 64C|0]]olog (22

P and, >1—¢,

_ 8C|[Blolog (%2)
— K 1

nz

105 = Bl
this ends the proof. [J

4.3 Simulations

In order to illustrate the results, we propose a very short simulation study. The
purpose of this study is not to show the good performances of the estimator in
practice or to give recipes for the choice of \. The aim is more to show that
the performances of the iid setting are likely to be obtained in the dependent
setting if the dependence coefficients are small.

We use the following model:
Yvi:e/Xi—f—Ei, 1<:1<n=30

where the X;’s will be treated as fixed design, but in practice will be iid vectors
in R? with p = 50, with distribution A, (0, ¥) where ¥ is given by ¥, ; = 0.5/"=71,

The parameter is given by § = (3,1.5,0,0,2,0,0,...) € RP. This is the toy
example used by Tibshirani [Tib96]. Let ¢ €] — 1, 1].

The noise satisfies e; = ¥e;_1 + n;, for i > 2, where the n; are iid N (0,1 — 9¥?)
and 1 ~ N(0,1). Note that this ensure that E(e?) = 1 for any i, so the noise
level does not depent on 9. In the experiments,

¥ € {—0.95,-0.5,0,0.5,0.95}.

14



Figure 1: results of the experiments. The =z-axis gives the value g where A\ =
g+v/log(p)/n. The y-axis gives Zz;l(é;Xi — 0" X;)? the error of reconstruction of the
signal. The lines code is the following: ¥ = —0.95: solid line, ¥ = —0.5: short dashed
line, ¥ = 0: dotted line, ¥ = 0.5: dot/dash, ¥ = 0.95: long dash.

We fixed a grid of values G CJ0,1.5] and we computed, for every experiment,
the LASSO estimator with A = gy/log(p)/n for all g € G. We have repeated
the experiment 25 times for every value of ¥ and report the results in Figure 1.

We can remark that all the curves are very similar. The minimum recon-
struction error is obtained for g ~ 0.2, that corresponds to A ~ 0.072. Note that
in the iid case, it is smaller than the theoretical value given by Theorem 2.1,

A = 4o4/21og(p/e)/n ~ 2.56 for e = 1/10, that would correspond to g ~ 7.10,
a value that would not event stand in the figure!

5 Application to density estimation

Here we apply Theorem 2.1 and Section 3 to the context of density estimation.
Let us remind that in this setting,

W = Elp;(21)] - ¢i(Zi).

5.1 Density estimation in the iid case

If the Z, are iid with density f and if ||¢;]|oc < B for any j € {1,...,p} then
we can apply Hoeffding inequality [Hoe63] to upper bound

[eir@as -3¢z

We obtain

n

1 ()
w2 W

i=1

2

2B2>'

.

So we can apply Theorem 2.1.

> %) < Y(t) = 2exp(—

15



Corollary 5.1 In the context of density estimation, under Assumption A(k),
if the Z; are wd with density f and if ||@jlloc < B for any j € {1,...,p}, the
choice A = 4B+/2nlog(2p/e) leads to

n 2
p (/ (f@k(:c) 7f§(z))2dz - 12&232 |9||olog‘f> S e

n

This result is essentially known, see [BWTOQ7].

5.2 Density estimation in the dependent case

Note that if as previously we work with bounded ¢;(-), we automatically have
moments of any order. So we will only state a result based on exponential
inequality.

So, using Theorem 2.1 and Theorem 3.4 we obtain:

Corollary 5.2 Let us assume that there are L > 0 and B > 1 such that ¢;(-)
is L-Lipschitz and ||pjllcc < B for any j € {1,...,p}. Let us assume that Z1,
.o, Zp satisfy

oo

k>0, 3 (s + 1)Fnz(s) < LiL5 (k)"
s=0

for some Ly, Lo, u > 0. Let us put a ¢ > 0, define
= 4BLL, + (2°T#BL,)Y W+

and assume that p, n and the confidence level € are such that

1
<€ s
p < > exp c .
2p

P(/(@g@-@(@)%g%M) >1—c (9)

n

Then

Remark 5.1 The assumption that the @; are all L-Lipschitz for a constant L
excludes a lot of interesting dictionaries. If we assume that the ¢; are L(n)-
Lipschitz (this would be the case if we used the first n functions in the Fourier
basis for example), then we will suffer a loss in (9) when compared to the iid
case. However, note that Equation (10) below is the starting point of our proof,
so we cannot hope to find a simple way to remove this hypothesis when using
n-weak dependence. This will be the object of a future work.

Proof: As ¢; is K-Lipschitz, using Proposition 3.2 we have:
N, (2)(r) < Lnz(r). (10)

So we have
oo

VE>0, > (s+1)"n,,z)(r) < LL L5 (k)"
k=1
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Moreover, following Remark 3.3,
lcov (¢(Zs,) - 03(Zs,),05(Zy) - 9(Ze,)] < B Hu+v)L -z (7).
So we can apply Theorem 3.4 with ¥(u,v) = v + v and we obtain

—t?/2
P >t S 26Xp —LM
- An + BiFP e

S
=1
with A,, = 4nBLL, and
B,, = 2>T*BL,,

in other words

—t%/2
P >t | <2exp / —5 |-
AnBLLq + (23t#BLy) w2t wte

We then put u = t\/n to obtain

_ 2 2
P > — < 2Zexp - / 1 1 2ut3 | *
vn ABLLy + (23+# BL,) 2 n~ 7ty 453

Here again, if we have

n

S W

=1

n

1 ()
w2

=1

u < ent/CGrtd)

then
y () u
— wy _

]P (
—nu2/2 2
< 2exp o/ 7 2exp (—%) =:9(u).
ABLL, + (23*#BL,) 72 ¢ 2C

So we take, following Theorem 2.1,

2
A=yt (E) _ gy Cloe ()
and we obtain, with probability at least 1 — ¢,
2 64C [olog (22
/ (fgx(:c) - fg(iﬂ)) dr < T#

n

O

6 Conclusion

In this paper, we showed how the LASSO and other ¢;-penalized methods can
be extended to the case of dependent random variables.

An open and ambitious question to be adressed later is to find a good data-
driven way to calibrate the regularization parameter A when we don’t know in
advance the dependence coefficients of our observations.

Anyway this first step with sparsity in the dependent setting is done for accurate
applications and our brief simulations let us think that such techniques are
reasonable for time series.

Here again extensions to random fields or to dependent point processes seem
plausible.
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7 Proofs

Proof of Theorem 2.1: By definition,

R . 1 — - =
> Q(Zi,03) + Aldalh < Z; Q(Zi,0) + |0l

1
n-

R(Dy) — R(®) g/zn%{zn:{ (2i,05) — (zi,g)}}dIP(zl,...,zn)

i=1

%i[ﬁ? (Zi,0x) = Q(Z:,0)] + 2 (181l — 1xl ) . (11)

=1

Now, as @ is quadratic wrt 6 we have, for any z,

Q(z,05) = Q(z,0) + (05 — 5),5%2, %) + %(9} —0)M(y—0). (12)

Moreover, as  is the minimizer of R(.), we have the relation

/Znnzan“ dP(z1,. .., 2n) = 0. (13)

Pluging (12) and (13) into (11) leads to

e

I/\
3I>—‘
<b|

R(65) — R(@) + 2 (1~ 1011

and then

R(6)) — R(®) <||9A—9H1 Sup

1 n
25

Now, we remind that we have the hypothesis

+ X (I8l = 16l ) - (1)

PRl

Vi€ {L....p}, P( -

=1

that becomes, with a simple union bound argument,
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Also remark that n®=/2¢=1(¢/p) = A*/4 < A\/4. So until the end of the proof,

we will work on the event
SCCTRIR
— 2 - 4

true with probability at least 1 — e. Going back to (14), we have

w€EN: sup
1<;<p

A
R(0:) = R() < 5105 — 01+ A (181 — 1011
and then

R S WO .~ _ R
R(0:) = R(8) + 5105 = 0llx < A (163 =8l + 11 — 1011 )

:A( 02); — 051+ D (18] - |(éx)j|))
3:0,;70

3:8;70

that leads to the following inequality that will play a central role in the end of
the proof:

. S W . _
R(03) = RO) + 51105 =0l <2x > [(02); — B3, (15)
3:0;70

First, if we remind that R(6) — R(0) > 0, (15) leads to

105 = Blly <4 > [(0xr); — 051

J:0;70
and so
D100, =01 <3 > [(00); —05l-
§:0,=0 §:0;7#0

So we can take v := 0y — 0 in Assumption A (k). So, (15) leads to

A — A A —_ A _
R(03) = RO + 51105 = 0ll <2x > [(0); — 3] (16)
j:§j7ﬁ0

<o <@@ -9 0,-9)
—2) (@ [R(H}) - R(@)D ) (17)
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We conclude that -
A — 4
R(0)) — R(0) < M_

K
Now remark that (16) to (17) states that a convex quadratic function of {R(éA) — R(0)

is negative, so both roots of that quadratic are real. This leads to

2M[[0lo
.

163 —8]lx <
This ends the proof. [
Proof of Proposition 3.3: First

BV o W) <oa@ =a 3 el wi).

1<k, ke<n

The same combinatorial arguments as in [DL99] yield for p < 2¢

-2
Ag{% < C;ﬁjl?’n + Z A%?nAéjjm,n’ where (18)
m=2
) n—1
Otn = (=D Y (r 4 1) e q(r). (19)
r=0
Let us now assume the condition (6) then
) n—1
Y < -1 (r+1)2
r=0
n+1
< C(ﬂ—l)n/ 72y, if6>q+2
2
< COlg+1)(n+1)?% ifl=q+2
-1
< C———(n+1)1 if £ >q+2
< Cg_q_Q(nvL) : if £>q+
< C(t— 1)n/ 7279 dg, if0<q+2
1
-1
—n.
qg+2—4¢

A rough bound is thus Cé{l?,n < C(f —1)n=9V! and we thus derive

AV, < on,  AY) < 20, AY) < 4Cn? 20)
AY) < son?, AY) < 170m.

Now using precisely condition (6) with the relation (18) we see that if az = 1,
and a3z = 2 then the sequence recursively defined as

m—2

am=m—1+ Z Ak Om—k (21)
k=2
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satisfies A%) < a,Cl

m m
2 2

Inl%2]. Remember that

(2m — 2)!

1
Em, m:2,3,...

hence as in [DL99] we quote that

am < dm

is less that the m-th Catalan number, d,, and this ends the proof. [
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