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Abstract

The aim of this paper is to provide a comprehensive introduction for
the study of ¢i-penalized estimators in the context of dependent obser-
vations. We define a general ¢;-penalized estimator for solving problems
of stochastic optimization. This estimator turns out to be the LASSO
[Tib9¢] in the regression estimation setting. Powerful theoretical guaran-
tees on the statistical performances of the LASSO were provided in recent
papers, however, they usually only deal with the iid case. Here, we study
our estimator under various dependence assumptions.
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1 Introduction

1.1 Sparsity in high dimensional estimation problems

In the last few years, statistical problems in large dimension received a lot of
attention. That is, estimation problems where the dimension of the parameter
to be estimated, say p, is larger than the size of the sample, usually denoted by
n. This setting is motivated by modern applications such as genomics, where
we often have n < 100 the number of patients with a very rare desease, and p
of the order of 105 or even 10° (CGH arrays), see [R g] and the references
therein for example. Other examples appear in econometrics, see Belloni and
Chernozhukov [BC0Y, BC1(] for example.

Probably the most famous example is high dimensional regression estimation:
one observes pairs (z1,y;) for 1 <i <n with y; € R, x; € RP and one wants to
find a 6 € R? such that for a new pair (x,y), 8’z would be a good prediction for
y. If p > n, it is well known that a good estimation cannot be performed unless
we make an additional assumption. Very often, it is quite natural to assume
that most one can find such a 6 that is sparse: most of its coordinates are equal
to 0. If we let ||0]o denote the number of non-zero coordinates in 6, this means
that ||0|lo < p. In the genomics example, it means that only a few genes are
relevant to explain the desease. The first estimators to deal with this kind of

problems where the now famous AIC [Aka73] and BIC [Sch7§. Both can be

written
arg min {Z(yz —0'z;)? +>\n||9|0} (1)

OcRr | 4
=1

where ), > 0 differs in AIC and BIC. These estimators were proved to have
satisfying statistical properties, see for example [BTWO07 where a nice oracle
inequality for BIC is provided.

The main problem with this so-called ¢y penalization approach is that the prob-
lem of the effective computation of the estimators defined in (ﬂ) is very time
consuming. In practice, these estimators cannot be used for p more than a few
tens. This motivated the study of the LASSO introduced by Tibshirani [[[ib9d].
This estimator is defined by

n

. 2

arg min  — 0'x; AnllO . 2

geem{E = 0"+ |1} 2)
=

The convexity of this minimization problem ensures that the estimator can

be computed for very large p, see Efron et al. [[EHJTO04] for example. This



motivated a lot of theoretical studies on the statistical performances of this
estimator. The results with the weakest hypothesis can be found in the work
of Bickel et al. or Koltchinksii [[Kol|. See also very nice reviews in the
paper by Van de Geer and Biithlmann [vdGBO0Y] or in the PhD Thesis of Hebiri
[. Also note that a quantity of variants of the idea of ¢;-penalization
were studied simultaneously to the LASSO: among others the basis pursuit
[Che9s, [CDSOT]), the Dantzig Selector [CT0F], the Elastic Net [ZHO)...

Another problem of estimation in high dimension is the so-called problem of
sparse density estimation. In this setting, we observe n random variables with
(unknown) density f and the purpose is to estimate f as a linear combination
of some functions 1, ..., ¢,. If p>n and

f() =~ Zé’jsoj(-)

we can use the SPADES (for jjsparse density estimator;;) by Bunea et al.
[BWTO7] or the iterative feature selection procedure in

One of the common feature of all the theoretical studies of sparse estimators
is that they focus only on the case where the observations are independent.
For example, for the density estimation case, in [BWT07] and [[Alq0§] the ob-
servations are assumed to be iid. The purpose of this paper is to propose a
unified framework. Namely, we define a general stochastic optimization prob-
lem that contains as a special case regression and density estimation. We then
define a general ¢1-penalized estimator for this problem, in the special case of
regression estimation this estimator is actually the LASSO and in the case of
density estimation it is SPADES. Finally, we provide guarantees on the statisti-
cal performances of this estimator in the spirit of [, but we do not only
consider independent observations: we want to study the case of dependent ob-
servations, and prove that we can still recover the target 6 in this case, under
various hypothesis.

1.2 General setting and /;-penalized estimator

We now give the general setting and notations of our paper. Note that the cases
of regression and density estimation will appear as particular cases.

We observe n random variables in Z : 71, ..., Z,. Let P be the distribution
of (Z1,...,Z,). We have a function @ : £ x R? — R such that for any z € Z,
0 € R? — Q(z,0) is a quadratic function. The objective is the estimation of a
value 6 that minimizes the following expression which only depends on n and 6:

RO)= 23800 = [ 13 Q)G 2

All the results that will follow are intended to be interesting in the case p > n
on the condition that ||6||o := card{j : §; # 0} is small.
We use the following estimator:

OERP

PR
arg min lﬁ ;Q(Zi,e) + )\|9||1]



and 0, denotes any solution of this minimization problem.
We now detail the notations in the two examples of interest:
1. in the regression example, Z; = (X;,Y;) with the X; € R? deterministic,

and
Yi=X[0+¢; (3)

where E(g;) = 0 (the &; are not necessarily iid, they may be dependent
and have different distribution). Here we take Q((z,vy),0) = (y — 2/60)?.
In this example, 0y is known as the LASSO estimator [Tib96)].

2. in the density estimation case, Z; € R have the same density wrt Lebesgue
measure (but they are not necessarily independent) and we have a family of
functions (¢;)?_; and we want to estimate the density f of Z; by functions
of the form

fo(-) = iﬂ%‘(')-
In this case we take -
Q.0) = [ 73O - 242
and note that this leads to
RO) = [ (ole) = f@)*dz ~ [ Pla)dn = [ (fola) - f(a))*do - est.
Then 6 is the estimator known as SPADES [BWTO07).

1.3 Overview of the paper

In SectionE we provide a sparsity inequality that extend the one of Bickel et al.
[BRT0J] to the case of non iid variables. This result involves two assumptions:
one of them is about the function @ and is already needed in the iid case. The
other one is more involved, it is specific to the non iid case.

In Section E, we provide examples of classical assumptions on the observa-
tions that can ensure that this hypothesis is satisfied. These assumptions are
expressed in terms of dependence coefficients.

We apply the results of Sections E andE to regression estimation in Section
@ and to density estimation in Section f.

Finally the proofs are given Section [f.

2 Main result

2.1 Assumptions and result
First, we need an assumption on the quadratic form R(-).

Assumption A (k) with k > 0. As R(:) is a quadratic form, we have the matriz

O*R(0)
M=



that does not depend on 0, and we assume that the matriz M has only 1 on its
diagonal (actually, this just means that we renormalize the observations X; in
the regression case, or the function @; in the density estimation case) and that
it satisfies
. v Mu
RS v € RP Jlélil p} Z U2'
Tigs lvil < 8%5es lvgl “HIET I
171 < 1910

Note that this condition is already required in the iid setting, see [ and
[FdGB0Y] for example. In these paper it is also discussed why we cannot hope
to get rid of this hypothesis.

We set for simplicity

10Q(Z:,0)

WO _
T2 00,

ie{l,....,n}, je{1,...,p} (4)
Recall that as Q(z,0) is a quadratic function it may be written as Q(z,60) =

0’ A(2)0+b(z)' 0+ c(z) for a p x p-matrix valued function A on R? and a vector
function b : R? — RP so that

Theorem 2.1 Let us assume that Assumption A(k) is satisfied. Let us assume
that the distribution P of (Z1,. .., Zy) is such that there is a constant o € [0, 1]
and a decreasing continuous function () with

. 1 &) _1
v 1,... P(|=) W7 > tor | < (). 5
je L n, (ng IR >_w<> 5)
Let us put
A> N = 20 E ] <5> .
p
Then -
A — 41°||0
R(0y) - R@) < 2100
K
P and, simultaneously >1—e.
- 8|0
He/\ _ 9”1 S H ”0

The arguments of the proof of Theorem P.1| are taken from [BRT0Y]. The proof
is given in Section ﬂ, page E

Note that the hypotheses of this theorem heavily depend on the distribution
of the variables Z1, ..., Z,, and particulary on their type of dependence.



Also note that the upper bound in the inequality is minimized if we make
the choice A = A*. Then

Ridy) - r(5) < 20V L)

IN

nl*?(x

P and >1—c.

16x 8l

i-a

_ 16180 [v=" (</p)]”

It is important to remark that the choice A = 2n0‘*%1/)*1 (%) may be impossible

in practice, as the practitionner may ignore o and (). Moreover, this choice
is not necessarily the best one in practice: in the regression case with iid noise
N(0,0?%), we will see that this choice leads to A = 201/2nlog(p/e). This choice
requires the knowledge of . Moreover it is not usually the best choice in
practice, see for example the simulations in [Heb09]. Even in the iid case, the
choice of a good A in practice is still an open problem. However, note that

1. the question is in some sense meaningless. For example the value of A that
minimizes the quadratic risk R(fy) is not the same than the value of
that may ensure, under some supplementary hypothesis, that 0 identifies
correctly the non-zero coordinates in 6, see for example Leeb and Potscher
[EP0F on that topic. One has to be careful to what one means when one
say jja good choice for \;;.

2. some popular methods like cross-validation seem to give good results for
the quadratic risk, at least in the iid case. An interesting open question
is to know if one can prove theoretical results for cross validation in the
non iid setting.

3. the LARS algorithm [EHJT04] compute 05 for any A > 0 in a very short

time.

Our point of view here is that we should use Theorem EI in the following way:
we fix A large enough (depending on what we know about the data, for exam-
ple, A = Ln~2 log(p/e) with £, a large enough constant). Then the theorem
ensures the sparsity oracle inequality as soon as the data satisfy some suitable
conditions. These conditions are discussed below.

2.2 Remarks on the density and regression estimation set-
ting

First, note that in the regression setting (Equation E), for any i € {1,...,n}
and j € {1,...,p} we have

Then, in the density estimation context,
=Elp;(Z1)] = ¢j(Zi). (7)



So, in both cases, the assumption given by Equation ﬂ is satisfied if we have
a control of the deviation of empirical means to their expectation. In the next
sections, we discuss some conditions to obtain such controls with dependent
variables.

3 Models fitting conditions of Theorem 7]

In this section, we give some results that allow to control the deviation of em-
pirical means to their expectations for general (non iid) obsrevations. The idea
will be, in the next sections, to apply these results to the processes W) =
(Wi(J))lgign for 1 < j < p. For the sake of simplicity, in this section, we deal
with a generic process V = (V;);ez and the applications are given in the next

sections. Various examples of pairs (a, 1)) are given.

3.1 Weak dependence (o = 0)
Definition 3.1 We put, for any process (V;)icz,

wmlr) = g, S o (o Vi Vi )| ©
tip1 —tp >

We precise in §— and in §-B.1.9 that suitable decays of those coefficients yield
the conditions in Theorem P.1] Those two sections will provide quite different
forms of the function .

Cases of bounded or non-bounded random variables are to be considered sepa-
rately. Eg. weak dependence conditions from Dedecker et al. [ imply
that the coefficients (E) are bounded by a constant only depending on m multi-
pled by sup; [|Vi||Z2 e(r). Set M = sup, ||V;||co, then for example if n, or x weak
dependence or if strong mixing hold then

mM™ gy (1) 9)
m2M™  ky (1)
M™ay(r).

cv,m(T)

IA A CIA

Now the previous strong mixing condition is completely hereditary through
measurable images but this is not the case for the weak dependence conditions.
If the random process (V;) satisfies a weak dependence condition then f(V;) too
if for some L > 0, a > 1,

Ytz |f(z+t) = f() < L(l2|*7 v )t (10)

and K = sup, ||V;|ls < oo for some s > a then looking more precisely at the

proofs in ] page 13 yields

S5LEny(r)s1 (11)
S5LKky(r)sre-s.

IN

Ny (r)

IN

Ky (r)



3.1.1 Moment inequalities

In Doukhan and Louhichi [DL9Y] it is proved that if for an even integer 2q we
have

3C > 1 such that: cv,2q(r) < C(r+1)79, Vie(l,p], Yr>0 (12)
then Marcinkiewicz-Zygmund inequality follows:
B ((Vi -+ V0)™) = O(n)

and thus o = 0 and v(t) is of the order of 1/t?¢. However, explicit constants
are needed in Theorem @ We actually have the following result.

Proposition 3.1 Assume that coefficients (E) fit the relation ) for some
integer ¢ > 1, then Marcinkiewicz-Zygmund inequality follows

E[(Vi4 -+ V)] < Cldaq(29)!n? (13)
where e )1
m — 2)!
= =23, ...
dm m((m_l)')Qa m )3?

The proof follows [, it is given in Section ﬁ

Remark 3.1 Sharper constants asq are also derived in the proof (Equation ,
page @), one may replace the constants 2ds,24dy,720dg by 1, 4 and 17) and
using the recursion @) also improves the above mentioned bounds.

Various inequalities of this type where derived for alternative dependences (see
Doukhan [Dou94||, Rio [Rio0(] and Dedecker et al. [DDLT07 for an extensive
bibliography which also covers the case of non integer exponents.

3.1.2 Exponential inequalities

Using the previous inequality, Doukhan and Louhichi ] proved exponen-
tial inequalities that would lead to v(t) in exp(—+/t). Doukhan and Neumann
[DNO7 use alternative cumulant techniques to get ¥ (t) in exp(—t2) for suitable
bounds of the previous covariances ().

Theorem 3.2 Let W : IN? = IN be one of the following functions:

(a)  Wlu,v) =2,
(b)  W(uv)=u+tov,

(c) W(uv)=uv,

(d)  U(u,w)=alu+v)+ (1—a)uw,  for some a € (0,1).

We assume that there exist constants K, Ly, Lo < 0o, u > 0, and a nonincreas-
ing sequence of real coefficients (p(n))n>0 such that, for all u-tuples (s1,...,5y)
and all v-tuples (t1,...,t,) with 1 < s < -+ <5, <t < -+ <t, <n the
following inequality is fulfilled:

|cov (X, -+ X, Koy 0 Xy, )| < K2MU 720 (u,0)p(t — su), (14)



where
o0

> (s+1)Fp(s) < LiLE(RD" Yk > 0. (15)
s=0

Then

P(Sh > t) < exp < t/2 ) : (16)

A, + BY 2 (2u43)/(n+2)

where A, can be chosen as any number greater than or equal to o2 := Var(Vi +

<+ V) and

4+p 2
By =2(KV M)Ls ((2+M) vV 1) .

This result yields convienient bounds for the function 1. A review paper by
Olivier Wintenberger [Win0g] is also of interest: it directly yields alternative
results from our main result. In this paper, we do not intend to provide the
reader with encyclopedic references but mainly to precise some ideas and tech-
niques so that this will be developed in further papers.

3.2 Long range dependence (« €]0, %[)
3.2.1 Power decays

Assume that a centered series (V) satisfies ), supy, [cov(Vi, Vits)| = oo then
« > 0 may occur, eg. if

(i) = sup |cov(Vi, Vigi)| ~i~?
k
for 8 €]0,1] then var(S,) ~ n?~#; then a = (1 — 8)/2 holds.

3.2.2 (Gaussian case

In the special case of Gaussian processes (V;);, tails of ST(lj ) are classically de-
scribed because S,, ~ N(0,02) and here (t) = exp(—t?). We thus may obtain
simultaneously subGaussian tails and o = (1 — 3)/2 > 0.

3.2.3 Non subGaussian tails

Assume that that for each i,j G; ~ A (0,1) and (G;); is a stationary Gaussian

processes with

(i) = cov(Gr, Gryi) ~ ci™?

Let V; = P(G;) for a function with Hermite rank m > 1, and since

cov(Hp(Go), Hn(Gi)) = m! (r(i))™

their covariance series is non m-th summable in case 3 E]%, 1.
The case P(z) = 2? — 1 and 8 €]3,1] is investigated by using the following



expansion in the seminal work by Rosenblatt [[Ros61].

Set R,, for the covariance matrix of the Gaussian random vector (G, ...,Gy):
Ee™’ 'S = =" det™3 (I, — 2tn®'R,,)
11
= exp (5 kZ_Q E(Qmﬂ_l)]C trace (Rn)k>

Quoting that
n*B=1 trace (Rn)k — oo Ck >0

with

1 1
Ch :Ck/ / w1 — x| Plan —as| P Jwi—y — @] P loe — 21| Pday - day,
0 0

=

this is thus clear that for small enough [t| < 7 = §sup;>y ;5 (cg)) ,

tnﬂflsslj) l - kc_k
Ee — o0 €XP (2 Z(Qt) A )

k=2

Here the conditions in the main theorem hold with ¢/(t) = e *anda =1—3> 0
for any M > 1/7.

Extension to higher order Gaussian subordinated models. Analogously
if V; = P(G;) for a function with Hermite rank m > 3, and for Gaussian pro-
cesses (G;); with non m-th summable covariance series. The above mentioned
arguments from analytic functions theory however don’t work anymore in this
case; indeed the corresponding Laplace transforms are it is no more an analytic
function around zero in this case. Anyway we guess that here ¢(t) = exp(—t ).

4 Application to regression estimation

In this section we apply Theorem and the various examples of Section E to
obtain results for regression estimation. Note that the results in the iid setting
are already known, they are only given here for the sake of completeness, in
order to provide comparison with the other cases.
Let us remind that in the regression case, we want to apply the results of
Section fJ to _
W = (X;)ier.

For the sake of simplicity, in this whole session dedicated to regression, let us
put

max(X) := max max |(Xy);]-

4.1 Regression in the iid case

Under the usual assumption that the ¢; are iid and subGaussian,

2
Vs, Tlexp(se?)] < exp (28—2)
o

10



for some known o2, then we have

LSO
P||- w/
So we can apply Theorem @ in order to obtain the following well known result:

Corollary 4.1 ([BRT0Y]) In the context of Equation B, under Assumption
A(k), if the (g;) are iid and subGaussian with variance upper bounded by o2,

the choice A = 20+/2log(p/e)/n leads to

. _ 2 |6]|o log 2
P <R(9,\) ~R(®) < 32: '”OTOg> >1 -«

t2

> %) < (t) = exp(— ).

4.2 Regression estimation in the dependent case
4.2.1 Marcinkiewicz-Zygmund type inequalities

Let us remark that, for any 1 < j <p,

e m(r) < Com(r) <ma,x |<Xj>z-|> = max(X) ™o ().

%,

Thus, we apply Theorem @ and Proposition @ to obtain the following result.

Corollary 4.2 In the context of Equation E, under Assumption A(k), if the
(€;) satisfy, for some even integer 2q,

3C > 1 such that: Vr >0, Ceoq(r) < C(r+1)79,

the choice

5= 2C'2 max(X )4 (dgqq!p) %

NG 5

leads to

R _ 2 N [18]lop
IP(R(GA)R(Q)< 16C max(X)?*(daqq!) " [Pllop >215.

K gan

Remark 4.1 This result aims at filling a gap for non subGaussian and non iid
random variables.

The result still allows to deal with the sparse case p > n in case ¢ > 1. In
this case we deal with the case p = n9/? and we get a rate of convergence in
probability O(1/+/n).

If =1 and £ — 0 the least squares methods apply which make such sparsity
algorithms less relevant.

Moreover if g < 1 the present method is definitely not efficient. Hence the case
of heavy tails such as considered in the paper by Bartkiewicz et al. /
should neither use our result. Anyway, using least squares for heavy tailed mod-
els (without second order moments) does not look to be a good idea!

11



4.2.2 Exponential inequalities

Using Theorem P.1] and Theorem B.d we prove the following result.

Corollary 4.3 Let us assume that the (g;) satisfy the hypothesis of Theorem
@: let ¥ : IN?> = IN be one of the functions of Theorem @, we assume that
there are constants K, L1, Lo < 0o, u > 0, and a nonincreasing sequence of real
coefficients (p(n))n>0 such that, for all u-tuples (s1,...,sy) and all v-tuples
(t1y . yty) with 1 <51 <--- <8, <t3 <---<t, <n the following inequality
is fulfilled:

|cov (g5, -+ es,n80, er, )| < K2MUT 720 (u,0)p(th — s0),

where
o

D (s+1)Fp(s) < LiLE(RY"  VE>0.
s=0

Let ¢ be a positive constant and let us put

pt3
C = 4K?max(X)?W(1,1)Ly + 2Ly max(X)(K Vv M) (% Vv 1) :

If we assume that Let us assume that € > 0, p and n are such that

<€ 2nie
—e
P> 5 Xp C

then for
Clog (%
\_ g /Clog (%)
n
we have B )
. 1 0|0 log (=2
]P{R(@,\)—R(G) < EM} >1—c.
K n

So the rate is the same than in the iid case. The only difference is in the
constant, and a restriction for very large values of p.

Proof: For the sake of shorteness, let us put

ou+3
Cy = 4K?max(X)?¥(1,1)L; and Cy = 2L, max(X)(K vV M) (q/(1 ) v 1>
and note that C = Cy + ¢Cs. First, note that for any j € {1,...,p},
‘COV (Ws(j) W9 W) Wt(j))‘
) u+v
< (squ}”) K2MYT =20 (u, v)p(t; — s4,)

< K2MU =20 (u,0)p(ty — su)

12



if we put K = max(X)K and M = max(X)M. Using Theorem B.3, we obtain

for any j,
; t2/2
P ZWi(j) >t] <2exp| — L P
p A, + BiTtur

where A, = 02 < 2nl~(2\11(1, 1)Ly and
24 K2 L
By =2(KV M)L, ((72 v 1) :
in other words:

t2/2
Cin + Cot w2

Now, let us put u = t//n, we obtain

%

2
nu?/2
S 2€Xp ( 2u+3 2u+3 )

Cin + Con2itiy ufz

u?/2
§2exp< 7/1 2u+3>'
C1 + Con™ ZeFiqy ute

Remark that we cannot in general compute explicitely the inverse of this func-
tion but we decide to upper-bound the range for u:

1
u < c-n2eti

In this case,

1 ()

and so

2 2
> un§> < 2exp <%) = 2exp <;—C> =: ¢(u)
1 2¢C

I (y) = [Clog (3)

So we can take, following Theorem ﬂ,

1 1 2
A=2n"2¢ 1 (E) =2n"24/Clog (_p)
D €

as soon as ¥~ 1(g/p) < n'/(?#+1) For example, for a fixed number of observa-
tions n and a fixed confidence level €, we have the restriction:

L £ cnz
—e .
P_2 Xp C

13




Under this condition we have, by Theorem E,

16C |[6]|o log (22)

R(0)) — R(0) < - -

P and, >1—¢,

_ 16C [[Bllolog (%2)
>~ 1
KR

nz

16> —BlIx
this ends the proof. [J

4.3 Simulations

In order to illustrate the results, we propose a very short simulation study. The
purpose of this study is not to show the good performances of the estimator in
practice or to give recipes for the choice of A. The aim is more to show that
the performances of the iid setting are likely to be obtained in the dependent
setting if the dependence coefficients are small.

We use the following model:

where the X;’s will be treated as a random design, but in practice will be iid
vectors in R? with p = 50, with distribution N, (0,%) where ¥ is given by
¥, = 0.5l

Figure 1: results of the experiments. The z-axis gives the value g where A =
g+/log(p)/n. The y-axis gives Z?:l(éﬁ\Xi — 0’ X;)? the error of reconstruction of the
signal. The color code is the following: ¢ = —0.95: black, ¥ = —0.75: red, ¥ = —0.5:
green, ¥ = 0: blue, ¥ = 0.5: cyan, ¥ = 0.75: violet, ¥ = 0.95: yellow.

14



The parameter is given by 6 = (3,1.5,0,0,2,0,0,...)) € RP. This is the toy
example used by Tibshirani [Tib9q]. Let ¢ €] — 1,1].

The noise satisfies e; = Je;_1 + n;, for i > 2, where the 7; are iid N'(0,1 — 9?)
and 1 ~ N(0,1). Note that this ensure that E(¢?) = 1 for any i, so the noise
level does not depent on . In the experiments,

¥ € {—0.95,—0.75,—0.5,0,0.5,0.75,0.95}.

We fixed a grid of values G C]0,1.5] and we computed, for every experiment,
the LASSO estimator with A = gy/log(p)/n for all g € G. We have repeated
the experiment 25 times for every value of ¥ and report the results in Figure m

We can remark that all the curves are very similar. The minimum recon-
struction error is obtained for g ~ 0.2, that corresponds to A ~ 0.072. Note that
in the iid case, it is smaller than the theoretical value given by Theorem @,

A = 204/2log(p/e)/n ~ 1.28 for € = 1/10, that would correspond to g ~ 3.55,
a value that would not event stand in the figure!
5 Application to density estimation

Here we apply Theorem @ and Section E to the context of density estimation.
Let us remind that in this setting,

W = Elp;(21)] - ¢i(Zi).

5.1 Density estimation in the iid case

If the Z, are iid with density f and if ||¢;]lcc < B for any j € {1,...,p} then
we can apply Hoeffding inequality [Hoe6d] to upper bound

| [eis@as -3¢z

We obtain
n 2B2

L= 00
IP<£;WZ-]

So we can apply Theorem [1]

> L) < (t) = 2exp(—ns).

Corollary 5.1 In the context of density estimation, under Assumption A(k),
if the Z; are #id with density f and if ||¢jllec < B for any j € {1,...,p}, the

choice A = 2B+/2nlog(p/e) leads to
2 3282 ||0]|o log 2
P </ (f(;k(w) —fg(w)) dr < ————= | >1-c.

K n

This result is essentially known, see [BWT07.
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5.2 Density estimation in the dependent case

Note that if as previously we work with bounded ¢;(-), we automatically have
moments of any order. So we will only state a result based on exponential
inequality.

So, using Theorem E and Theorem @ we obtain:

Corollary 5.2 Let us assume that there are L > 0 and B > 1 such that ¢;(-)
is L-Lipschitz and ||¢jllcc < B for any j € {1,...,p}. Let us assume that Zi,
.., Zy satisfy

oo

VE>0, Y (s+1)"nz(s) < LiL5(k!)"
s=0

for some Ly, Lo, u > 0. Let us put a ¢ > 0, define
C:=4BLL, + (2> BL,)Y#+2¢

and assume that p, n and the confidence level € are such that

<€ n s
Zex )
JURS 5 p C

P (/ (43,0~ f5@)) o < $M> S1oe

Then

n
Proof: As ¢(j) is K-Lipschitz, we have:

Mg, (2)(r) < Lnz(r).

So we have
oo

VE>0, > (s+1)"n,,z)(r) < LLi L5 (k)"
k=1

Moreover, following Remark 9 page 9 in Doukhan and Neumann [DNO7],

lcov (0 (Zs,) -+ 05(Zs,), 05 (Ze,) - 03 (Ze,))] < BT~ Hu+v)L - nz(r).

So we can apply Theorem @ with U(u,v) = u+ v and we obtain

- : —t2/2
P ( ZWi(j) > t) < 2exp <—L 2“+3>
P An + BRIt
B, = 2’t*BL,,

with A,, = 4nBLL, and

in other words

“

n

i=1

—t2/2
>t | <2exp s |-
AnBLLq + (23t#BLy) w2t wte
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We then put u = ¢y/n to obtain

1 <= ()
P(E;Wij

Here again, if we have

>%>

—nu?/2
S 2€Xp 1 _ 1 2pu+3 .
4BLL1 + (23+HBL1) n+2n 2pFdq pt2

u < ent/CGrtd)

then
1 — ) u
— wy _

]P (
—nu2/2 2
< 2exp n’/ - 2 exp (—%) =: (u).
4BLL, + (23*#BLy) "¢ 2C

So we take, following Theorem @,

n

and we obtain, with probability at least 1 — ¢,

[ (120 o) e < L0C W0 o8 (2,

K n

O

6 Conclusion

In this paper, we showed how the LASSO and other ¢;-penalized methods can
be extended to the case of dependent random variables.

An open and ambitious question to be adressed later is to find a good data-
driven way to calibrate the regularization parameter A when we don’t know in
advance the dependence coefficients of our observations.

Anyway this first step with sparsity in the dependent setting is done for accurate
applications and our brief simulations let us think that such techniques are
reasonable for time series.

Here again extensions to random fields or to dependent point processes seem
plausible.

7 Proofs

Proof of Theorem @ By definition,

I - . I - -
~ ;Q%,en + M0l <~ ;Q(zi,w + Al[6ly
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%{ Y {Q(zi,é,\)Q(zi,g)]}dIP(zl,...,zn)
%Z |Q(Zi,05) = Q(Z:,9)] + 2 (1811 = 1:l) . (17)

Now, as @ is quadratic wrt 6 we have

Q(z,0)) = Q(2,0) + (05 — 9)"9%2’ ) + %(9} —0)M(Ox—0). (18)

Moreover, as 6 is the minimizer of R(.), we have the relation

agfxz/n%EjégggQMmen,%>:o (19)

i=1

Pluging (1§) and (Ld) into (L7) leads to

R Ry o1 ) BN,
R = RE) < =0 =55 + A (18112 = 1811 )
and then
A — A = 1 <& 9Q(z,0) — A
R(0)) — R(0) < ||6x— 0 — —= |+ A (0L -0 . (20
(62) = RO <101 =T smp |23 =55 (I8l = 1611 ) - (20)

Now, we remind that we have the hypothesis

15~10Q(%:,9)

i=1

> na—%t> < ()

vie{l,...,p}, ]P(
that becomes, with a simple union bound argument,

P ( sup ! 19Q(2:,6) > na§t> < p(t)
1<j<p

n&2 00; |~
and so, if we put t = ¢ ~1(¢/p),

i—1
T\ 7) > na—%¢—1 (E) <e.
p

Also remark that n®~1/2¢=1(e/p) = A*/2 < A\/2. So until the end of the proof,

we will work on the event

1 - 10Q(Zi(w), 0
we: sup |— _M Sé
1<j<p | 2 09, 2

true with probability at least 1 — . Going back to @, we have

~ —_ A —_ _ ~
R(0:) = R@) < 51105 = 0lly + A (1812 — 101
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and then

R I O . _ R
R(0:) = R + 51105 = 0lls < A (1163 =0l + 11 — 101 )

A(im} iwm )

A( 02); =051+ > (|§j||(é>\>j|))
3:0;70 5:0;70

that leads to the following inequality that will play a central role in the end of
the proof:

A — A _ A —
R(6x) = R(0) + S110x — O]l < 2A > 10x); =651 (21)
§:8;7#0

First, if we remind that R(0y) — R(9) > 0, (B1) leads to

I6x —Bll <4 D 1(0x); — 041

j:@j?ﬁo
and so
Z |(9>\)J - 9j| <3 Z |(9>\)J - ejl
3:6;=0 3:0;70

So we can take v := 0 — 0 in Assumption A(x). So, (1) leads to

ROy ~ RO) + 5103~ <20 3 1(62); - (22)
j:gj;ﬁ()
<2\ (wno > 162, - 5 12)
j:§j7ﬁ0

We conclude that
R(0)) — R(0) <

Remark that pluging this result into (P2) to (R3) gives

8A[10]lo

105 =01 <
K

This ends the proof. [
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Proof of Proposition @ First

BV o W <oa@ =a 3 el wd).

1<k, ke<n

The same combinatorial arguments as in [[DL9Y] yield for p < 2¢

-2
Aé{,)l < C;ﬁjl?’n + Z A%?nAéjjm,na where (24)
m=2
) n—1
CO) = (=1 (r+ 1) 2ep0 04(r). (25)
r=0
Let us now assume the condition ([LJ) then
) n—1
Y < CU-1nd (r+1)2
r=0
n+1
< O - 1)n/ 7279 de, if6>q+2
2
< Clg+1)(n+ 1) ifl=q+2
-1
< C——=(n+1)0 if £ >q+2
< O - 1)n/ 729 dg, if 0 <q+2
1
-1
q+2— 0"

A rough bound is thus ng’n < O —1)n=9V! and we thus derive

AV, < on,  AY) < 20m,  AY) < 4Cn? 26)
AY) < son?, AY) < 170m.

Now using precisely condition (1) with the relation (R4) we see that if ay = 1,
and a3 = 2 then the sequence recursively defined as

1 (2m-2)!
m ((m — 1)1)2’

hence as in [[DL9Y| we quote that
am < dp,

is less that the m-th Catalan number, d,, and this ends the proof. O
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