
HAL Id: hal-00564167
https://hal.science/hal-00564167v1

Submitted on 8 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control of Time-Constrained Dual-Armed Cluster Tools
Using (max, +) Algebra

Rachid Attia, Saïd Amari, Claude Martinez

To cite this version:
Rachid Attia, Saïd Amari, Claude Martinez. Control of Time-Constrained Dual-Armed Cluster Tools
Using (max, +) Algebra. Conference on Control and Fault-Tolerant Systems (SysTol’10), Oct 2010,
Nice, France. pp.412 - 417. �hal-00564167�

https://hal.science/hal-00564167v1
https://hal.archives-ouvertes.fr


 
 

Control of Time-Constrained Dual-Armed Cluster Tools Using (max, +) 
Algebra  

Rachid ATTIA1, Saïd AMARI1 and Claude MARTINEZ2 
  

Abstract: The problem studied in this paper is the control of 
discrete event systems subject to strict temporal constraints 
using (max, +) algebra. Initially we sought necessary and 
sufficient conditions for the existence of a causal control law 
guaranteeing the respect of the temporal constraints.  
Subsequently, a method for calculating the control law, if any, 
is proposed. The application which we are interested in is the 
control of a manufacturing semiconductor wafers process 
subject to strict temporal constraints.  

Key words: Timed Event Graphs, (max, +) algebra, 
temporal constraints, feedback control, cluster tools. 

I. INTRODUCTION: 
In this work we are interested in the control, supervision, 

of a class of time-constrained discrete event systems 
modeled by deterministic Timed Event Graphs (TEG). The 
problem of time constraints is encountered in many 
industrial applications, such processes including thermal or 
chemical treatments [S. Amari and al. 2004] , [J. Kim and 
al. 2003], the embedded systems and urban or railway 
transportation systems [T. van den Boom and al. 2004]. Let 
us consider semi-conductor production process, once a 
schedule has been determined for a cluster tool, the 
behavior of the production system may be described as a 
TEG [J. Kim and al. 2003]. Some tasks of the production 
process which are executed by a robot may need to be 
repeated, for alignment purpose. This would perturbate the 
initial schedule and consequently lead to some quality loss 
on a part of the production. The goal of our approach is to 
design a control law that would be tolerant to that 
perturbations. 

Temporal constraints have been earlier studied has a 
problem of verification and validation, and many authors 
have addressed that point of view, see for example [B. 
Berthomieu and al. 1991]. In our work, we consider rather, 
a control problem. We search for a linear feedback control 
law determining the firing instants of the controllable 
transitions, source transitions, to guarantee the respect of 
the temporal constraints. 

In our approach the time is explicitly taken into account, 
and that is the main difference methods [K. Yamalidou and 
al. 1996], [L. E. Holloway and al. 1997]. In the literature, 
we may also find other approaches of control using dioid 
algebra. In [L. Houssin and al. 2006] an approach based on 

fixed points results of antitone mappings is given, the aim 
of the proposed control method is to delay as less as 
possible the system while ensuring some given 
specifications. Another approach of supervision of an 
industrial plant is proposed in [A. M. Atto and al. 2008]. In 
both methods, the authors consider a completely 
controllable TEG, i.e. all transitions are controllable, which 
is limiting in several real applications. Other approaches are 
proposed in [S. Amari and al. 2005] and [S. Amari and al. 
2006] in (min, +) and (max, +) algebras respectively. Some 
restrictive assumptions were considered for the control 
synthesis, e.g. existence of an empty path, with no tokens, 
from the control transition to the constrained place. The 
control laws were calculated under sufficient conditions.  

We suggest to relax the assumptions taken by [S. Amari 
and al. 2006] and formulate necessary and sufficient 
conditions for the existence of a causal linear feedback, 
ensuring the respect of the temporal constraints. We 
consider in our study the systems that can be modeled by a 
linear (max, +) equations subject to temporal constraints, 
the temporal constraints are represented by a set of (max, +) 
linear inequalities. We consider first the control of systems 
with a single control input and extend the approach to 
systems with multiple control inputs, assuming that the 
whole set of constraints is admissible. As an application, we 
are interested in the control of a time-constrained dual-
armed cluster tool proposed in [J. Kim and al. 2003].  

This paper is organized as follows, the second section 
recalls briefly the bases and tools of (max, +) algebra and 
TEG modeling. In the third section, we bring to light the 
temporal constraints problem and their formalization in 
(max, +) algebra. The proposed and the established results 
are presented. The application of the proposed method for 
the control of a time-constrained dual-armed cluster tool is 
presented in the fourth section and then we conclude. 

II. PRELIMINARIES: 

1. (max, +) algebra: 
A dioid, or semiring, is a set ࣞ equiped with two binary 

operations ْ and ٔ called addition and multiplication, 
respectively. The addition is commutative, associative with 
identity element ߝ called ‘‘zero’’. The multiplication is also 
associative with identity element ݁ called ‘‘identity’, if the 
multiplication is commutative, the dioid is commutative’. 
The multiplication is distributive over addition and the 
‘‘zero’’ annihilates ࣞ, with respect to multiplication.  

The dioid Թഥ ௠௔௫  commonly called (max, +) algebra, 
which we consider here, is defined over the set of complete 
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real numbers Թഥ ൌ Թ ׫ ሼെ∞, ൅∞ሽ. The operations addition ሺْሻ and multiplication ሺٔሻ correspond, respectively, to 
the operations maximum with (ߝ ൌ െ∞) as a “zero” 
element and ordinary addition with an “identity” element 
(݁ ൌ 0). The multiplication ሺٔሻ is replaced by ሺ·ሻ in the 
rest of this paper. 

2. Timed Event Graphs:  
Timed Event Graphs (TEGs) define a subclass of Petri 

nets [T. Murata 1989] where each place has exactly one 
upstream transition and one downstream transition. i.e. this 
type of graphs allows modeling synchronization and 
parallelism phenomena but not resource sharing or mutual 
exclusion. An important property of TEGs is that for any 
circuit, the number of token is constant, therefore if all 
circuits are non-empty, the TEG is live. Several real 
systems, as flexible workshops, embedded systems and 
transportation systems are modeled by TEGs. 

TEGs are temporized Petri nets; we denote ݌௜௝  the place 
relying the transition ݐ௝ to ݐ௜, if any, the corresponding delay 
is denoted ߬௜௝ and its initial number of tokens denoted ݉௜௝. 
The temporization ߬௜௝ corresponds to the minimal sojourn 
time of tokens in the place. The maximal marking arising in 
the graph is denoted ݉௠௔௫.  The evolution mode considered 
for TEGs is a maximum speed mode, i.e. a transition is fired 
as soon as enabled. 

We define a path from a given transition ݐ௝ to another 
transition ݐ௜ as the suite of transitions and places (ݐ௝, ݌௞భ௝, ݐ௞భ ௞మݐ ,௞మ௞భ݌ , ௜௞೙݌ ,௞೙ݐ , … ,  ௜). The marking of the path isݐ ,
given by the sum of the number of tokens in each place of 
the path. The temporization of the path is also given by the 
sum of the path places temporizations. 

3. Linear (max, +) model and state space representation:  
It is well known that the dynamical behavior of a TEG 

can be expressed by a system of linear inequalities in the 
(max, +) algebra [F. Baccelli and al. 1992]. For this, we 
associate to each transition a dater, function of the integer 
variable   ݇ א Գା, where, ݔ௜ሺ݇ሻ corresponds to the date of 
the ݇௧௛ firing of the transition ݐ௜, such that: 

 

 

where:  ݔ א  Թഥ ௠௔௫௡ൈଵ  is the state variables vector, ݑ Թഥא ௠௔௫௠ൈଵ is the vector associated to the input transitions ݑݐ௭ୀଵ,…,௠. ܣ௟ א  Թഥ ௠௔௫௡ൈ௡  is the matrix whose element  ܣ௟,௜௝ 
equals to the temporization ߬௜௝ of the place  ݌௜௝, if any, and ߝ otherwise. ܤ௟ א  Թഥ ௠௔௫௡ൈ௠ is the input matrix. 

Considering a maximal speed (as soon as) evolution of 
the TEG, the precedent inequality (I.1) can be replaced by 
the following equation: 

 

The implicit equation (I.2) is usually replaced by the 
following explicit equation: ݔሺ݇ሻ ൌ ݉௠௔௫  ۩  ൫ܣ଴כ · ሺ݇ݔ௟ܣ െ ݈ሻ ْ כ଴ܣ · ሺ݇ݑ௟ܤ െ ݈ሻ൯݈ ൌ 1                                    ሺI.3) 

כ଴ܣ ൌ ۩  ௥ஹ଴ ଴௥ܣ  where ‘*’ is the Kleene Star operator. ܣ௥ ൌ ܣ · ܣ ··· ·  .r times ,ܣ

To get a state-space representation we must decompose 
each place containing more than one token to several places 
and transitions where each place contains at most one token. 
By this operation, any model (I.3) can be written in the 
following state-space representation:  ݔሺ݇ሻ ൌ ܣ · ሺ݇ݔ െ 1ሻ ْ ܤ ·  ሺ݇ሻݑ

Matrices ܣ ൌ ሺܣ଴כ · ܤ ௟ሻ andܣ ൌ ሺܣ଴כ ·   .௟ሻܤ

III. CONTROL SYNTHESIS: 

1. Temporal constraint: 
The temporizations associated with places in a TEG 

correspond to the minimal sojourn time. In fact, the tokens 
are allowed to sojourn more time. For a time-constrained 
place a maximal sojourn time is fixed. This limitation of the 
maximal allowed sojourn time appears as an additional 
constraint that should be verified. Let us first consider a 
single constraint on place ݌௜௝ . We associate to this place the 
time interval ൣ߬௜௝ , ߬௜௝௠௔௫൧,  ߬௜௝ is the minimal sojourn time 
while ߬௜௝௠௔௫ is the maximal one. 
 
 

 

 

The constraint is expressed through the following 
inequality: ݔ௜ሺ݇ሻ ൑ ߬௜௝௠௔௫ · ௝൫݇ݔ െ ݉௜௝൯, ݇׊ ൒ 0 

where ݉௜௝ is the initial marking of the place  ݌௜௝ . The 
inequality (II.1) is the additional constraint to be satisfied. 
Thus, the problem is to determine when the controllable 
transitions should be fired to satisfy the constraint (II.1). To 
consider more than a single constraint, one has to consider 
as many expressions (II.1) as the number of temporal 
constraint to satisfy. 

2. Control synthesis: 
We formulate the problem as follows; let a system given 

by its state-space representation (I.4) subject to the temporal 
constraint (II.1). Find a linear feedback ݑሺ݇ሻ ൌ ܩ · ሺ݇ݔ െ1ሻ, ሺܩ א  Թഥ ௠௔௫௠ൈ௡ሻ such as the constraint (II.1) being always 
satisfied. In order to establish necessary and sufficient 
conditions for the existence of a control law ensuring the 
respect of the temporal constraints we must discard the 

௝ݐ ൣ߬௜௝ , ߬௜௝௠௔௫൧ ௜ݐ  ݉௜௝ 

Fig 2. Place subject to strict temporal constraint. 

(I.1) 

(I.2) 

(I.4) 

(II.1) 

ሺ݇ሻݔ ൒ ݉௠௔௫  ໄ  ൫ܣ௟ݔሺ݇ െ ݈ሻ ْ ሺ݇ݑ௟ܤ െ ݈ሻ൯݈ ൌ 0   

ሺ݇ሻݔ ൌ ݉௠௔௫  ໄ  ൫ܣ௟ݔሺ݇ െ ݈ሻ ْ ሺ݇ݑ௟ܤ െ ݈ሻ൯݈ ൌ 0   
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trivial case where ݑሺ݇ሻ ൌ  is a solution. We distinguish ߝ
the two following cases: 

2.1 Trivially solvable problems:  
Let the autonomous system, i.e. ݑሺ݇ሻ ൌ  given by its ,ߝ

state-space model: ݔሺ݇ሻ ൌ ܣ · ሺ݇ݔ െ 1ሻ 
hence  ݔ௜ሺ݇ሻ ൌ ௜ܣ · ሺ݇ݔ െ 1ሻ and ݔ௝ሺ݇ሻ ൌ ௝ܣ · ሺ݇ݔ െ 1ሻ, 
where ܣ௜ and ܣ௝ are, respectively, the rows ݅ and ݆ of the 
matrix ܣ. 
Replacing ݔ௜ and ݔ௝ in the inequality constraint (II.1) we 
obtain: ܣ௜ · ௞ିଵܣ · ሺ0ሻݔ ൑ ߬௜௝௠௔௫ · ௝ܣ · ௞ି௠೔ೕିଵܣ · ݇ ,ሺ0ሻ being knownݔ ሺ0ሻݔ ൌ ݉௜௝ ൅ 1. For a single constraint, it 
suffices to verify the inequality (II.2) to decide whether the 
problem is trivially solvable. Considering a set of q 
constraints, expression (II.2) has to be verified for each 
constraint, and furthermore, inequality (II.2.1) has to be 
satisfied: ܪ · ሺ0ሻݔ ൑ ܳ ·  ሺ0ሻ,    (II.2.1)ݔ

where ܪ, ܳ א  Թഥ ௠௔௫௤ൈ௡ , H is composed of q row matrices ܣ௜௟ · ௞ିଵfor l=1 to q, Q is composed of q row matrices ߬௜௟,௝௟௠௔௫ܣ · ௝௟ܣ · ݇ ௞ି௠೔೗,ೕ೗ିଵ andܣ ൌ max௟ஸ௤ሺ ݉௜௟,௝௟ሻ ൅ 1. In a 
recent work of [Allamigeon et al, 2010] an algorithm is 
given to characterize the complete set of solutions to 
inequalities of the form (II.2.1). In the present work, x(0) is 
given. 

2.2 Control synthesis for time-constrained systems: 

Again, let us consider first a system with a single input 
and single temporal constraint, given by its (max, +) state-
space model (I.4). Let ݌௜௝ being the place subject to the 
temporal constraint (II.1). The idea of the control is 
delaying the entrance of the tokens in the time-constrained 
place. Indeed, we block the transition ݐ௝ by blocking the 
input transition ݑݐ. This method of control can not operate 
unless the blocking of the control transition ݑݐ does not 
induce an “important” blocking of the transition ݐ௜. The 
term “important” is informal, it is function of the marking 
and temporizations of the paths relying  ݑݐ to ݐ௜ and ݐ௝. 
Afterwards, we derive necessary and sufficient conditions 
for the existence of such control. 

Let ݉ఈ being the smallest marking of all paths relying t୳ 
to ݐ௝, and ݉ఉ the smallest marking of all paths from t୳ to ݐ௜. 
The state-space representation (I.4) can be written, in the 
following form [S. Amari and al. 2006]: 

ሺ݇ሻݔ ൌ ఝܣ · ሺ݇ݔ െ ߮ሻ ْ  ఝିଵ  ໄ  ൫ܣ௞ᇲ · ܤ · ሺ݇ݑ െ ݇ᇱሻ൯ ௞ᇲୀ଴   

with ߮ a strictly positive integer. 

Hence, for ൫߮ ൌ ݉ఈ ൅ ݉௜௝ ൅ 1൯ the expressions of the 
component ݔ௜ሺ݇ሻ is given by: ݔ௜ሺ݇ሻ ൌ ሺܣ௠ഀା௠೔ೕାଵሻ௜ · ሺ݇ݔ െ ݉ఈ െ ݉௜௝ െ 1ሻْ  ௠ഀା௠೔ೕ  ໄ  ൫ሺܣ௞ᇲ · ሻ௜ܤ · ሺ݇ݑ െ ݇ᇱሻ൯ ௞ᇲୀ଴   

where ሺܣ௠ഀା௠೔ೕାଵሻ௜ is the ith row of the matrix ܣ௠ഀା௠೔ೕାଵ and ሺܣ௞ᇲ · ௞ᇲܣሻ௜ is the ith element of the vector ሺܤ · ሻ. As far as, for ሺ߮ܤ ൌ ݉ఈ ൅ 1ሻ   ݔ௝ሺ݇ሻ is given by: ݔ௝ሺ݇ሻ ൌ ሺܣ௠ഀାଵሻ௝ · ሺ݇ݔ െ ݉ఈ െ 1ሻ ْ  ௠ഀ  ໄ  ൫ሺܣ௞ᇲ · ሻ௝ܤ · ሺ݇ݑ െ ݇ᇱሻ൯ ௞ᇲୀ଴   

 Considering the definitions of ݉ఈ (resp. ݉ఉ) the terms ሺܣ௞ᇲ · ௞ᇲܣሻ௝ (resp. ሺܤ · ሻ௜) vanish for ݇ᇱܤ ൏ ݉ఈ (resp. ݇ᇱ ൏ ݉ఉ). 
Thus, we get the following expressions for ݔ௜ሺ݇ሻ and ݔ௝ሺ݇ሻ: ݔ௜ሺ݇ሻ ൌ ሺܣ௠ഀା௠೔ೕାଵሻ௜ · ሺ݇ݔ െ ݉ఈ െ ݉௜௝ െ 1ሻ ْ ሺܣ௠ഀା௠೔ೕ · ሻ௜ܤ · ሺ݇ݑ െ݉ఈ െ ݉௜௝ሻ ْ  ௠ഀା௠೔ೕିଵ  ۩  ቀሺܣ௞ᇲ · ሻ௜ܤ · ሺ݇ݑ െ ݇ᇱሻቁ ௞ᇲୀ௠ഁ ௝ሺ݇ሻݔ   ൌ ሺܣ௠ഀାଵሻ௝ · ሺ݇ݔ െ ݉ఈ െ 1ሻ ْ ሺܣ௠ഀ · ሻ௝ܤ · ሺ݇ݑ െ ݉ఈሻ 

The inequality constraint (II.1) is equivalent to ݔ௜൫݇ ൅݉௜௝ሻ ൑ ߬௜௝௠௔௫ ·  ௝ሺ݇ሻ by theirݔ ௜ሺ݇ሻ andݔ ௝ሺ݇ሻ. Replacingݔ
expressions in (II.3) we find: 
 
 
 
 
 
 
 
 

The temporal constraint (II.1) is satisfied if and only if 
the two inequalities (II.4) and (II.5) are satisfied. From the 
two last inequalities (II.4) and (II.5) we derive necessary 
and sufficient conditions for the existence of a control law 
satisfying the temporal constraint (II.1) and calculate this 
law, if any. We must distinguish the two cases ൫݉ఉ ൌ݉ఈ ൅ ݉௜௝ሻ and ሺ݉ఉ ൏ ݉ఈ ൅ ݉௜௝ሻ. 
i) First case ൫݉ఉ ൌ ݉ఈ ൅ ݉௜௝൯: 

In this case, we just have to verify that inequality (II.4) is 
satisfied. In fact, by replacing ݔ௝ሺ݇ሻ by its expression, we 
get: ሺܣ௠ഀା௠೔ೕାଵሻ௜ · ሺ݇ݔ െ ݉ఈ െ 1ሻ ْ ሺܣ௠ഀା௠೔ೕ · ሻ௜ܤ · ሺ݇ݑ െ ݉ఈሻ൑ ൛߬௜௝௠௔௫൫ሺܣ௠ഀାଵሻ௜ · ሺ݇ݔ െ ݉ఈ െ 1ሻ ْ ሺܣ௠ഀ · ·ሻ௜ܤ ሺ݇ݑ െ ݉ఈሻ൯ൟ 
From which we derive the first necessary and sufficient 
condition, given by the following proposition: 

Proposition 1: Consider a system given by its (max, +) 
state-space model (I.4), subject to temporal constraint (II.1). 
There is a linear feedback control law ensuring the 
constraint (II.1) if and only if the following condition holds: ሺܣ௠ഀା௠೔ೕ · ሻ௜ܤ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀ ·  ሻ௝ܤ

(II.2) 

(II.3) 

(II.4) 

(II.5) 

(II.6) 

௠ഀା௠೔ೕିଵໄ ൫ሺܣ௞ᇲ · ሻ௜ܤ · ሺ݇ݑ െ ݇ᇱ ൅ ݉௜௝ሻ൯ ൑ ߬௜௝௠௔௫ · ௝ሺ݇ሻ௞ᇲୀ௠ഁݔ
 

ሺܣ௠ഀା௠೔ೕାଵሻ௜ · ሺ݇ݔ െ ݉ఈ െ 1ሻ ْ ሺܣ௠ഀା௠೔ೕ · ሻ௜ܤ · ሺ݇ݑ െ ݉ఈሻ൑ ߬௜௝௠௔௫ ·  ௝ሺ݇ሻݔ
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Proof: To prove the sufficiency of the proposed condition, 
it suffices to prove the correctness of the following 
implication: ሺܣ௠ഀା௠೔ೕ · ሻ௜ܤ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀ · ሻ௝ܤ ֜ ௜ሺ݇ሻݔ ൑ ߬௜௝௠௔௫ ௠ഀା௠೔ೕܣ௝ሺ݇ሻ. We have: ሺݔ· · ሻ௜ܤ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀ ·   .ሻ௝ܤ
By multiplying the inequality by ݑሺ݇ െ ݉ఈሻ we get: ሺܣ௠ഀା௠೔ೕ · ሻ௜ܤ · ሺ݇ݑ െ ݉ఈሻ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀ · ሻ௝ܤ · ሺ݇ݑ െ ݉ఈሻ 
It suffices to choose: ݑሺ݇ െ ݉ఈሻ ൌ ൫െ߬௜௝௠௔௫ െ ሺܣ௠ഀ · ሻ௝൯ܤ · ௜ܣ ௠ഀା௠೔ೕܣ· · ሺ݇ݔ െ ݉ఈ െ 1ሻ,  to get the equality (II.8) :  ሺܣ௠ഀା௠೔ೕାଵሻ௜ · ሺ݇ݔ െ ݉ఈ െ 1ሻ ൌ ߬௜௝௠௔௫ · ሺܣ௠ഀ · ሻ௝ܤ · ሺ݇ݑ െ ݉ఈሻ 
Now adding, in (max, +) sense, inequality (II.7) to equality 
(II.8) we get ሺܣ௠ഀା௠೔ೕାଵሻ௜ · ሺ݇ݔ െ ݉ఈ െ 1ሻ ْ ሺܣ௠ഀା௠೔ೕ · ሻ௜ܤ · ሺ݇ݑ െ݉ఈሻ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀ · ሻ௝ܤ · ሺ݇ݑ െ ݉ఈሻ. The left term, in fact, is 
equal to ݔ௜ሺ݇ሻ, this leads to ݔ௜ሺ݇ ൅ ݉௜௝ሻ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀ · ሻ௝ܤ ሺ݇ݑ· െ ݉ఈሻ. Finally, we get:           ݔ௜ሺ݇ ൅ ݉௜௝ሻ ൑ ߬௜௝௠௔௫ ·  ௝ሺ݇ሻݔ
To prove the necessity of the condition (II.6) we proceed by 
contradiction. We suppose that the condition (II.6) doesn’t 
hold and the constraint is satisfied and this must lead to an 
anomaly. 

Suppose: ሺܣ௠ഀା௠೔ೕ · ሻ௜ܤ ൐ ߬௜௝௠௔௫ · ሺܣ௠ഀ ·  ሻ௝ܤ
and:    ݔ௜ሺ݇ ൅ ݉௜௝ሻ ൑ ߬௜௝௠௔௫ ·  ௝ሺ݇ሻݔ
Inequality (II.10) leads to: 
 ቐሺܣ௠ഀା௠೔ೕାଵሻ௜ · ሺ݇ݔ െ ݉ఈ െ 1ሻ ൑ ߬௜௝௠௔௫ · ௠ഀା௠೔ೕܣ௝ሺ݇ሻ ሺݔ · ሻ௜ܤ · ሺ݇ݑ െ ݉ఈሻ ൑ ߬௜௝௠௔௫ · ௝ሺ݇ሻݔ  

 
Taking in account the expression of ݔ௝ሺ݇ሻ, two cases arise, 
the first is:     ݔ௝ሺ݇ሻ ൌ ሺܣ௠ഀ · ሻ௝ܤ · ሺ݇ݑ െ ݉ఈሻ 
replacing ݔ௝ሺ݇ሻ in (II.11) by its expression, we get: ቐሺܣ௠ഀାଵሻ௜ · ሺ݇ݔ െ ݉ఈ െ 1ሻ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀ · ሻ௝ܤ · ሺ݇ݑ െ ݉ఈሻ ሺܣ௠ഀ · ሻ௜ܤ · ሺ݇ݑ െ ݉ఈሻ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀ · ሻ௝ܤ · ሺ݇ݑ െ ݉ఈሻ  

The second inequality of the system (II.12) contradicts the 
hypothesis (II.9). 

The second case is: ݔ௝ሺ݇ሻ  ൌ ሺܣ௠ഀାଵሻ௝ · ሺ݇ݔ െ ݉ఈ െ 1ሻ. Replacing ݔ௝ሺ݇ሻ by its expression in (II.11), we find this time: ቐሺܣ௠ഀାଵሻ௜ · ሺ݇ݔ െ ݉ఈ െ 1ሻ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀାଵሻ௝ · ሺ݇ݔ െ ݉ఈ െ 1ሻ ሺܣ௠ഀ · ሻ௜ܤ · ሺ݇ݑ െ ݉ఈሻ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀାଵሻ௝ · ሺ݇ݔ െ ݉ఈ െ 1ሻ  

 
In this case, the first inequality of the system (II.13) leads to 
an absurdity. In fact, we supposed that the autonomous 
system doesn’t satisfy the temporal constraint, see the 
remark in (§III.1).ז 

Remark1: we proved that for the case ݉ఉ ൌ ݉ఈ ൅ ݉௜௝ the 
condition (II.6) is a sufficient and necessary one for the 
existence of a linear feedback control law satisfying the 

temporal constraint (II.1). We proposed also a control law 
given by the following equation:  ݑሺ݇ሻ ൌ ܩ · ሺ݇ݔ െ 1ሻ ൌ  ௡  ۩ ௥ ௥ୀଵܩ   · ௥ሺ݇ݔ െ 1ሻ                                           ሺ II.14) 
with:    ܩ௥ ൌ ൫െ߬௜௝௠௔௫ െ ሺܣ௠ഀ · ሻ௝൯ܤ · ሺܣ௠ഀା௠೔ೕାଵሻ௜௥ 
ii) Second case ൫݉ఉ ൏ ݉ఈ ൅ ݉௜௝൯: 
       In this case, in addition to inequality (II.4) treated in the 
first case, we deal with inequality (II.5) form which we 
derive the second necessary and sufficient condition. Thus, 
we get the same necessary and sufficient condition (II.6) 
and an additional condition driven from (II.5). The 
inequality to be satisfied is:  ሺܣ௞ᇲ · ሻ௜ܤ · ൫݇ݑ െ ݇ᇱ ൅ ݉௜௝൯ ൑ ߬௜௝௠௔௫ · ;௝ሺ݇ሻݔ ݇ᇱ ൌ ݉ఉ ݋ݐ ሺ݉ఈ ൅݉௜௝ሻ, which is the same as: ሺܣ௞ᇲା௠೔ೕ · ሻ௜ܤ · ሺ݇ݑ െ ݇ᇱሻ ൑ ߬௜௝௠௔௫ · ;௝ሺ݇ሻݔ ݇ᇱ ൌ ݉ఉ െ ݉௜௝ ݋ݐ ݉ఈ 

We have ݑሺ݇ െ ݇ᇱሻ ൌ ܩ · ሺ݇ݔ െ ݇ᇱ െ 1ሻ, from which we get ݑሺ݇ െ ݇ᇱሻ ൌ ܩ · ሺܣ ْ ሻ௠ഀି௞ᇲିଵܩܤ · ሺܣ ْ ሻܩܤ · ሺ݇ݔ െ ݉ఈ െ 1ሻ. 
Taking into account the expression of ݔ௝ሺ݇ሻ, ݔ௝ሺ݇ሻ ൌ ሺܣ௠ഀାଵሻ௝ ሺ݇ݔ· െ ݉ఈ െ 1ሻ ْ ሺܣ௠ഀ · ሻ௝ܤ · ሺ݇ݑ െ ݉ఈሻ. We derive the following 
condition: ሺܣ௞ᇲା௠೔ೕ · ሻ௜ܤ · ܩ · ൫ሺܣ ْ ሻ௠ഀି௞ᇲିଵ൯ܩܤ · ܤ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀ ·  ሻ௝ܤ
Proposition 2: Consider a system given by its (max, +) 
state-space model (I.4), subject to temporal constraint (II.1). 
There is a linear feedback control law guaranteeing the 
respect of the temporal constraint (II.1), if and only if the 
two following conditions hold: ሺܣ௠ഀା௠೔ೕ · ሻ௜ܤ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀ ·  ሻ௝                                                       (II.16)ܤ

ሺܣ௞ᇲା௠೔ೕ · ሻ௜ܤ · ܩ · ൫ሺܣ ْ ሻ௠ഀି௞ᇲିଵ൯ܩܤ · ܤ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀ ·  ሻ௝ܤ
Proof: The condition (II.16) arises from the case (݉ఉ ൌ݉ఈ ൅ ݉௜௝), while the second condition (II.6) is a 
consequence of the case (݉ఉ ൏ ݉ఈ ൅ ݉௜௝). The condition 
(II.17) is as a limitation of the greatest feedback ܩ. To 
calculate a control law we first check the condition (II.16), 
if it holds, we calculate a control law using the result 
(II.14). Then, we check condition (II.15). We don’t need to 
solve the inequality (II.15).ז 

The work presented here for single control input systems 
subject to single temporal constraint may be applied to 
systems that are subject to multiple temporal constraints. 
After derivating a control law for each constraint, assuming 
(II.16) and (II.17) are satisfied for each constraint, one has 
to check if the resulting control laws do not influence each 
others.  

IV. APPLICATION: SCHEDULING OF TIME-CONSTRAINED 
DUAL-ARMED CLUSTER TOOL: 

In this section we apply our control method to solve a 
time-constrained scheduling problem proposed in [J. Kim 

(II.8) 

(II.11) 

(II.12) 

(II.9) 

 (II.10) 

(II.13) 

(II.7) 

(II.15) 

(II.17) 
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and al. 2003]. The studied system is a semiconductor 
wafers manufacturing cluster tool. Processes such as some 
low pressure chemical vapor deposition processes require 
strict timing control. Unless a processed wafer leaves the 
chamber within a specified time limit, the wafer is subject 
to quality degradation due to the processing side effects. A 
wafer goes through different chambers and undergoes 
different treatments. The operations of transportation, 
loading and unloading to the different chambers are 
performed by a dual-armed handling robot. The challenge is 
in scheduling the operations on the handling robot to ensure 
the different temporal constraints of processing steps. Our 
approach consists in the formulation of the time-constrained 
scheduling problem as a control problem under strict 
temporal constraints. Then, we exploit the results of the 
proposed method to calculate a control satisfying these 
temporal constraints. In the following paragraphs, we give, 
first, a description of the manufacturing system. After, the 
associated TEG and (max, +) model will be given. A 
control law ensuring the respect of the temporal constraints 
is calculated, thus, a feasible schedule is found. 

1. System description: 
A cluster tool of type flow pattern (2,1) is compound of 

two load locks, two parallel chambers C1, C2 and a third 
chamber C3 in a serial configuration with C1 and C2. The 
same processing is performed in the chambers C1 and C2 
while a different one in the chamber C3, that said, a new 
wafer unloaded from the load lock (LL) passes through one 
of the chambers C1 or C2 where a first treatment is 
completed then it passes to the chamber C3 where another 
treatment is offered. The following figure schematizes a 
cluster tool of type flow pattern (2, 1) and brings to light the 
robot work cycle. 
 
 
 
 
 
 
 
 
 
 
 
2. System Modeling: 

The robot work cycle is defined by the following 
operations sequence: unload a new wafer from the load 
lock  move the empty arm to C1  swap the completed 
wafer with the unprocessed wafer at C1  move to C3  
swap at C3  move to the load lock  return the wafer to the 
load lock  unload a new wafer from the load lock  move 
to C2  swap at C2  move to C3  swap at C3  move to 
the load lock  return the wafer to the load lock. The TEG 
of the (Fig 4) traduces the robot work cycle, each place 
corresponds to an operation or series of operations. We 

denote the temporizations associated to the time-constrained 
places with a closed interval of the form ሾ߬௜, ߬௜ ൅ ݀௜ሿ where ߬௜ is the minimal duration of a treatment and ݀௜ the 
maximal waiting time to leave chamber after treatment 
ends. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

On the TEG the places are denoted from ݌ଵ to ݌ଵ଴ and 
the transitions from ݐଵ to ଼ݐ. Places ݌ଽ and ݌ଵ଴ correspond 
to processing in chambers C1 and C2, respectively. While ݌ଵଵ and ݌ଵଶ corresponds to processing in C3. Places ݌ଵ, ݌ଷ, ݌ହ, and  ݌଻ correspond to swap operations on which no 
waiting time is allowed,  thus, downstream  transitions of 
these places are uncontrollable, i.e. transitions ݐଶ, ݐସ, ݐ଺ and ଼ݐ are uncontrollable.  The rest of transitions are 
controllable, we associate to each one of them a control 
input. The control inputs are shown on (Fig 4). To get the 
(max, +) model traducing the dynamical behavior of the 
robot work cycle, we associate to each transition ݐ௜  of the 
TEG (Fig 4) a dater denoted ݔ௜ and to the controllable 
transitions ݐଶ, ݐସ, ݐ଺ and ଼ݐ the control inputs ݑݐଵ, ݑݐଶ, ݑݐଷ 
and ݑݐସ, respectively. The linear (max, +) model of our 
system is given by the following linear equations: 

ەۖۖ
۔ۖۖ
ଵሺ݇ሻݔۓۖۖ ൌ ݓ · ሺ଼݇ݔ െ 1ሻ ْ ߬ଵ · ଶሺ݇ݔ െ 1ሻ ْ ଶሺ݇ሻݔଵሺ݇ሻݑ ൌ ݏ · ଷሺ݇ሻݔ                                                            ଵሺ݇ሻݔ ൌ ݒ · ଶሺ݇ሻݔ ْ ߬ଶ · ሺ଼݇ݔ െ 1ሻ ْ ସሺ݇ሻݔ         ଶሺ݇ሻݑ ൌ ݏ · ହሺ݇ሻݔ                                                           ଷሺ݇ሻݔ ൌ ݓ · ସሺ݇ሻݔ ൅ ߬ଵ · ଺ሺ݇ݔ െ 1ሻ ْ ଺ሺ݇ሻݔ         ଷሺ݇ሻݑ ൌ ݏ · ଻ሺ݇ሻݔ                                                           ହሺ݇ሻݔ ൌ ݒ · ଺ሺ݇ሻݔ ൅ ߬ଶ · ସሺ݇ሻݔ ْ ሺ݇ሻ଼ݔ                  ସሺ݇ሻݑ ൌ ݏ ·                                                                                                     ଻ሺ݇ሻݔ

 

with:  ݓ ൌ 4; ݒ ൌ 1; ݏ ൌ 2; ߬ଵ ൌ 22; ߬ଶ ൌ 9; ݀ଵ ൌ 1; ݀ଶ ൌ 1.  
The above system of equations can be written in a state-
space representation as follows (see §II.3), ݔሺ݇ሻ ൌ ܣ · ሺ݇ݔ െ1ሻ ْ ܤ ·  .ሺ݇ሻ. Matrices A and B are given belowݑ

2. Control of the time-constrained system:  
We mentioned above the problem of the strict time 
processing in the chambers. On the TEG modeling the robot 
work cycle, we denoted ሾ߬ଵ, ߬ଵ ൅ ݀ଵሿ the temporization 
associated to processing in chambers C1 and C2 while ሾ߬ଶ, ߬ଶ ൅ ݀ଶሿ for the temporization associated to the once in 
chamber C3. 

Fig 3. Wafer flow pattern (2, 1) for dual-armed cluster tool. 

C1 

C2 

C3 

 LLLL

,ݏ଺ ሾݐ ݏହሾݐ ሿݏ ଼݌଻݌ ଻ݐଵ଴݌ሿݏ ଼ݐ ݓହ݌ ଺݌  ݒ

 ଶ݌ସ݌ ଷ݌ ݓ

ଵݐ ଶݐ

ሾ߬ଶ, ߬ଶ ሾ߬ଵ ߬ଵ݌ଵଶ ݌ଵଵ 

ଵ݌
ሾ߬ଶ ߬ଶ
ሾݏ, ,ݏଷ ሾݐସݐ ݒ ሿݏ ଽ݌ݏ

ሾ߬ଵ ߬ଵݑݐ ଶݑݐ

ݑݐଷݑݐ
Fig 4. TEG model for the flow pattern (2,1).
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The temporal constraints are written in (max, +) algebra 
as follows: 

۔ە
ଵሺ݇ሻݔۓ ൑ ሺ߬ଵ ൅ ݀ଵሻ · ଶሺ݇ݔ െ 1ሻݔହሺ݇ሻ ൑ ሺ߬ଵ ൅ ݀ଵሻ · ଺ሺ݇ݔ െ 1ሻݔଷሺ݇ሻ ൑ ሺ߬ଶ ൅ ݀ଶሻ · ሺ଼݇ݔ െ 1ሻݔ଻ሺ݇ሻ ൑ ሺ߬ଶ ൅ ݀ଶሻ · ସሺ݇ሻݔ  

The analysis is performed for each input towards all of 
the temporal constraints by checking the conditions (II.6) 
for each input regarding the temporal constraints (III.1). Let ܤ௜  being the ݅௧௛ column of the matrix ܤ, so we check the 
following condition: ሺܣ௠ഀା௠೔ೕ · ௟ሻ௜ܤ ൑ ߬௜௝௠௔௫ · ሺܣ௠ഀ · ݈   ;  ௟ሻ௝ܤ ൌ  4  ݋ݐ  1

We find that the condition does not hold for ݈ ൌ 1 and ݈ ൌ 3, while it holds for ݈ ൌ 2 and ݈ ൌ 4. From this result 
we decide to keep just  ݑଶ and ݑସ for control synthesis.  
To calculate ݑଶ and ݑସ control laws we apply (II.14),           ݑଶሺ݇ሻ ൌ ቂ 24 13 8ε ε ε ε ε ቃ · ሺ݇ݔ െ 1ሻ, and    ݑସሺ݇ሻ ൌቂ 37 24 19ε ε ε ε ε ቃ · ሺ݇ݔ െ 1ሻ, ݑଵ and ݑଷ are not 
used for control, this mean that they are vanished. To 
control the system we connect the TEGs resulting from ݑଵ 
and ݑଷ to the TEG of the system, thus we get the TEG of 
the controlled system. 

3. Results analysis: 
In this application, we have shown that the (max, +) 

method proposed in this paper can bring solutions to real-
world problems encountered in industrial applications. 
About comparing our results to those proposed by [J. Kim 
and al. 2003], it remains not easy and less evident since the 
authors in [J. Kim and al. 2003] are interested in scheduling 
of dual-armed cluster tools, while we are interested in 
developing formal methods for control and supervision of 
time-constrained discrete event systems. For us, the 
scheduling of the dual-armed cluster tool studied here is an 
application between many other applications where the 
proposed approach can be applied.  

V. CONCLUSION 
In this paper we proposed a (max, +) formal method for 

the control of time-constrained discrete event systems. The 
principal contribution of this work consists in formulating 

necessary and sufficient conditions for the existence of 
linear feedback control law ensuring the respect of the strict 
temporal constraints. Originality lies also in the application 
of the proposed method for solving a time-constrained 
scheduling problem. We wish to generalize the method to 
multivariable systems, multi-inputs and several temporal 
constraints. Working on the application presented in this 
paper and many other examples, we notice that the control 
law found is always optimal in cycle time sense, i.e. it 
delays as less as possible the system while keeping the 
temporal constraints satisfied. 
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