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On-line detection of a part of a sequence with

unspecified distribution ?

Wojciech Sarnowski a,∗ Krzysztof Szajowski a

aWroc law University of Technology, Institute of Mathematics and Computer
Science, Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland

Abstract

We register a Markov process. At two random moments θ1, θ2, where θ1 < θ2,
the distribution of observed sequence changes. It is known before θ1 and after θ2.
Between these instants is unknown, chosen randomly from a set of distributions. The
optimal stopping rule which stops observation of the sequence between disorders θ1

and θ2 is identified.

Key words: Disorder problem, sequential detection, optimal stopping, Markov
process, change point.
1991 MSC: Primar 60G40, 60K99; Secondary 90D60

1 Introduction

In this paper we present a generalization of the double disorder problem

considered by Yoshida [10] and Szajowski [7]. The considerations are inspired

by the problem regarding how can we protect ourselves against a second fault

in a technological system after the occurrence of an initial fault. The proposed

procedure assumes that the distribution of observations between disorders is

unknown in advance and it is chosen randomly by ”nature” (see Bojdecki &

Hosza [2]). In order to find the optimal stopping rule we use the approach of
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maximizing the probability of stopping between these two faults. The formu-

lation of the problem can be found in section 2. The main result is presented

in section 3.

2 Formulation of the problem

Let (Xn, n ∈ N) be an observable sequence of random variables defined on

the space (Ω,F , P ) with values in (E,B), where E is a subset of R. On (E,B)

there are σ-additive measures {µx}x∈E. Space (Ω,F , P ) supports variables

θ1, θ2. They are F -measurable variables with values in N. We assume the

following distributions:

P (θ1 = j) = pj−1
1 q1, P (θ2 = k | θ1 = j) = pk−j−1

2 q2 ; k > j, j = 1, 2, ... (1)

Moreover we introduce ε, which is F -measurable, independent of θ1, θ2. ε has

distribution: P (ε = i) = ei; i = 1, 2, ..., d; d < ∞;
∑d
i=1 ei = 1. Additionally

we consider d+2 Markov processes on (Ω,F , P ): (X1
n,G1

n, µ
1
x), (X2,i

n ,G2,i
n , µ

2,i
x ),

i = 1, .., d, (X3
n,G3

n, µ
3
x) defined in the following way:

Xn = X1
n · I{θ1>n} +X2,i

n · I{θ1≤n<θ2, ε=i} +X3
n · I{θ2≤n}. (2)

σ-fields G1
n, G2,i

n , G2
n are the smallest σ-fields for which (X1), (X2,i), (X3) are

adapted (respectively).

We make inference only based on observable sequence (Xn, n ∈ N) 1 . Thus for

further consideration we define filtration {Fn}n∈N where Fn = σ(X0, X1, ..., Xn).

Variables θ1, θ2 and ε are not stopping time with respect to Fn and σ-fields

G ·n. Moreover we assume that θ1, θ2 are independent of (X1
n, n ∈ N), (X2,i

n , n ∈
N), i = 1, ..., d and (X3

n, n ∈ N). Measures µ satisfy the relations: µ1
x(dy) =

1 · µx(dy), µ2,i
x (dy) = f ix(y)µx(dy), i = 1, ..., d, µ3

x(dy) = gx(y)µx(dy). Where

f ix(.) 6= 1, gx(.) 6= 1. Furthermore the functions f 1
x(.), ..., fdx(.),gx(.) are differ-

ent and gx(y)/f ix(y) <∞ for all i = 1, ..., d and all x, y ∈ E. We assume that

the measures µ1
x, µ

2,1
x , ..., µ2,d

x , µ3
x, x ∈ E are known in advance and we have

that P (X1
1 ∈ A | X0 = x) = µ1

x(A) for every A ∈ B.

The model presented has the following heuristic justification: two disorders

take place in the observed sequence (Xn). They affect distributions by chang-

ing their parameters. Disorders occur at two random moments of time θ1 and

1 It should be emphasized that the sequence (Xn, n ∈ N) is not markovian one
under admitted assumption as it has been written in [7], [9] and [4]. However the
sequence has Markov property given θ1 and θ2 (see [8] and [5]).
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θ2. They split the sequence of observations into three segments. The first seg-

ment is described by (X1
n), the second one - for θ1 ≤ n < θ2 - by (X2

n). The

third is given by (X3
n) and is observed when n ≥ θ2. The second epoch of

observation is the important one. We do not know the distribution of obser-

vations in advance. After the first disorder takes the place there is a ”switch”

from the initial distribution to one of d possible distributions (given by den-

sities f ix). The choice of this distribution is random. We model this using an

unobservable variable ε that indicates which of them is drawn (if ε = j, then

the µjx distribution is chosen with density f jx with respect to measure µx).

Next, at the random time θ2 the distribution of observations becomes µ3
x. We

assume that the variables ε, θ1, θ2 are unobservable.

Our aim is to stop the observed sequence between the two disorders.This can

be interpreted as a strategy for protecting against a second failure when the

first has already happened. In the mathematical approach - putting T as the

set of all stopping times with respect to the filtration {Fn}n∈N - we want

to control the probability V (τ) = P (τ < ∞, θ1 ≤ τ < θ2) by choosing the

stopping time τ ∗ ∈ T for which

V (τ ∗) = sup
τ∈T

V (τ) (3)

3 Solution of the problem

For X0 = x let us define: Zn = Px(θ1 ≤ n < θ2 | Fn) for n = 0, 1, 2, . . .,

Yn = esssup{τ∈T , τ≥n}Px(θ1 ≤ τ < θ2 | Fn) for n = 0, 1, 2, . . . and

τ0 = inf{n : Zn = Yn} (4)

Notice that, if Z∞ = 0, then Zτ = Px(θ1 ≤ τ < θ2 | Fτ ) for τ ∈ T . Since

Fn ⊆ Fτ (when n ≤ τ) we have

Yn = ess sup
τ≥n

Px(θ1 ≤ τ < θ2 | Fn) = ess sup
τ≥n

Ex(I{θ1≤τ<θ2} | Fn)

= ess sup
τ≥n

Ex(Zτ | Fn)

Lemma 1 The stopping time τ0 defined by formula (4) is the solution of

problem (3).

Proof. From the theorems presented in [1] it is enough to show that lim
n→∞

Zn = 0.

For all natural numbers n, k, where n ≥ k for each x ∈ E we have:

Zn =Ex(I{θ1≤n<θ2} | Fn) ≤ Ex(sup
j≥k

I{θ1≤j<θ2} | Fn)

3
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From Levy’s theorem lim supn→∞ Zn ≤ Ex(supj≥k I{θ1≤j<θ2} | F∞) where

F∞ = σ (
⋃∞
n=1Fn). It is true that: lim supj≥k, k→∞ I{θ1≤j<θ2} = 0 a.s. and

by the dominated convergence theorem we get

lim
k→∞

Ex(sup
j≥k

I{θ1≤j<θ2} | F∞) = 0 a.s.

what ends the proof of the Lemma.

For further considerations let us introduce the following notation: let 〈 u , v〉 =∑d
i=1 uivi. Thus 〈 . , .〉 stands for inner product. Let us now define some nec-

essary processes and functions: Π1
n = Px (θ1 ≤ n | Fn), Π2

n = Px (θ2 ≤ n | Fn),

for n = 0, 1, 2, . . .,

H(y, z, α, β) = (1− α)p1 + [(1− α)q1 + (α− β)p2]
〈
e , f

y
(z)
〉

+ [(α− β)q2 + β] gy(z) (5)

Π1(y, z, α, β) = 1− (1− α)p1H
−1(y, z, α, β) (6)

Π2(y, z, α, β) = [(α− β)q2 + β]gy(z)H−1(y, z, α, β) (7)

Using these definitions we formulate and prove a technical Lemma which will

be useful when proving the main theorem.

Lemma 2 For each x ∈ E and each Borel function u : R −→ R the equations

given below are true

Π1
n+1 = Π1(Xn, Xn+1,Π

1
n,Π

2
n) (8)

Π2
n+1 = Π2(Xn, Xn+1,Π

1
n,Π

2
n), (9)

with boundary condition: Π1
0 = Π2

0 = 0

Ex
(
u(Xn+1)(1− Π1

n+1) | Fn
)

= (1− Π1
n)p1

∫
E
u(y)µXn(dy), (10)

Ex
(
u(Xn+1)(Π1

n+1 − Π2
n+1) | Fn

)
=
[
(1− Π1

n)q1 + (Π1
n − Π2

n)p2

] ∫
E
u(y)

〈
e , f

Xn
(y)
〉
µXn(dy), (11)

Ex
(
u(Xn+1)Π2

n+1) |Fn
)

=
[
q2(Π1

n − Π2
n) + Π2

n

]∫
E
u(y)gXn(y)µXn(dy) (12)

Proof. It is obvious that Π1
0 = Π2

0 = 0. Notice that since θ1 < θ2 we obtain

the inclusion {ω : θ1 ≤ n} ⊇ {ω : θ2 ≤ n} and:

Zn = Px(θ1 ≤ n < θ2 | Fn) = Π1
n − Π2

n (13)

Next suppose that Ai ∈ Fi, i ≤ n+ 1 and let us consider the probability

Px (θ1 > n+ 1 |Xi ∈ Ai, i ≤ n+ 1) =
Px (θ1 > n+ 1, Xn+1 ∈ An+1 |Xi ∈ Ai, i ≤ n)

Px (Xn+1 ∈ An+1 |Xi ∈ Ai, i ≤ n)

4
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This follows from Bayes’ formula. Let us transform the probability appearing

in the numerator:

Px(θ1>n+ 1, Xn+1 ∈ An+1 | Xi ∈ Ai, i ≤ n)

=Px (θ1 > n | Xi ∈ Ai, i ≤ n) · p1 · µ1
Xn

(An+1)

Now we split the probability in the denominator into three parts

Px (Xn+1 ∈ An+1 |Xi ∈ Ai, i ≤ n) = Px (θ1 > n,Xn+1 ∈ An+1 |Xi ∈ Ai, i ≤ n)

+Px (θ1 ≤ n < θ2, Xn+1 ∈ An+1 | Xi ∈ Ai, i ≤ n)

+Px (θ2 ≤ n,Xn+1 ∈ An+1 | Xi ∈ Ai, i ≤ n)

The first part is:

Px (θ1 > n,Xn+1 ∈ An+1 | Xi ∈ Ai, i ≤ n)

=Px (θ1 > n, θ1 = n+ 1, Xn+1 ∈ An+1 | Xi ∈ Ai, i ≤ n)

+Px (θ1 > n, θ1 6= n+ 1, Xn+1 ∈ An+1 | Xi ∈ Ai, i ≤ n)

=Px (θ1 > n | Xi ∈ Ai, i ≤ n)

[
q1

d∑
i=1

µ2,i
Xn

(An+1)ei + µ1
Xn

(An+1)p1

]

The second one:

Px (θ1 ≤ n < θ2, Xn+1 ∈ An+1 | Xi ∈ Ai, i ≤ n)

=Px (θ1 ≤ n < θ2, θ2 = n+ 1, Xn+1 ∈ An+1 | Xi ∈ Ai, i ≤ n)

+Px (θ1 ≤ n < θ2, θ2 6= n+ 1, Xn+1 ∈ An+1 | Xi ∈ Ai, i ≤ n)

= (Px (θ1 ≤ n | Xi ∈ Ai, i ≤ n)− Px (θ2 ≤ n | Xi ∈ Ai, i ≤ n))

×
[
q2µ

3
Xn

(An+1) + p2

d∑
i=1

µ2,i
Xn

(An+1)ei

]

And the third:

Px (θ2 ≤ n,Xn+1 ∈ An+1 |Xi ∈ Ai, i ≤ n) = Px (θ2 ≤ n |Xi ∈ Ai, i ≤ n)µ3
Xn

(An+1)

Thus, taking into account (5) we obtain for Π1
n+1 = 1−Px (θ1 > n+ 1 | Fn+1)

Π1
n+1 = 1−

[
(1− Π1

n)p1

]
H−1(Xn, Xn+1,Π

1
n,Π

2
n)

Using (6), it can be seen that (8) is satisfied. Applying similar reasoning and

transformations to the process Π2
n+1 we get:

Π2
n+1 =Px (θ2 ≤ n+ 1 | Fn+1) =

Px (θ2 ≤ n+ 1, Xn+1 ∈ A | Fn)

Px (Xn+1 ∈ A | Fn)

=
[
(Π1

n − Π2
n)q2 + Π2

n

]
gXn(Xn+1)H−1(Xn, Xn+1,Π

1
n,Π

2
n)

which leads to formula (9). In the case of the conditional expectations we

show that equation (12) holds. To do this we need to first define σ-field F̃n =

σ(ε, θ1, θ2, X0, ..., Xn). Notice that Fn ⊂ F̃n. We have:

5
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Ex (u(Xn+1)Π2
n+1 | Fn) = Ex(Ex(u(Xn+1)1{θ2≤n+1} | F̃n) | Fn)

=Ex

(∫
E
u(y)Px(dy | F̃n, θ2 ≤ n+ 1)Px(θ2 ≤ n+ 1 | F̃n) | Fn

)
=
∫
E
u(y)gXn(y)µXn(dy)Px(θ2 ≤ n+ 1 | Fn)

=
∫
E
u(y)gXn(y)µXn(dy)(Px(θ2 = n+ 1, θ1 ≤ n < θ2 | Fn) + Px(θ2 ≤ n |Fn))

=
(
(Π1

n − Π2
n)q2 + Π2

n

) ∫
E
u(y)gXn(y)µXn(dy)

We used the properties of conditional expectation here. Similar transforma-

tions give us equations (10) and (11). This proves Lemma 2.

Notice that Lemma 2 enables us to calculate Ex(u(Xn+1) | Fn) in easy way.

Combining (10)-(12) we have

Ex(u(Xn+1) | Fn) =
∫
E
u(y)H(Xn, y,Π

1
n,Π

2
n)µXn(dy) (14)

Lemma 3 System Xx = {Xx
n}, where Xx

n = (Xn−1, Xn,Π
1
n,Π

2
n) forms a fam-

ily of random Markov functions.

Proof. Define a function:

ϕ(x1, x2, α1, α2 ; z) = (x2, z,Π
1(x2, z, α1, α2),Π1(x2, z, α1, α2)) (15)

Observe that

Xx
n = ϕ(Xn−2, Xn−1,Π

1
n−1,Π

2
n−1;Xn) = ϕ(Xx

n−1;Xn)

Hence Xx
n can be interpreted as function of previous state Xx

n−1 and random

variable Xn. Moreover, applying (14), we get that conditional distribution of

Xn given σ-field Fn−1 depends only on Xx
n−1. According to [6] (pp. 102-103)

system Xx is a family of random Markov functions. This fact implies that

we can reduce initial problem (3) to the problem of optimal stopping four-

dimensional process (Xn−1, Xn,Π
1
n,Π

2
n) with reward

h(x1, x2, α1, α2) = α1 − α2 (16)

The reward function results from equation (13). Thanks to Lemma 3 we con-

struct the solution using standard tools of optimal stopping theory (c.f [6] ).

For any Borel function v : E2× [0, 1]d+1 −→ [0, 1] let us define two operators:

Txv(y, z, α, β) =Ex(v(Xn, Xn+1,Π
1
n+1,Π

2
n+1) | Xn−1 = y,Xn = z,Π1

n = α,Π2
n = β)

Qxv(y, z, α, β) = max{v(y, z, α, β), Txv(y, z, α, β)}

6
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From well known theorems of optimal stopping theory ([6]), we infer that the

solution of the problem posed is the Markov time τ0:

τ0 = inf{h(Xn, Xn+1,Π
1
n+1,Π

2
n+1) ≥ h∗(Xn, Xn+1,Π

1
n+1Π2

n+1)}

where:

h∗(y, z, α, β) = lim
k→∞

Qk
xh(y, z, α, β)

Of course

Qk
xv(y, z, α, β) = max{Qk−1

x v, TxQ
k−1
x v} = max{v, TxQk−1

x v}

To obtain a clearer formula for τ0, we formulate the basic result of this paper:

Theorem 1 (a) The solution of problem (3) is given by:

τ ∗ = inf{n : (Xn, Xn+1,Π
1
n+1,Π

2
n+1) ∈ B∗} (17)

Set B∗ is of the form:

B∗= {(y, z, α, β) : (α− β) ≥ (1− α)

×
[
p1

∫
E
R∗(y, u,Π1(y, u, α, β),Π2(y, u, α, β))µy(du)

+ q1

∫
E
S∗(y, u,Π1(y, u, α, β),Π2(y, u, α, β))

〈
e , f

y
(u)
〉
µy(du)

]
+ (α− β)p2

∫
E
S∗(y, u,Π1(y, u, α, β),Π2(y, u, α, β))

〈
e , f

y
(u)
〉
µy(du)

}

Where:

R∗(y, z, α, β) = lim
k→∞

Rk(y, z, α, β) , S∗(y, z, α, β) = lim
k→∞

Sk(y, z, α, β)

Functions Rk and Sk are defined recursively:

R1(y, z, α, β) = 0 , S1(y, z, α, β) = 1

Rk+1 (y, z, α, β) = (1− IRk
(y, z, α, β)) (18)

×
(
p1

∫
E
Rk(y, u,Π1(y, u, α, β),Π2(y, u, α, β))µy(du)

+q1

∫
E
Sk(y, u,Π1(y, u, α, β),Π2(y, u, α, β))

〈
e , f

y
(u)
〉
µy(du)

)
,

Sk+1(y, z, α, β) = IRk
(y, z, α, β) + (1− IRk

(y, z, α, β)) (19)

×p2

∫
E
Sk(y, u,Π1(y, u, α, β),Π2(y, u, α, β))

〈
e , f

y
(u)
〉
µy(du)

Where the set Rk is:

7
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Rk=
{

(y, z, α, β) : h(y, z, α, β) ≥ TxQ
k−1
x h(y, z, α, β)

}
= {(y, z, α, β) : (α− β) ≥ (1− α)

×
[
p1

∫
E
Rk(y, u,Π1(y, u, α, β),Π2(y, u, α, β))µy(du)

+ q1

∫
E
Sk(y, u,Π1(y, u, α, β),Π2(y, u, α, β))

〈
e , f

y
(u)
〉
µy(du)

]
+ (α− β)p2

∫
E
Sk(y, u,Π1(y, u, α, β),Π2(y, u, α, β))

〈
e , f

y
(u)
〉
µy(du)

}
(b) The value problem. The optimal value for (3) is given by the formula

V (τ ∗) = p1

∫
E
R∗(x, u, ϕx(u), 0)µx(du)

+q1

∫
E
S∗(x, u, ϕx(u), 0)

〈
e , f

x
(u)
〉
µx(du)

where: ϕx(u) = 1− p1
p1+q1〈 e ,fx

(u)〉

Proof. Part (a). Part (a) results from Lemma 2 - the problem reduces to the

problem of optimal stopping of the Markov process (Xn−1, Xn,Π
1
n,Π

2
n) with

payoff function h(y, z, α, β) = α− β. Given (11) with the function u equal to

unity we get:

Txh(y, z, α, β) = E
(
Π1
n+1 − Π2

n+1 | Fn
)
|Xn−1=y,Xn=z,Π1

n=α,Π2
n=β

= (Π1
n − Π2

n)p2

∫
E

〈
e , f

Xn
(u)
〉
µXn(du) + (1− Π1

n)q1 |Xn−1=y,Xn=z,Π1
n=α,Π2

n=β

= (1− α)q1 + (α− β)p2

From the definition of R1 and S1 it is clear that

h(y, z, α, β) = α− β = (1− α)R1(y, z, α, β) + (α− β)S1(y, z, α, β)

Also R1 = {(y, z, α, β) : h(y, z, α, β) ≥ Txh(y, z, α, β)}. From the definition of

Qx and the facts above we obtain:

Qxh(y, z, α, β) = (1− α)R2(y, z, α, β) + (α− β)S2(y, z, α, β)

where: R2(y, z, α, β) = q1(1 − IR1(y, z, α, β)) and S2(y, z, α, β) = p2 + (1 −
p2)IR1(y, z, α, β)). Suppose the following induction hypothesis holds:

Qk−1
x h(y, z, α, β) = (1− α)Rk(y, z, α, β) + (α− β)Sk(y, z, α, β)

where Rk and Sk are given by equations (18), (19) respectively. We will show

that:

Qk
xh(y, z, α, β) = (1− α)Rk+1(y, z, α, β) + (α− β)Sk+1(y, z, α, β)

From the induction assumption and equations (10), (11) we obtain:

8
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TxQ
k−1
x h(y, z, α, β) = Tx(1− α)Rk(y, z, α, β) (20)

+Tx(α− β)Sk(y, z, α, β) = (1− α)p1

∫
E
Rk(y, u, α, β)µy(du)

+ [(1− α)q1 + (α− β)p2]
∫
E
Sk(y, u, α, β)

〈
e , f

y
(u)
〉
µy(du)

= (1− α)
[
p1

∫
E
Rk(y, u, α, β)µy(du) + q1

∫
E
Sk(y, u, α, β)

×
〈
e , f

y
(u)
〉
µy(du)

]
+ (α− β)p2

∫
E
Sk(y, u, α, β)

〈
e , f

y
(u)
〉
µy(du)

Notice that

(1− α)Rk+1(y, z, α, β) + (α− β)Sk+1(y, z, α, β)

is equal α − β = h(y, z, α, β) = Qk
xh(y, z, α, β) for (y, z, α, β) ∈ Rk and,

taking into account (20), it is equal TxQ
k−1
x h(y, z, α, β) = Qk

xh(y, z, α, β) for

(y, z, α, β) /∈ Rk, where Rk is given by (20). Finally we get:

Qk
xh(y, z, α, β) = (1− α)Rk+1(y, z, α, β) + (α− β)Sk+1(y, z, α, β)

This proves (18) and (19). Using the monotone convergence theorem and the-

orems of optimal stopping theory ([6]) we conclude that the optimal stopping

time τ ∗ is given by (17).

Proof. Part (b). First, notice that Π1
1 = ϕx(u) = 1− p1

p1+q1〈 e ,fx
(u)〉 .

Under the assumption τ ∗ <∞ a.s. we get:

Px (τ ∗ <∞, θ1 ≤ τ ∗< θ2) = sup
τ
EZτ

=Emax{h(x,X1,Π
1
1,Π

2
1), Txh

∗(x,X1,Π
1
1,Π

2
1)} = E lim

k→∞
Qk
xh(x,X1,Π

1
1,Π

2
1)

=E
[
(1− Π1

1)R∗(x,X1,Π
1
1,Π

2
1) + (Π1

1 − Π2
1)S∗(x,X1,Π

1
1,Π

2
1)
]

= p1

∫
E
R∗(x, u, ϕx(u), 0)µx(du) + q1

∫
E
S∗(x, u, ϕx(u), 0)

〈
e , f

x
(u)
〉
µx(du)

We used Lemma 2 here and simple calculations for Π1
1, Π2

1. This ends the

proof.

4 Remarks

It is notable that the solution of formulated problem depends only on two-

dimensional vector of posterior processes. None additional process containing

knowledge about ε is necessary. This is a consequence of considered payoff

function (3). The presence of variable ε and random choice of the distribu-

tion on the second epoch are reflected in weighted average
〈
e , f

y
(u)
〉
. What

implies that the problem can be reduced to the case when we just fix the

distribution on the middle segment of observations.

9
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The formulas obtained are very general and for this reason - quite complicated.

We simplify the model by assuming that P (θ1 > 0) = 1 and P (θ2 > θ1) = 1.

However, it seems that some further simplifications can be made in special

cases. Further research should be carried out in this direction. From a practical

point of view, computer algorithms are necessary to construct B∗ – the set

in which we stop our observable sequence. In the paper an extension of the

sequential approach proposed by [6] is applied. There variety of models related

to disorder in random sequences are presented in the monography by [3].
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