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ON THE SHAPES OF BILATERAL GAMMA DENSITIES

UWE KÜCHLER, STEFAN TAPPE

Abstract. We investigate the four parameter family of bilateral Gamma distri-
butions. The goal of this paper is to provide a thorough treatment of the shapes of
their densities, which is of importance for assessing their fitting properties to sets
of real data. This includes appropriate representations of the densities, analyzing
their smoothness, unimodality and asymptotic behaviour.

Key Words: bilateral Gamma distributions, selfdecomposability, unimodality,
asymptotic behaviour, density shapes

1. Introduction

In many fields of applications it is important to find appropriate classes of distribu-
tions for fitting observed data. For this issue, normal distributions often provide only
a poor fit. Specific examples are given by the logarithmic returns of stock prices, be-
cause their empirical densities typically possess heavier tails and much higher located
modes than normal distributions.

Thus, several authors have looked for other appropriate classes of distributions. We
mention the generalized hyperbolic distributions [2] and their subclasses, which have
been applied to finance in [4], the Variance Gamma distributions [7] and CGMY-
distributions [3].

Recently, another family of distributions was proposed in [6]: Bilateral Gamma
distributions. In the mentioned article, bilateral Gamma distributions are fitted to
observed stock prices and compared to other classes of distributions considered in the
literature.

In order to provide a general overview about their fitting properties – also in view
of other applications than finance – we present a thorough treatment of the shapes of
their densities. After recalling the basic properties of bilateral Gamma distributions
in Section 2, we provide suitable representations of the densities in Section 3, which
we can use in order to obtain density plots with a computer program. Afterwards, the
investigation of the shapes of bilateral Gamma distributions starts: Section 4 concerns
the smoothness of the densities, Section 5 the unimodality and Section 6 is devoted
to the asymptotic behaviour of the densities near zero and for x→ ±∞. In Section 7
we characterize typical shapes of the densities and draw implications concerning the
fitting properties of bilateral Gamma distributions.

Date: February 25, 2008.
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2. Bilateral Gamma distributions

In this section, we define bilateral Gamma distributions and review some of their
properties. For details and more informations, we refer to [6].

A bilateral Gamma distribution with parameters α+, λ+, α−, λ− > 0 is defined as
the distribution of X − Y , where X and Y are independent, X ∼ Γ(α+, λ+) and
Y ∼ Γ(α−, λ−).

The characteristic function of a bilateral Gamma distribution is

ϕ(z) =

(
λ+

λ+ − iz

)α+ (
λ−

λ− + iz

)α−
, z ∈ R(2.1)

where the powers stem from the main branch of the complex logarithm.
If X is bilateral Gamma distributed with parameters (α+, λ+;α−, λ−), then for any

c > 0 the random variable cX has, by (2.1), again a bilateral Gamma distribution

with parameters (α+, λ
+

c
;α−, λ

−

c
).

Note that, also by (2.1), the sum of two independent bilateral Gamma random
variables with parameters (α+

1 , λ
+;α−1 , λ

−) and (α+
2 , λ

+;α−2 , λ
−) has again a bilat-

eral Gamma distribution with parameters (α+
1 + α+

2 , λ
+;α−1 + α−2 , λ

−). In particular,
bilateral Gamma distributions are stable under convolution, and they are infinitely
divisible. It follows from [8, Ex. 8.10] that both, the drift and the Gaussian part in
the Lévy-Khintchine formula (with truncation function h = 0), are equal to zero, and
that the Lévy measure is given by

F (dx) =

(
α+

x
e−λ

+x
1(0,∞)(x) +

α−

|x|
e−λ

−|x|
1(−∞,0)(x)

)
dx.(2.2)

Thus, we can also express the characteristic function ϕ as

ϕ(z) = exp

(∫
R

(
eizx − 1

) k(x)

x
dx

)
, z ∈ R(2.3)

where k : R→ R is the function

k(x) = α+e−λ
+x
1(0,∞)(x)− α−e−λ−|x|1(−∞,0)(x), x ∈ R(2.4)

which is decreasing on each of (−∞, 0) and (0,∞). It is an immediate consequence of
[8, Cor. 15.11] that bilateral Gamma distributions are selfdecomposable, and hence of
class L in the sense of [9] and [10]. This is a key property for analyzing their densities,
which is exploited in Sections 4, 5 and 6.

Using the characteristic function (2.1), we can specify the following quantities.

Mean: α+

λ+ − α−

λ−
,

Variance: α+

(λ+)2
+ α−

(λ−)2
,

Skewness: 2
(

α+

(λ+)3
− α−

(λ−)3

)/(
α+

(λ+)2
+ α−

(λ−)2

)3/2

,

Kurtosis: 3 + 6
(

α+

(λ+)4
+ α−

(λ−)4

)/(
α+

(λ+)2
+ α−

(λ−)2

)2

.
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3. Representations of the densities

Bilateral Gamma distributions are absolutely continuous with respect to the Lebesgue
measure, because they are the convolution of two Gamma distributions. Since the
densities satisfy the symmetry relation

f(x;α+, λ+, α−, λ−) = f(−x;α−, λ−, α+, λ+), x ∈ R \ {0}(3.1)

it is sufficient to analyze the density functions on the positive real line. As the con-
volution of two Gamma densities, they are for x ∈ (0,∞) given by

f(x) =
(λ+)α

+
(λ−)α

−

(λ+ + λ−)α−Γ(α+)Γ(α−)
e−λ

+x

∫ ∞
0

vα
−−1

(
x+

v

λ+ + λ−

)α+−1

e−vdv.(3.2)

We can express the density f by means of the Whittaker function Wλ,µ(z) [5, p. 1014].
According to [5, p. 1015], the Whittaker function has the representation

Wλ,µ(z) =
zλe−

z
2

Γ(µ− λ+ 1
2
)

∫ ∞
0

tµ−λ−
1
2 e−t

(
1 +

t

z

)µ+λ− 1
2

dt for µ− λ > −1

2
.(3.3)

From (3.2) and (3.3) we obtain for x > 0

f(x) =
(λ+)α

+
(λ−)α

−

(λ+ + λ−)
1
2
(α++α−)Γ(α+)

x
1
2
(α++α−)−1e−

x
2
(λ+−λ−)(3.4)

×W 1
2
(α+−α−), 1

2
(α++α−−1)(x(λ+ + λ−)).

By [5, p. 1014], we can express the Whittaker function Wλ,µ(z) by the Whittaker
functions Mλ,µ(z), namely it holds

Wλ,µ(z) =
Γ(−2µ)

Γ(1
2
− µ− λ)

Mλ,µ(z) +
Γ(2µ)

Γ(1
2

+ µ− λ)
Mλ,−µ(z).

For the Whittaker function Mλ,µ(z) the identity [5, p. 1014]

Mλ,µ(z) = zµ+ 1
2 e−

z
2 Φ(µ− λ+ 1

2
, 2µ+ 1; z)

is valid, with Φ(α, γ; z) denoting the confluent hypergeometric function [5, p. 1013]

Φ(α, γ; z) = 1 +
α

γ

z

1!
+
α(α + 1)

γ(γ + 1)

z2

2!
+
α(α + 1)(α + 2)

γ(γ + 1)(γ + 2)

z3

3!
+ . . .(3.5)

Because of the series representation (3.5) of Φ(α, γ; z), we can use (3.4) in order to
obtain density plots with a computer program, which is done in Section 7.

If one of α+, α− is an integer, the representation becomes more convenient at one
half of the real axis.

3.1. Proposition. Assume α+ ∈ N = {1, 2, . . .}. Then it holds for each x ∈ (0,∞)

f(x) =
(λ+)α

+
(λ−)α

−

(λ+ + λ−)α−(α+ − 1)!

(
α+−1∑
k=0

akx
k

)
e−λ

+x,
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where the coefficients (ak)k=0,...,α+−1 are given by

ak =

(
α+ − 1

k

)
1

(λ+ + λ−)α+−1−k

α+−2−k∏
l=0

(α− + l).

Proof. Since α+ is an integer, we can compute the integral appearing in (3.2) by using
the binomial expansion formula. The calculations are obvious. �

The symmetry relation (3.1) and the identity [5, p. 1017]

W0,µ(z) =

√
z

π
Kµ

(z
2

)
,

where Kµ(z) denotes the Bessel function of the third kind, imply that in the case
α+ = α− =: α the density (3.4) is of the form

f(x) =
1

Γ(α)

(
λ+λ−

λ+ + λ−

)α
|x|α−1e−

x
2
(λ++λ−)

√
|x|(λ+ + λ−)

π
Kα− 1

2

(
|x|
2

(λ+ + λ−)

)(3.6)

for x ∈ R \ {0}. The density of a Variance Gamma distribution V G(µ, σ2, ν) is,
according to [7, Sec. 6.1.5], given by

h(x) =
2 exp(µx

σ2 )

ν1/ν
√

2πσΓ( 1
ν
)

(
x2

2σ2

ν
+ µ2

) 1
2ν
− 1

4

K 1
ν
− 1

2

(
1

σ2

√
x2

(
2σ2

ν
+ µ2

))
.(3.7)

Inserting the parametrization

(µ, σ2, ν) :=

(
α

λ+
− α

λ−
,

2α

λ+λ−
,

1

α

)
(3.8)

into (3.7), we obtain the density (3.6), showing that bilateral Gamma distributions
with α+ = α− =: α are Variance Gamma with parameters given by (3.8).

Conversely, for a bilateral Gamma distribution which is Variance Gamma it neces-
sarily holds α+ = α−, see [6, Thm. 3.3].

4. Smoothness

As we have pointed out in Section 2, bilateral Gamma distributions are selfdecom-
posable. Therefore, we may use the results of [9] and [10] in the sequel.

The smoothness of the density depends on the parameters α+ and α−. Let N ∈
N0 = {0, 1, 2, . . .} be the unique nonnegative integer satisfying N < α+ +α− ≤ N+1.

4.1. Theorem. It holds f ∈ CN(R \ {0}) and f ∈ CN−1(R) \ CN(R).

Proof. This is an immediate consequence of [9, Thm. 1.2]. �

Thus, the N -th order derivative of the density f is not continuous. The only point
of discontinuity is zero. In Section 6, we will explore the behaviour of f (N) near zero.

The densities of bilateral Gamma distributions satisfy the following integro-differential
equation.
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4.2. Proposition. f satisfies for x ∈ R \ {0}

xf ′(x) = (α+ + α− − 1)f(x)− α+λ+

∫ ∞
0

f(x− u)e−λ
+udu

− α−λ−
∫ ∞

0

f(x+ u)e−λ
−udu.

Proof. The assertion follows from Cor. 2.1 of [9]. �

5. Unimodality

Bilateral Gamma distributions are strictly unimodal, which is the content of the
next result.

5.1. Theorem. There exists a point x0 ∈ R such that f is strictly increasing on
(−∞, x0) and strictly decreasing on (x0,∞).

Proof. The existence of the mode x0 is a direct consequence of [9, Thm. 1.4], because
neither the distribution function of a bilateral Gamma distribution nor its reflection
is of type I4 in the sense of [9]. �

We emphasize that the mode x0 from Theorem 5.1 can, in general, not be deter-
mined explicitly. However, we get the following result, which narrows the location of
the mode.

5.2. Proposition. If α+, α− ≤ 1, then x0 = 0. Presumed α+ > 1 and α− ≤ 1, it holds
x0 ∈ (0, α

+−1
λ+ ). In the case α+, α− > 1 we have x0 ∈ (−α−−1

λ−
, α

+−1
λ+ ), and it holds

x0 = 0 if and only if λ−α+ − λ+α− = λ− − λ+,

x0 > 0 if and only if λ−α+ − λ+α− > λ− − λ+,

x0 < 0 if and only if λ−α+ − λ+α− < λ− − λ+.

Proof. The first statement is a consequence of parts (viii) and (ix) of [9, Thm. 1.3].
Since the mode of a Γ(α, λ)-distribution with α > 1 is given by α−1

λ
, parts (ii) and

(iii) of [9, Thm. 4.1] yield the second assertion.

In the case α+, α− > 1, part (iv) of [9, Thm. 4.1] shows that x0 ∈ (−α−−1
λ−

, α
+−1
λ+ ).

According to Theorem 4.1, the density f is continuously differentiable. Using the
representation (3.2) and Lebesgue’s dominated convergence theorem, we obtain the
first derivative for x ∈ (0,∞)

f ′(x) =
(λ+)α

+
(λ−)α

−

(λ+ + λ−)α−Γ(α+)Γ(α−)

[
− λ+e−λ

+x

∫ ∞
0

vα
−−1

(
x+

v

λ+ + λ−

)α+−1

e−vdv

+ (α+ − 1)e−λ
+x

∫ ∞
0

vα
−−1

(
x+

v

λ+ + λ−

)α+−2

e−vdv

]
.

Applying Lebesgue’s dominated convergence theorem again, by the continuity of f ′

and the fact Γ(x+ 1) = xΓ(x), x > 0 we get

f ′(0) =
(λ+)α

+
(λ−)α

−

(λ+ + λ−)α++α−−2

Γ(α+ + α− − 2)

Γ(α+ − 1)Γ(α−)

[
1− λ+

λ+ + λ−
· α

+ + α− − 2

α+ − 1

]
,
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which yields the remaining statement of the proposition. �

A particular consequence of Proposition 5.2 is that for λ+ � α+ and λ− � α− the
mode x0 is necessarily close to zero.

6. Asymptotic behaviour

We have seen in Section 4 that for N := dα+ + α−e − 1 the N -th order derivative
of the density f is not continuous. The only point of discontinuity is zero. We will
now explore the behaviour of f (N) near zero. For the proof of the upcoming result,
Theorem 6.1, we need the following properties of the Exponential Integral [1, Chap.
5]

E1(x) :=

∫ ∞
1

e−xt

t
dt, x > 0.

The Exponential Integral has the series expansion

E1(x) = −γ − lnx−
∞∑
n=1

(−1)n

n · n!
xn,(6.1)

where γ denotes Euler’s constant

γ = lim
n→∞

[
n∑
k=1

1

k
− ln(n)

]
.

The derivative of the Exponential Integral is given by

∂

∂x
E1(x) = −e

−x

x
.(6.2)

Due to symmetry relation (3.1) it is, concerning the behaviour of f (N) near zero,
sufficient to treat the case x ↓ 0.

6.1. Theorem. Let N := dα+ + α−e − 1.

(1) limx↓0 f
(N)(x) is finite if and only if α+ ∈ N = {1, 2, . . .}.

(2) If α+ /∈ N and α+ + α− /∈ N, then f (N)(x) ∼ C1

xα
as x ↓ 0 for constants

C1 6= 0, α ∈ (0, 1).
(3) Let α+ /∈ N be such that α+ + α− ∈ N. Then f (N)(x) ∼ M(x) as x → 0,

where M is a slowly varying function as x→ 0 satisfying limx→0M(x) =∞.
Moreover, it holds limx↓0(f

(N)(x)− f (N)(−x)) = C2 ∈ R.

The constants in Theorem 6.1 are given by

α = N + 1− α+ − α−,

C1 =
(λ+)α

+
(λ−)α

−
sin(α+π)

Γ(α+ + α− −N) sin((α+ + α−)π)
,

C2 =
(λ+)α

+
(λ−)α

−

2

(
(−1)N+1 cos(α+π) + cos(α−π)

)
.
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Proof. For α+ ∈ N we conclude the finiteness of the limit in the first statement from
[10, Thm. 3], since for each β ∈ (0, 1) (recall that the function k was defined in (2.4))

lim
u↓0

uβ−1(α+ − k(u)) = lim
u↓0

uβ−1α+(1− e−λu) = 0.

In order to prove the rest of the theorem, we evaluate expressions (1.8)–(1.10) in [9],
and then we apply [9, Thm. 1.7]. The constant c in [9, eqn. (1.8)] is in the present
situation

c = exp

(
(α+ + α−)

∫ 1

0

e−u − 1

u
du+ (α+ + α−)

∫ ∞
1

e−u

u
du

−
∫ ∞

1

α+e−λ
+u + α−e−λ

−u

u
du

)
.(6.3)

The first integral appearing in (6.3) is by (6.2) and the series expansion (6.1)∫ 1

0

e−u − 1

u
du = lim

x↓0

[
− E1(u)− lnu

]u=1

u=x
= −E1(1)− γ.

Using (6.2) and the fact limx→∞E1(x) = 0, see [1, Chap. 5], for each constant λ > 0
the identity ∫ ∞

1

e−λu

u
du = lim

x→∞

[
− E1(λu)

]u=x
u=1

= E1(λ)

is valid. Thus, we obtain

c = e−(α++α−)γ−α+E1(λ+)−α−E1(λ−).(6.4)

The function K(x) in [9, eqn. (1.9)] is in the present situation

K(x) = exp

(∫ 1

|x|

α+ + α− − α+e−λ
+u − α−e−λ−u

u
du

)
.

Since by (6.2) ∫ 1

|x|

e−λu

u
du = E1(λ|x|)− E1(λ) for λ > 0,

we obtain

K(x) = eα
+E1(λ+)+α−E1(λ−)|x|−(α++α−)e−α

+E1(λ+|x|)−α−E1(λ−|x|).(6.5)

Using the series expansion (6.1), we get

lim
x→0

K(x) = (λ+)α
+

(λ−)α
−
e(α

++α−)γ+α+E1(λ+)+α−E1(λ−),(6.6)

showing that for the slowly varying function

L(x) =

∫ 1

|x|

K(u)

u
du

in [9, eqn. (1.10)] it holds

lim
x→0

L(x) =∞.(6.7)
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alpha-

alpha+

0

1

2

1 2

Figure 1. The shapes of f for λ+ = λ−. Different choices of λ+ and
λ− may shift the mode and change the skewness.

Applying [9, Thm. 1.7] and relations (6.4)–(6.7) completes the proof. �

The asymptotic behaviour of the Whittaker function for large values of |z| is, ac-
cording to [5, p. 1016],

Wλ,µ(z) ∼ e−
z
2 zλH(z)

with H denoting the function

H(z) = 1 +
∞∑
k=1

[
µ2 − (λ− 1

2
)2
] [
µ2 − (λ− 3

2
)2
]
· · ·
[
µ2 − (λ− k + 1

2
)2
]

k!zk
.

Obviously, it holds H(z) ∼ 1 for z → ∞. Taking into account (3.1) and (3.4), for
x→ ±∞ the density has the asymptotic behaviour

f(x) ∼ C3x
α+−1e−λ

+x as x→∞,

f(x) ∼ C4|x|α
−−1e−λ

−|x| as x→ −∞,

where the constants C3, C4 > 0 are given by

C3 =
(λ+)α

+
(λ−)α

−

(λ+ + λ−)α−Γ(α+)
and C4 =

(λ+)α
+

(λ−)α
−

(λ+ + λ−)α+Γ(α−)
.

As a consequence, we obtain for the logarithmic density function ln f

lim
x→∞

ln f(x)

x
= −λ+ and lim

x→−∞

ln f(x)

x
= λ−.

In particular, the density of a bilateral Gamma distribution is semiheavy tailed.

7. Shapes of the densities

The shapes of bilateral Gamma distributions can have remarkable differences. Using
the results of the previous sections, we characterize typical shapes of their densities.
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If α+ + α− ≤ 1, then f is not continuous at zero by Theorem 4.1. According to
Theorem 6.1, it holds

lim
x↑0

f(x) =∞ and lim
x↓0

f(x) =∞.(7.1)

We infer that the density has a pole at the mode x0 = 0. Notice that in the special
case α+ + α− = 1 the difference f(x)− f(−x) tends to a finite value as x ↓ 0 by the
third statement of Theorem 6.1. We observe that densities with (7.1) are appropriate
for fitting data sets with many observations accumulating closely around zero.

If 1 < α+ +α− ≤ 2, then, by Theorem 4.1, f is continuous on R, but its derivative
is not continuous at zero. Let us have a closer look at the behaviour of f ′ near zero
in this case.

• If α+, α− ∈ (0, 1) and α+ + α− ∈ (1, 2), it holds, according to Theorem 6.1,

lim
x↑0

f ′(x) =∞ and lim
x↓0

f ′(x) = −∞.

Hence, we have a steep mode of the density at zero with exploding slope from
the left and from the right. This shape is also suitable for sets of data with
many observations being close to zero.
• If α− < 1 < α+, applying Theorem 6.1 yields

lim
x↑0

f ′(x) =∞ and lim
x↓0

f ′(x) =∞.

Hence, the mode x0 is located at the positive half axis and f has infinite
slope at zero. We remark that in the special case α+ + α− = 2 the difference
f ′(x) − f ′(−x) tends to a finite value as x ↓ 0 by the third statement of
Theorem 6.1.
• If α+, α− = 1, we have a two-sided exponential distribution, which is in par-

ticular Variance Gamma, as we have shown at the end of Section 3. We obtain

lim
x↑0

f ′(x) = C− and lim
x↓0

f ′(x) = −C+

with finite constants C−, C+ ∈ (0,∞). Consequently, we have a peak mode of
the density at zero with finite slope from both sides.

If α+ + α− > 2, then the density is smooth, that is at least of type C1(R) by
Theorem 4.1. Choosing λ+ � α+ and λ− � α−, the mode x0 is necessarily close to
zero by Proposition 5.2. Such shapes are in particular applicable for observations of
financial data. We refer to [6, Sec. 9], where for a specific data set of stock returns
the maximum likelihood estimation α+ = 1.55, λ+ = 133.96, α− = 0.94, λ− = 88.92
provided a good fit.

Summarizing the preceding results, Figure 1 provides an overview about typical
shapes of bilateral Gamma densities.
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