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Consider Z 1 and Z 2 stationary spatial processes. We study the asymptotic behaviour of a Cramer-von-Mises type test statistic for testing the hypothesis H 0 : f 1 = f 2 , where each f l denotes the spectral density of each observed process, for l = 1, 2. Asymptotic distribution theory under H 0 and under local alternatives is given. A simulation study showing the performance of the test is also provided.

Introduction

An important problem in spatial statistic is modeling the dependence structure of spatial data, both from parametric and nonparametric approaches. This problem can be focused from the spatial domain, where the variogram or the covariogram are the functions that describe the dependence. From this point of view, on goodness-of-fit testing for dependence structures, [START_REF] Diblasi | On the use of the variogram in checking for independence in spatial data[END_REF] propose a test for independence and [START_REF] Maglione | Exploring a valid model for the variogram of an isotropic spatial process[END_REF] extend the former technique for choosing a valid model for a variogram, based on smoothed versions of the observed variables.

Spectral techniques constitute an alternative way for studying dependent data and this methodology has been broadly used in time series analysis (e.g. [START_REF] Priestley | Spectral analysis and time series[END_REF]). Despite the extension of these techniques to multidimensional settings is not straightforward, this approach is gaining acceptance in spatial data analysis. From this point of view, the target function is no longer the variogram or the covariogram, but the spatial spectral density. The classical nonparametric estimator for the spectral density is the periodogram. Its extension to the spatial context has been studied by [START_REF] Fuentes | Spectral methods for nonstationary spatial processes[END_REF].

Under this spectral scheme, [START_REF] Crujeiras | Goodness-of-fit tests for the spatial spectral density[END_REF] provide two testing techniques for goodness-of-fit testing, using distances on the spectral and on the log-spectral domain. These test statistics take advantage of the representation of the spatial periodogram as the response variable in a multiplicative regression model. By a logarithmic transform, the spatial log-periodogram can be written as the exogenous variable in a regression model, where the regression function is the log-spectral density.

In the goodness-of-fit for regression models literature, [START_REF] King | Testing the equality of two regression curves using linear smoothers[END_REF] study the problem of comparing two regression curves, using linear smoothers, under independendent and Gaussian errors. The general case of comparing L ≥ 2 regression curves is studied in [START_REF] Dette | Nonparametric analysis of covariance[END_REF], under heterocesdastic errors. In [START_REF] Vilar-Fernández | Nonparametric comparison of curves with dependent errors[END_REF], the authors provide a procedure for testing the equality of regression curves, under fixed design and dependent errors. Based on the ideas in [START_REF] Vilar-Fernández | Nonparametric comparison of curves with dependent errors[END_REF], the goal of our work is to provide a test for testing the hypothesis that the spectral densities of L spatial random processes are equal, without specifying a parametric model. For that purpose, we consider a Cramer-von-Mises type functional, as in [START_REF] Dette | Nonparametric analysis of covariance[END_REF] and [START_REF] Vilar-Fernández | Nonparametric comparison of curves with dependent errors[END_REF]. This paper is organized as follows. In Section 2 we provide some background on spatial spectral methods and nonparametric regression. In Section 3, we study the asymptotic distribution of the test under the null hypothesis and under local alternatives. A brief simulation study is given in Section 4. Section 5 is devoted to technical details.

2 Some background on spectral techniques and nonparametric regression.

Let Z l be a zero mean second-order stationary spatial process, observed on a regular grid D l , for l = 1, . . . , L. That is, {Z l (s), s ∈ D l = a l + D}, with D = {1, . . . , d 1 } × {1, . . . , d 2 }. The case a 1 = . . . = a L implies that the processes are observed on the same grid of locations. Denote by N d = d 1 d 2 the number of points in any of the grids D l , with l = 1, . . . , L. The covariance function of the processes are defined by:

C l (u) = E(Z l (s), Z l (s + u)), s, u ∈ Z 2 . (1)
Assuming that u |C l (u)| < ∞, by Khinchin's theorem (e.g. [START_REF] Yaglom | Correlation theory of stationary and related random functions[END_REF]), the covariance function of a stationary random process can be written, for l = 1, . . . , L as:

C l (u) = Π 2 e -iu T λ f l (λ)dλ, Π 2 = [-π, π] × [-π, π] (2) 
where f l , the spectral density, is bounded and continuous for all l and T denotes the transpose operator.

The classical nonparametric estimator of the spectral density is the periodogram, which is given by:

I l (λ k ) = 1 (2π) 2 N d s∈D l Z l (s)e -is T λ k 2 , (3) 
where s T λ k denotes the scalar product in R 2 . The periodogram is usually computed at the set of bidimensional Fourier frequencies, λ T k = (λ k1 , λ k2 ):

λ kj = 2πk j d j , k j = 0, ±1, . . . , ±n j = ⌊ d j -1 2 ⌋, j = 1, 2 (4) 
and denote by N = (2n 1 + 1)(2n 2 + 1) the number of Fourier frequencies. The periodogram (3) can be also written in terms of the sample covariances as:

I l (λ k ) = 1 (2π) 2 u∈U Ĉl (u)e -iu T λ k , l = 1, . . . , L (5) 
where U = {u = (u 1 , u 2 ); u j = 1 -d j , . . . , d j -1, j = 1, 2} and the sample covariances, for Z l with l = 1, . . . , L, are given by:

Ĉl (v) = 1 N d s∈D l (v) Z l (s)Z l (s + v), D l (v) = {s ∈ D l ; s + v ∈ D l }. (6) 
Assume that the spatial processes Z l , l = 1, . . . , L can be represented as:

Z l (s) = ∞ j=-∞ ∞ k=-∞ ψ l jk ε l (s 1 -j, s 2 -k), (7) 
where the error variables ε l are independent (and independent among themselves) and identically distributed (i.i.d.) as N (0, σ 2 ε l ), for l = 1, . . . , L. Note that any Gaussian stationary process can be represented as in (7). Then, the corresponding spectral density f l can be written as:

f l (λ) = |A l (λ)| 2 f ε l (λ), λ ∈ Π 2 (8)
where

f ε l (λ) = σ 2 ε l (2π) 2 and A l (λ) = ∞ j=-∞ ∞ l=-∞ ψ l jk e -i(j,k)λ , (j, k)λ = jλ 1 + kλ 2 .
In this case, the periodogram for each process Z l , with l = 1, . . . , L, admits the following representation:

I l (λ k ) = f l (λ k )V l k + R l N (λ k ), (9) 
where the variables V l k are i.i.d. standard exponential distributed, and V l k and V l ′ k , with l = l ′ are also independent. The residual term R l N (λ k ) is uniformly bounded (see [START_REF] Crujeiras | Goodness-of-fit tests for the spatial spectral density[END_REF]). Applying logarithms in (9) we have:

Y l k = m l (λ k ) + z l k + r l k , l = 1, . . . , L (10) 
where m l = log f l is the log-spectral density, the variables z l k = log V l k are i.i.d. with density function h(x) = e x-e x , and the residual term r l k is given by:

r l k = log 1 + R l N (λ k ) f l (λ k )V l k .
Several nonparametric estimators of the spatial log-spectral density could be obtained considering a smoothed combination of log-periodogram values, that is:

ml (λ k ) = i W l i (λ k )Y l i . (11) 
The weights W l i can be defined as Gasser-Muller weights, for instance:

W l i (λ) = (2π) 2 |H| 1/2 B i K(H -1/2 (λ -ν))dν, (12) 
where K is a bidimensional kernel function, H is a bidimensional bandwidth matrix and the integration region is given by:

B i = [a i1-1 , a i1 ] × [a i2-1 , a i2 ], λ i ∈ B i , ∪ i B i = B, B i ∩ B j = ⊘, for i = j.
The sets B i in the partition of B must be Jordan measurable and max i µ(B i ) = O(N -1 ) (see [START_REF] Müller | Nonparametric regression analysis of longitudinal data[END_REF]). Other options are Priestley-Chao weights:

W l i (λ) = (2π) 2 N K H (λ -λ i ) = (2π) 2 N |H| 1/2 K(H -1/2 (λ -λ i )), (13) 
or Nadaraya-Watson weights. Another alternative consists of considering a local-linear estimator for the spatial log-spectral density. All these weights, under a fixed design setting, are asymptotically equivalent.

Asymptotic Analysis

Consider {Z l (s), s ∈ D l }, with l = 1, . . . , L, L realizations of a spatial stochastic process (for instance, realizations taken on L time moments) or L realizations of different spatial processes. Our main purpose is to test whether the dependence structure of {Z l , l = 1, . . . , L} is the same. In terms of the log-spectral densities m l , the testing problem can be written as H 0 : m 1 = . . . = m L vs. H a : m l = m j , for some l = j. In this context, the comparison can be made by considering nonparametric estimators of the spatial log-spectral densities.

Consider the following test statistic, based on a L 2 -distance:

Q = L l=2   l-1 j=1 Π 2 ( m l (λ) -m j (λ)) 2 ω(λ)dλ   , ( 14 
)
where ω is a positive, bounded weight function with support Π 2 . This weight function is usually chosen to avoid edge-effects. In the spectral context, this function can be chosen in order to filter frequencies where the periodogram presents higher variability, as the origin or those frequencies with π-valued components.

A1 The spatial processes Z l can be represented as in ( 7) and

i j |i| 1/2 |j||ψ l ij | ≤ ∞ and i j |i||j| 1/2 |ψ l ij | ≤ ∞.
A2 The spectral densities are non-vanishing:

inf λ∈Π 2 f l (λ) > 0, for l = 1, . . . , L.
A3 We consider Gasser-Muller type weights, given by ( 12), or Priestley-Chao weights, given by ( 13). Besides,

W 1 i = . . . = W L i . A4 The bidimensional kernel function K is continuously differentiable, with compact sup- port and K 2 (u)du < ∞.
A5 The bidimensional bandwidth matrix,

H satisfies N |H| 1/2 → ∞, as N → ∞, with n 1 , n 2 → ∞ and n 1 /n 2 → c, for some constant c.
Consider the hypothesis testing problem:

H 0 : m 1 = m 2 , H a : m 1 = m 2
and assume that both Z 1 and Z 2 have been observed on grids with the same design. This implies that the corresponding Fourier frequencies are the same in both cases. By Riemann's approximation, Q can be approximated by:

Q = (2π) 2 N k ( m 1 (λ k ) -m 2 (λ k )) 2 ω(λ k ). ( 15 
)
Theorem 1. Assume conditions (A1)-(A5) hold. Then, under the null hypothesis that H 0 : m 1 = m 2 , we have that, as N → ∞:

N 2 |H| 1/2 Q - (2π) 4 12N |H| 1/2 C K I ω → N (0, σ 2 Q ), ( 16 
)
in distribution, with

C K = K 2 (u)du, I ω = ω(v)
dv and the asymptotic variance is

σ 2 Q = (2π) 8 72 (K * K) 2 (u)du ω 2 (v)dv,
where * denotes the convolution operator.

Also in this context of comparing two dependence structures, consider that the null hypothesis is false and assume that:

m 1 (λ) -m 2 (λ) = C N p(λ), (17) 
where p(λ) is a non-zero function. We will see that the test statistic Q allows for detecting local alternatives at a distance of order N -1/2 |H| -1/8 .

Theorem 2. Assume conditions (A1)-(A5) hold. Then, if (17) holds and C 2 N = (N 2 |H| 1/2 ) -1/2 , we have that, as N → ∞:

N 2 |H| 1/2 Q - (2π) 4 12N |H| 1/2 C K I ω → N p 2 (v)ω(v)dv, σ 2 Q ,
in distribution, with C K , I ω and σ 2 Q as in Theorem 1.

Theorems 1 and 2 can be generalized for stationary random fields on R d , under a similar asymptotic framework, assuming that the sampling grid increases at the same rate in all directions. A d-variate kernel function K satisfying condition A4 and a d-dimensional bandwidth matrix H, satisfying condition A5 must be considered. The corresponding asymptotic mean and variance in ( 16) are given by:

4 3 π 2d 1 N |H| 1/2 C K I ω , and σ 2 Q,d = 2 2d+1 9 π 4+2d (K * K) 2 (u)du ω 2 (v)dv,
where the weight function ω is now defined on Π d = [-π, π] d . Thus, in the particular case of d = 1, we provide a testing technique for comparing spectral densities in time series context. In this case, we have a scalar bandwidth parameter h, which plays the role of H 1/2 in the general dimension setting.

As a particular case, this technique can be adapted to detect changes on the dependence structure of a process observed at different time moments. If this is the case, denote Z l (s) = Z(s, t l ) the observation of the process Z at location s ∈ D (taking a l = 0, for l = 1, . . . , L) and time moment t l . This capacity makes the technique relevant when studying spatial-temporal processes. Invariance of the spatial dependence along time makes feasible the use of stationary spatial-temporal dependence models (e.g. [START_REF] Fernández-Casal | Flexible spatio-temporal stationary variogram models[END_REF]).

If the spatial process Z l are observed on regular grids with different sizes, then the corresponding frequency spectrum is not the same. The asymptotic behaviour of Q could be determined following similar arguments to those in (Vilar-Fernández and González-Manteiga (2004), Theorem 3), under some conditions on the asymptotic rates of the samples.

In the regression context, [START_REF] Zhang | A power comparison between nonparametric regression tests[END_REF] consider three major types of nonparametric regression test, among them, the Cramer-von-Mises test we consider in this work. The L 2 -test result the most powerful, from a local asymptotic point of view.

We provide in this section some simulation results. One thousand simulations of Z 1 and Z 2 have been drawn in a 51 × 51 and a 101 × 101 regular grids. These processes have been considered as bidimensional autoregressive, introduced by [START_REF] Martin | A subclass of lattice processes applied to a problem in planar sampling[END_REF], with autoregression parameters (β 1 , β 2 ) (from now on BAR(β 1 , β 2 )). For the simulation study, we consider that both processes present the same model BAR(0.5, 0.5), under the null hypothesis; then, we set the following alternatives: H a : Z 1 = BAR(0.0, 0.0) and Z 2 = BAR(0.05, 0.05) and also H a : Z 1 = BAR(0.0, 0.0) and Z 2 = BAR(0.1, 0.1).

If we denote by (i, j) the points on an observation grid, a BAR(β 1 , β 2 ) satisfies the following expression:

Z(i, j) = β 1 Z(i -1, j) + β 2 Z(i, j -1) -β 1 β 2 Z(i -1, j -1) + ε(i, j),
where ε(i, j) is a white noise process with variance σ 2 (which has been set to one in the simulations). The corresponding spectral density is given by: In order to reproduce as exactly as possible the behaviour of the test statistic, we have considered Priestley-Chao weights (see Appendix), although a local linear estimator could be used in practice, in order to avoid edge-effects. Weight function ω in ( 14) has been chosen such that frequency (0, 0) and frequencies with components next to ±π have been filtered (two of them in the smaller grid and four of them for the largest one). We have considered diagonal bandwidth matrix, with elements proportional to the spacing between frequencies:

f (λ) = σ 2 (2π) 2 (1 + β 1 -2β 1 cos(λ 1 )) -1 (1 + β 2 -2β 2 cos(λ 2 )) -1 .
H = rh • diag 2π d 1 , 2π d 2 ,
and a range of rh has been explored. In Tables 1 and2, we show the percentage of rejections in the simulation schemes described above. In general, the performance of the test agrees with the theoretical results, although with a bit conservative behaviour, showing the influence of the smoothness parameter, denoted by rH. In addition, a bias correction on the test statistic would reduce the influence of this parameter. As it is expected, the results are better as the size of the grid increases, both in terms of size and power. 

Appendix

Let's introduce the following notation. Consider the following regression model:

Y l * k = m l (λ k ) + z l * k , l = 1, 2. ( 18 
)
where

Y l * k = Y l k -C 0 -r l k , and z l * k = z l k -C 0 , where C 0 = E(z l k ) is the Euler constant. Denote by m l
* the nonparametric estimator of m l as in ( 11) for ( 18) equation and denote by

B l k = j W j (λ k )r l j , l = 1, 2.
Lemma 1. The test statistic Q can be decomposed in three addends:

Q = Q1 + Q2 + Q3 , where Q1 = (2π) 2 N k ( m 1 * (λ k ) -m 2 * (λ k )) 2 ω(λ k ), Q2 = (2π) 2 N k (B 1 k -B 2 k ) 2 ω(λ k ), Q3 = 2 (2π) 2 N k ( m 1 * (λ k ) -m 2 * (λ k ))(B 1 k -B 2 k )ω(λ k ).
Proof. It is straightforward from the definitions of the non parametric estimator in regression model ( 18) and B l k , for l = 1, 2.

Lemma 2. Under conditions (A1)-(A5) and under H 0 , we have that:

Q2 = O P log 2 N N 2 |H| 1/2 and Q3 = O P log 2 N N .
Proof. Q2 can be decomposed as:

Q2 = (2π) 2 N k j W 2 j (λ k )(r 1 j -r 2 j ) 2 ω(λ k ) + (2π) 2 N k i j =i W j (λ k )W i (λ k )(r 1 j -r 2 j )(r 1 i -r 2 i )ω(λ k ) = Q2,1 + Q2,2 .
By a Taylor expansion on the residual part r l j around 0, for l = 1, 2:

r l j = - R l N (λ j ) f l (λ j )V j - 1 2(1 + x j ) 2 R l N (λ j ) f l (λ j )V j 2 , where x j ∈ 0, R l N (λ j ) f l (λ j )V j . Since, max j |R l N (λ j )| = O P (N -1/2 log N ),
for l = 1, 2, just following [START_REF] Kooperberg | Rate of convergence for logspline spectral density estimation[END_REF], the Lagrange remainder in the Taylor expansion, denoted by LR l j can be uniformly bounded by O P log 2 N N

. Then, under the null hypothesis, Q2,1 can be decomposed as Q2,

1 = Q1 2,1 + Q2 2,1 + Q3 2,1 , where Q1 2,1 = (2π) 2 N k j W 2 j (λ k ) R 2 N (λ j ) f (λ j )V - R 1 N (λ j ) f (λ j )V 2 ω(λ k ), (19) 
Q2 2,1 = (2π) 2 N k j W 2 j (λ k )(LR 2 j -LR 1 j ) 2 ω(λ k ), ( 20 
) and Q3 2,1 = 2 (2π) 2 N k j W 2 j (λ k ) R 2 N (λ j ) f (λ j )V - R 1 N (λ j ) f (λ j )V (LR 2 j -LR 1 j )ω(λ k ). (21) 
Let's find a bound for Q2 2,1 in (20), the addend involving the Lagrange remainders.

Q2 2,1 = (2π) 2 N k j W 2 j (λ k )(LR 1 j -LR 2 j ) 2 ω(λ k ) = O P log 4 N N 2 (2π) 2 N k j 1 N 2 |H| K 2 (H -1/2 (λ k -λ j ))ω(λ k ) = O P log 4 N N 2 (2π) 2 N   k j =k (2π) 4 N 2 |H| K 2 (H -1/2 (λ k -λ j ))ω(λ k ) + k 1 N |H| K 2 (H -1/2 0)ω(λ k )   = O P log 4 N N 4 |H| 1/2 + O P log 4 N N 2 (2π) 6 N 3 |H| k j =k K 2 (H -1/2 (λ k -λ j ))ω(λ k ) ≤ O P log 4 N N 4 |H| 1/2 + O P log 4 N N 2 (2π) 6 N 2 |H| max k j =k K 2 (H -1/2 (λ k -λ j )) = O P log 4 N N 3 |H| 1/2 ,
where the last inequality follows from max k ω(λ k ) ≤ c, for some constant c. Following similar arguments as above, we will found bounds for Q2,1 and Q2,3 . For Q1 2,1 in (19):

Q1 2,1 = (2π) 2 N k j W 2 j (λ k ) R 2 N (λ j ) f (λ j )V - R 1 N (λ j ) f (λ j )V 2 ω(λ k ) = Q1,1 2,1 + Q1,2 2,1 + Q1,3 2,1
where

Q1,1 2,1 = (2π) 2 N k j W 2 j (λ k ) R 1 N (λ j ) f (λ j )V 2 ω(λ k ), Q1,3 2,1 = 2 (2π) 2 N k j W 2 j (λ k ) R 1 N (λ j ) f (λ j )V R 2 N (λ j ) f (λ j )V ω(λ k )
and Q1,2 2,1 is the similar to Q1,1 2,1 , but replacing each R 1 N (λ j ) for R 2 N (λ j ). We will find a bound for Q1,1 2,1 .

Q1,1 2,1 ≤ (2π) 2 N N max j R 1 N (λ j ) f (λ j )V 2 j k W 2 j (λ k )ω(λ k ) = O P log 2 N N j k 1 N 2 |H| K 2 (H -1/2 (λ k -λ j ))ω(λ k ) = O P log 2 N N 2 |H| 1/2 .
Similar computations lead to the same bound for the other addends. Let's find a bound for the third addend, Q3

2,1 in (21):

Q3 2,1 = 2 (2π) 2 N k j W 2 j (λ k ) R 1 N (λ j ) f (λ j )V - R 2 N (λ j ) f (λ j )V (LR 2 j -LR 1 j )ω(λ k ) = O P log N N 1/2 O P log 2 N N (2π) 6 N j k 1 N 2 |H| K 2 (H -1/2 (λ k -λ j ))ω(λ k ) = O P log 3 N N 5/2 |H| 1/2 . Therefore, Q2 ≤ O P log 2 N N 2 |H| 1/2 .
Finally, Q3 can be written as:

Q3 = 2 (2π) 2 N k ( m 1 (λ k ) -m 2 (λ k )) (B 1 k -B 2 k )ω(λ k ) ≤ 2 max k |B 1 k -B 2 k | (2π) 2 N k j W j (λ k )(Y 1 j -Y 2 j )ω(λ k ) ≤ O P log N N 1/2 max j |Y 1 j -Y 2 j | (2π) 4 N k j 1 N |H| 1/2 K(H -1/2 (λ k -λ j ))ω(λ k ) = O P log 2 N N since H 0 : m 1 = m 2 implies that Y 1 j -Y 2 j = r 1 j -r 2 j
, for every Fourier frequency. Lemma 3. Under conditions (A1)-(A5) and under H 0 , we have that

N 2 |H| 1/2 Q1 - (2π) 4 12N |H| 1/2 C K I ω → N (0, σ 2 Q ),
in distribution, where C K , I ω and σ 2 Q as in Theorem 1.

Proof. Define the following random variables Λ

k = z 1 * k -z 2 * k , with E(Λ k ) = 0, E(Λ 2 k ) = π 2 3
and Cov(Λ k , Λ j ) = 0 for j = k. The statistic Q1 can be decomposed in two addends as Q1 = Q1,1 + Q1,2 , where :

Q1,1 = (2π) 2 N k j W 2 j (λ k )Λ 2 j ω(λ k ), Q1,2 = (2π) 2 N k j i =j W j (λ k )W i (λ k )Λ j Λ i ω(λ k ). Define b i,j = (2π) 2 N k W i (λ k )W j (λ k )ω(λ k ). Then: Q1,1 = j b j,j Λ 2 j , and Q1,2 = i =j b i,j Λ i Λ j .
First, we will study the behaviour of Q1,1 . For simplicity, consider Priestley-Chao weights. Taking expectations and using Riemann's approximation, it is easy to see that:

E( Q1,1 ) ≈ (2π) 4 12 1 N |H| 1/2 K 2 (u)du ω(v)dv. (22) 
Let's check the order of the variance of Q1,1 . Denote by c 2 = V ar(Λ 2 j ) This variance can be computed taking into account that:

V ar( Q1,1 ) = (2π) 12 N 6 |H| 2 c 2 j α 2 j , α j = k K 2 (H -1/2 (λ k -λ j ))ω(λ k ).
Then,

V ar( Q1,1 ) = c 2 (2π) 12 N 6 |H| 2 k ω(λ k ) k ′ ω(λ k ′ ) j K 2 (H -1/2 (λ k -λ j ))K 2 (H -1/2 (λ k ′ -λ j ))
square matrix with size N . The new coefficients, with one dimensional indexes, are given by the following matrix: A = (a ij ) , A ∈ M N ×N , and each entry of this matrix is defined by a ij = π √ 3 b ij and a ii = 0, where the bidimensional indexes are given by: i = (i 1 , i 2 ) = (k, k 0 ), if (k -1)κ 2 ≤ i ≤ kκ 2 and i = (k -1)κ 2 + k 0 , (24) j = (j 1 , j 2 ) = (l, l 0 ), if (l -1)κ 2 ≤ j ≤ lκ 2 and j = (l -1)κ 2 + l 0 .

(25)

Now, define the variables X i = √ 3 π Λ i , where i and i satisfy: i = (i 1 -1)κ 2 + i 2 . Q1,2 can be written as a quadratic form with one-dimensional indexes:

Q1,2 = i,j a i,j X i X j , a ij = π √ 3 (2π) 2 N k W i (λ k )W j (λ k )ω(λ k ),
where i and j are determined by ( 24) and ( 25), respectively. Asymptotic normality is proved if the following conditions are satisfied:

(i) There exists a sequence of real numbers k(N ) such that k(N ) 4 σ 2 Q max i j a 2 ij → 0.

(ii) The random variables X i satisfy max i E X 2 i 1 {|Xi|>k(N )} → 0, N → ∞.

(iii) The eigenvalues of the matrix A = (a ij ) are negligible:

σ 2 Q max i µ 2 i → 0, N → ∞.
In order to check (i) -(iii) note that:

a 2 ij = π 2 (2π) 4 3N 2 k W i (λ k )W j (λ k )ω(λ k ) 2 = π 2 (2π) 4 3N 2 k W 2 i (λ k )W 2 j (λ k )ω 2 (λ k ) + π 2 (2π) 4 3N 2 k W i (λ k )W j (λ k )ω(λ k ) k =k ′ W i (λ k ′ )W j (λ k ′ )ω(λ k ′ ) = a 2A ij + a 2B ij .
Besides, max i j

a 2A ij ≈ C K π 2 (2π) 8 3N 4 |H| max i (ω 2 * K 2 )(λ i ) = O N -4 |H| . ( 26 
)
Following similar arguments, the same rate is obtained for max i j a 1B ij . Therefore,

k 4 (N )σ 2 Q max i j a ij = O k 4 (N ) N 6 |H| , (27) 
which tends to zero if the sequence k(N ) → ∞ satisfies that k 4 (N ) N 6 |H| → 0.

Condition (ii) holds since the variables X i are i.i.d. with second order moment E(X 2 i ) = 1. It remains to show that condition (iii) also holds. Since max i j |a ij | = O(N -1 ) and

  51 × 51 H0 : (0.5, 0.5) Ha : (0.0, 0.0), (0.05, 0.05) Ha : (0.0, 0.0), (0.1, 0.1) rh α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 5 0

  01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

Table 1 :

 1 Percentage of rejections for 51 × 51 regular grid. α: significance level.

		.042	0.094	0.139	0.177	0.265	0.340	0.648	0.775	0.837
	10	0.039	0.088	0.123	0.229	0.323	0.397	0.792	0.880	0.907
	15	0.045	0.079	0.105	0.280	0.388	0.456	0.703	0.820	0.857
	20	0.051	0.078	0.099	0.149	0.215	0.249	0.484	0.606	0.682
	25	0.053	0.079	0.101	0.112	0.169	0.197	0.333	0.419	0.471
	30	0.051	0.082	0.102	0.089	0.136	0.175	0.215	0.296	0.345
	35	0.043	0.070	0.098	0.066	0.106	0.136	0.154	0.154	0.251
	40	0.035	0.059	0.087	0.047	0.080	0.108	0.090	0.150	0.190
	45	0.029	0.046	0.066	0.025	0.061	0.086	0.057	0.091	0.132
	50	0.019	0.039	0.053	0.019	0.032	0.063	0.020	0.064	0.082

Table 2 :

 2 Percentage of rejections for 101 × 101 regular grid. α: significance level.

	5.00	0.031	0.074	0.109	0.550	0.711	0.785	0.998	1.000	1.000
	12.78	0.045	0.089	0.127	0.978	0.992	0.996	1.000	1.000	1.000
	20.55	0.052	0.089	0.114	0.983	0.990	0.994	1.000	1.000	1.000
	28.33	0.057	0.096	0.118	0.976	0.983	0.988	1.000	1.000	1.000
	36.10	0.055	0.093	0.111	0.958	0.976	0.983	1.000	1.000	1.000
	43.88	0.055	0.092	0.115	0.940	0.961	0.971	1.000	1.000	1.000
	51.65	0.054	0.088	0.118	0.890	0.941	0.959	1.000	1.000	1.000
	59.43	0.055	0.082	0.116	0.787	0.884	0.916	1.000	1.000	1.000
	67.20	0.050	0.076	0.108	0.647	0.755	0.817	1.000	1.000	1.000
	74.98	0.041	0.073	0.094	0.525	0.618	0.685	0.979	0.994	0.999
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which can be approximated, using a changes of variable and Riemann's sums, by:

Therefore, applying Markov's inequality, it follows that:

Besides, E( Q1,2 ) = 0 since Λ i and Λ j are uncorrelated, for i = j and its variance is given by:

V ar( Q1,2 ) =

The same applies for u = j. For E(Λ i Λ j Λ u Λ v ) to be different from zero, one of these two conditions must hold: i = u and j = v or i = v and j = u. Then:

Consider the following approximation for the product of two b ij coefficients:

Then,

Therefore, we obtain the following expression for σ 2 Q :

In order to prove the asymptotic normal distribution of Q1,2 , we will apply Theorem 5.2 in de Jong (1987). For that purpose, we must write Q1,2 as a quadratic form, namely Q1,2 = i,j a i,j X i X j , where i and j are one-dimensional indexes and X i are i.i.d. random variables with zero mean and unit variance.

First, define a new subindex for the Fourier frequencies λ k , with k = (k 1 , k 2 ) and k l = 0, ±1, . . . , ±n l , for l = 1, 2. Consider
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taking into account that the spectral ratio of a matrix (max i |ν i |) is bounded by its supremun norm,

Then, the asymptotic convergence to a normal distribution is proved.

Proof of Theorem 1. The theorem is proved combining the results from Lemmas 1-3.

Proof of Theorem 2. Consider the decomposition of the test statistic given in Lemma 1: Q = Q1a + Q2a + Q3a . The sketch of the proof is as follows: find bounds for Q2a and Q3a and Q1a is decomposed in three addends Q1a1 , Q1a2 and Q1 . The asymptotic normality of Q1 is proved in Theorem 1. Besides, Q1a2 can be also bounded and

where the approximation holds fof C 2 N = N -1 |H| -1/4 .