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Abstract 

I present a model of stochastic community dynamics in which death occurs randomly in 

the community, propagules disperse randomly from a regional pool, and recruitment of 

new individuals of a species is proportional to the species local abundance multiplied by 

its local competitive ability. The competitive ability of a species is assumed to be 

determined by a function of one trait of the species, and I call this function the 

environmental filtering function. I show that information on local species abundances in 

a network of plots, together with trait data for each species, enables the inference of 

both the immigration rate and the environmental filtering function in each plot. I further 

study how the diversity patterns produced by this model deviate from the neutral 

predictions, and how this deviation depends on the characteristics of the environmental 

filtering function. I show that this inference framework is more powerful at detecting 

trait-based environmental filtering than existing statistical approaches based on trait 

distributions, and discuss how the predictions of this model could be used to assess 

environmental heterogeneity in a plot, to detect functionally meaningful trade-offs 

among species traits, and to test the assumption that there exists a simple relationship 

between species traits and local competitive ability. 

 

Keywords: Community model, functional trait, environmental filtering, Approximate 

Bayesian Computation. 
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Introduction 

Understanding the dynamics of communities is a challenging task for ecologists due to 

the diversity of ecological mechanisms and the ways in which they potentially interact 

(Chesson 2000). Different models of community dynamics have primarily been 

compared through the analysis of diversity patterns (Chave et al. 2002, 2006, Etienne 

and Olff 2005, Volkov et al. 2005). Due to the limited information content of such data 

(McGill et al. 2007), there is a need for additional sources of information to robustly 

contrast community dynamics models. Two main sources of information have been the 

focus of the recent efforts: phylogenies (Webb et al. 2002, Jabot and Chave 2009), and 

species traits (Lavorel and Garnier 2002, McGill et al. 2006, Westoby et al. 2002), both 

lines of research being intimately linked (Cavender-Bares et al. 2004, Webb et al. 2008). 

In this study, I focus on how one may make better use of species functional traits to 

compare the predictions of different community models in terms of trait distribution in 

local communities. 

 

Species traits are thought to capture components of species ecological strategies 

(Westoby et al. 2002, Wright et al. 2004). If two species have similar traits, they are thus 

likely to share similar environmental affinities (Diaz et al. 1998, Weiher and Keddy 

1995), and to be in competition for the same resources (Dayan and Simberloff 2005, 

Fargione et al. 2003).  Data on species traits have been used to disentangle patterns 

attributed to stochastic or mass effects (Mouquet and Loreau 2003), from those more 

likely due to niche effects in community assembly (Cadotte 2007, Cornwell et  al. 2006, 

Fukami et al. 2005, Kraft et al. 2008, Mouillot et al. 2007, Ricklefs and Travis 1980). If 

the environment acts as a filter for species by preventing them from establishing in a 

community, then the traits of coexisting species should be more similar than in 

randomly assembled communities. On the other hand, competition for resources may 
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lead to the exclusion of the most similar species (limiting similarity, MacArthur and 

Levins 1967). This limiting similarity should produce a statistical overdispersion of the 

traits present in a community.  In species-rich communities like tropical forests, where 

understanding community dynamics is particularly challenging, the inclusion of data on 

species traits has proven fruitful: easily-measurable traits have been shown to explain 

roughly half of the variation in growth and mortality of trees (Poorter et al. 2008), and a 

significant part of their ranges and local abundances (Baltzer et al. 2008, Engelbrecht et 

al. 2007). This indicates that traits do bring relevant information in our understanding of 

community dynamics (Grime 2006, McGill et al. 2006, Westoby and Wright 2006). 

 

In this quest for a trait-based ecology, various statistical methods have been developed 

to relate the trait composition of a community to putative ecological mechanisms of 

community assembly. Tests for competition (Cornwell and Ackerly 2009, Kraft et al. 

2008, Stubbs and Wilson 2004), and for environmental filtering (Cornwell et al. 2006, 

Villéger et al. 2008), enable to detect significant departures from a null model of 

random community assembly. The fourth-corner method (Dray and Legendre 2008, 

Legendre et al. 1997) relates traits to environmental features in order to explain species 

presence or abundances in given environmental conditions. Despite the rich insights 

brought by these approaches, they all suffer from a common shortcoming. Because they 

are not based on an explicit model of community dynamics, they are unable to quantify 

the impact of environmental constraints on basic properties of community dynamics 

such as immigration rate and difference in competitive ability among species. Also, they 

ignore stochasticity (Hubbell 2001), although the real community dynamics is certainly 

stochastic (Ellner & Fussmann 2003, Erjnaes et al. 2006, Fukami et al. 2005). 

Consequently, current methods for analyzing trait distributions in communities do not 

enable ecologists to respond adequately to the claim of others that differences among 
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species may have a minor role in community dynamics compared to stochastic factors 

(Hubbell 2001). Indeed, detecting subtle non-random patterns of trait distribution in 

natural communities does not imply that the effect of traits on community dynamics is 

strong. If so, taking into account trait differences among species in such communities 

may not bring any key improvement. 

  

To tackle these limitations, I present a method to quantify both immigration rate and 

environmental filtering in ecological communities. This approach is based on the 

stochastic modeling of a local community dynamics at the individual level. In this 

model, the community is subject to stochastic birth-death-immigration events, as in the 

neutral model of Hubbell (2001), but each individual has a local competitive ability 

determined by one of its traits (Schwilk and Ackerly 2005). This integration of two 

frameworks, trait-based competition and neutral theory, aims at capturing the compound 

effects of stochasticity, dispersal limitation and species differences in the structure of 

natural communities (Adler et al. 2007, Gravel et al. 2006, Holyoak and Loreau 2006). I 

assume that each individual in the community is experiencing the same environment, 

thus I neglect the effects of habitat variation within a local community. I call the 

function that relates a trait value to local competitive ability the environmental filtering 

function. This function is a property of the local environment, which acts as a filter for 

species depending on their traits. This environmental filtering function can be seen as 

emerging from classical species niche models on an environmental axis (e.g. Schwilk 

and Ackerly 2005, see Appendix A for more details). If the filtering function is flat in 

trait space, then the community will be subject to purely neutral dynamics. If the 

environmental filtering function is unimodal in trait space, then the community will 

experience environmental filtering in which species with traits close to the peak 

experience a maximal recruitment rate (Fig. 1a). In the particular case where the peak of 
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the filtering function is positioned either on the minimal or on the maximal trait value, 

then the filtering function is modeling environmental filtering for an extreme trait value. 

The resulting trait-local abundance relationship then depends on the relative strength of 

this environmental filtering and of the immigration rate and demographic stochasticity 

(Fig. 1b, c, d). By modeling the environmental filtering function with a Gaussian 

distribution, I develop an inference method for estimating the immigration rate and the 

height, width and position of the filtering function in a local community with data on 

species abundances and traits. I test this method on simulated data, and show that all the 

parameters of this model may be inferred. I explore how the height of the filtering 

function – a measure of the maximal competitive differences between species, and the 

width of this filtering function – a measure of the specificity of the filtering, contribute 

to producing either neutral or non-neutral diversity patterns, and how the inference 

method proposed here compares with other approaches for detecting such deviations 

from neutrality. Finally, I test whether a multimodal filtering function, which may arise 

if several micro-habitats are filtering the species within a plot, may be detected with this 

method. 

 

Methods 

 The Model 

To model local community dynamics, each species are given a local competitive ability 

as determined by a filtering function F. More specifically, F is modeled by a Gaussian 

function of one quantitative trait t:  F(t) = 1 + A * exp[-(t-h)²/2σ ²], with the following 

three parameters: A is the maximal competitive advantage (see below) possible for a 

species, compared to the worst competitive species; h is the optimal trait value in the 

local environment; and σ describes the width of the filtering function in the local 

environment (the greater σ, the larger the range of trait values leading to enhanced 
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competitive ability). This model neglects intraspecific variability in trait value and 

competitive ability. This serious simplification is in line with many field studies, where 

traits data are often collected at the species level rather than at the individual level (but 

see Paine et al. in prep). 

 

At each time step, one individual drawn at random dies in a local community of size J. 

It is replaced either by an immigrant from the regional pool with probability I / (I+J-1) 

(Etienne and Olff 2004) or by the descendant of a local individual. Parameter I is the 

fourth parameter of the model, and it measures the amount of immigration from the 

regional pool into the local community (assuming that each local individual produces 

one propagule, I is the number of additional propagules coming from the regional pool 

and competing for the empty site of the dead individual). The probability that the 

replacing individual is of species i is proportional to the abundance of this species in the 

local community (or in the regional pool if it is an immigrant), multiplied by its local 

competitive ability Fi. Hence, the environmental filtering is solely acting at the 

recruitment stage, and the propagules of a species having a trait value close to h have a 

greater recruitment probability. Regional species’ relative abundances χi are assumed to 

be known and they vary little over ecological time-scales. In applications, regional 

abundances may be approximated by the species abundances pooled over all community 

samples available (Jabot et al. 2008). This local dynamics leads to a dynamic 

equilibrium (data not shown) between immigration, competition, and ecological drift –

ie. the random fluctuation of abundances due to demographic stochasticity. The 

proposed approach models environmental filtering as genic selection is modeled in 

population genetics. 

 

 Likelihood formula 
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Assuming that we know the species relative regional abundances χi, we aim at inferring 

the parameters of the model (I, A, h and σ) from data on species traits and on their local 

abundances in a sample. For this model, a likelihood formula is available in the 

population genetics literature. In noting �i , xi and Fi the regional relative abundance, the 

local relative abundance and the local competitive ability of species i, and S the total 

number of species in the regional pool, one obtain by analogy with Wright's formula 

(Wright 1931, 1937) the likelihood: 
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, the integral being over all the possible xi 

distributions. 

 

The value of C must be computed in order to calculate the likelihood for each 

parameter. One approach is to estimate C by Monte-Carlo simulations. However a 

preliminary implementation of this approach showed that this solution is time-

consuming. A simplification of this formula is available when only two competitive 

ability values are possible in the population (Mark Beaumont, pers. comm.). To my 

knowledge, no such simplification is available in the general case of interest here. I 

therefore used an approximate method. 

 

 Parameter inference using Approximate Bayesian Computation (ABC) 

I used a computer-intensive approach called ABC. The parameters are drawn at random 

from a prior distribution. Communities are then simulated according to the model using 

these parameter values, and a set of summary statistics are computed for these simulated 

communities. Only those simulations for which the summary statistics are close to the 
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empirical ones (ie computed from the data) are retained. The parameters associated with 

these selected simulations are used to construct an approximate posterior distribution 

(Beaumont et al. 2002, and Jabot & Chave 2009 for an application to ecology).  

 

In each simulation, local communities were initialized by randomly drawing J 

individuals from the regional pool with the probability of drawing species i proportional 

to χi*Fi. A forward-in-time dynamics was then simulated during J² time steps, a time 

sufficient for ensuring that the dynamic equilibrium was reached (see Appendix B). I 

used four summary statistics to represent the communities: the species richness S, and 

Shannon's index H (already used in ecological applications of ABC, Jabot & Chave 

2009), the mean trait value MTV among individuals in the community, and the 

skewness of the distribution of trait values STV among individuals. These summary 

statistics were chosen based on a preliminary analysis: S was found to capture the total 

amount of filtering due to both dispersal limitation and environmental filtering. H 

provides relevant information on the relative importance of these two effects. MTV 

informs on the optimal trait value and STV on the width of the environmental filtering 

function (see Box 1 for more details). 

 

 Test of the method by simulations 

To test whether the ABC method retrieved the parameters of numerically generated 

datasets, I simulated 100,000 communities of size J=500, and species richness S ranging 

between 90 and 110. These values of sample size and species richness are typical of 

tropical forest tree inventories of 1 ha, a major source of biological data and of 

inspiration for community ecology theory (e.g. Hubbell 2001). Due to the stochasticity 

of the dynamics, the species richness of a simulated community is a random number. I 

therefore simulated many more communities than needed and only retained those that 
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had the targeted richness. A regional pool of 1,000 species was defined. Species had 

equal regional abundances and were evenly spaced on the trait axis between 0.1 and 

100. I used a uniform prior distribution for the four parameters: ln(I) in [3 ; 5], ln(A) in 

[ln(0.1) ; ln(5)], ln(σ) in [ln(0.5) ; ln(25)], and h in [-25 ; 125]. I extended the prior on h 

beyond the minimal and maximal trait values in the communities, so that there is no 

boundary effect for the estimation of communities filtered for trait values around 0 or 

100. The prior on ln(I) was chosen so that the targeted richness was likely to be obtained 

in simulations (see Box 1, Fig. 2a). I then picked at random 100 out of these 100,000 

communities, and considered them as artificial datasets on which to test the inference 

method. I used for each of these artificial datasets the 99,999 remaining simulated 

communities to infer the four model parameters by ABC. I then computed a correlation 

coefficient between the values of the parameters used to simulate these 100 artificial 

datasets and the parameters values inferred by ABC for these 100 datasets. 

 

The robustness of these results to the various model assumptions was also assessed: the 

number of communities was varied in the ABC procedure (10,000 , 20,000 , 50,000 , 

and 200,000), as well as the size of the regional pool (300 and 3,000 species), and the 

local community richness (S=20, 50, and 200). The regional relative abundances were 

also modeled by a logseries distribution with parameter α=200, using the function 

“fisher.ecosystem” of the R package untb (Hankin 2007, R Development Core Team 

2008), and relative abundances were either assigned randomly, or so that regionally 

abundant species were aggregated in the trait space. This aggregation was performed by 

picking at random a position in the trait space, and then placing the species around this 

trait value in decreasing order of abundances so as to form a peak in the trait-regional 

abundance plot. Two other shapes of the environmental filtering function were also 

tested: a rectangular function and a triangular one (Appendix C). 
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 Test of environmental filtering at the individual level 

Previously, most trait-based tests of environmental filtering have ignored the 

information on relative species abundances in a local community. To take into account 

this information together with the information on species traits, one can use the 

dispersal-limited neutral model as a null model, and compare some summary statistics 

of neutral and filtered communities to look for differences. To determine which 

summary statistics was more able to distinguish neutral and filtered communities, I 

simulated 1000 neutral communities with J=500 and S=100 with parameter ln(I) drawn 

at random in [3 ; 5], and 1000 communities simulated with environmental filtering with 

h equal to 25, ln(I) randomly drawn in [3 ; 5], ln(A) in [ln(0.1) ; ln(5)], and ln(σ) in 

[ln(0.5) ; ln(25)]. I compared the value of four summary statistics among neutral and 

filtered communities: Shannon’s index H, the range of trait values in the local 

community Range, the range of trait values in the 5 locally most abundant species 

Range5, and the variance of trait values among individuals VTV. Comparing neutral 

and filtered communities with the statistics Range actually corresponds to the method of 

Cornwell et al. (2006). It does not make use of species abundances, only of species 

traits and of their presence or absence in the local community. The statistics H uses 

solely information on species abundances. The two last statistics combine information 

on species traits and abundances. The same analysis was performed in other situations: 

the size of the regional pool was varied (300 and 3,000 species), as well as the local 

community richness (S=20, 50, and 200), the regional abundance structure, and the 

shape of the environmental filtering function (Appendix C). 

 

Detection of micro-habitats 

The model assumes that the local environment is homogeneous. This assumption is 
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likely to be violated in real communities where habitats are heterogeneous at different 

spatial scales (Palmer and Dixon 1990). In the presence of micro-habitats within a 

sample, the environmental filtering function F may be multiply peaked. In this case, the 

studied single-peak model should be unable to precisely reproduce the trait-abundance 

relationship observed in real communities, and this discrepancy between simulated 

single-peak communities and real datasets might be captured in some summary 

statistics. One potentially good summary statistic to assess the presence of multiple 

micro-habitats in real communities is the variance of trait values among individuals 

VTV, since multiple peaks in the filtering function should increase VTV, everything 

else being equal. To test this idea, I simulated 100 artificial datasets using two peaks in 

the filtering function at h1=25 and h2=75. The filtering function is then equal to F = 1 + 

A * (exp[-(t- h1)²/2σ ²]+ exp[-(t- h2)²/2σ ²]). I used a value of A=3, σ=1, and ln(I) 

randomly drawn in [3:5]. In each of these 100 artificial datasets, I computed VTV. 

Then, for each artificial dataset, the four model parameters were inferred by ABC, and 

the 200 best-fit communities, which were simulated with single-peak environmental 

filtering functions, were retained. VTV was computed in all these best-fit (single-peak) 

communities, and compared with VTV values observed in artificial (2-peak) datasets. 

More precisely, a statistical test was designed, consisting in computing for each artificial 

dataset the percentage of best-fit communities having VTV values larger than in the 

artificial dataset. This percentage constitutes the p-value for the rejection of the null 

hypothesis: “the artificial dataset is well described by a single-peak environmental 

filtering function”. 

  

Results 

ABC inference 

Based on 100 communities of richness S equal to 100, simulated with parameter values 
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drawn from the prior distribution, the correlation coefficients R² between simulated and 

inferred parameter values were equal to 0.64, 0.70, 0.57 and 0.54 for parameters ln(I), 

ln(A), h and ln(σ) respectively (Fig. 3). It was difficult to properly infer parameters in 

the communities that were either weakly filtered (Fig. 4a), or filtered for trait values 

close to the regional mean (Fig. 4c). Once these problematic communities were taken 

out of the correlation analysis, correlation coefficients rose to 0.65, 0.99, 0.73 and 0.82 

for the parameters ln(I), ln(A), h and ln(σ) respectively (see Appendix C for more 

details on the detection of outliers).  

 

In situations where parameter inference is unreliable, the width of the approximate 

posterior distribution is larger (Fig. 4b, d, e). It is thus possible to assess the reliability 

of any parameter inference from real data by comparing the width of their approximate 

posterior distribution to the ones of well-estimated simulated communities. These 

results were robust to variations in the regional pool richness, in the structure of 

regional species abundances, and in the shape of the environmental filtering function 

(Appendix C). Similar results were also obtained in communities of local richness 

S=50, and S=200. For communities with small local richness S=20, parameter inference 

performed poorly (Appendix C). This inference method is thus better suited for species-

rich communities. Additional tests with communities with random local species richness 

are reported in Appendix C, and corroborate these results. 

 

Test of environmental filtering at the individual level 

When environmental filtering was simulated in artificial communities, the values of H, 

Range5, and VTV were lower than in neutral communities, but not the range of trait 

values (Fig. 5). Filtered communities had increasingly non-neutral patterns with 

increasing A (Fig. 5). The effect of increasing σ was more complex, and depended on 
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the statistics considered. Figure 5 shows that, for the simulated communities, H–based 

statistical tests were the most efficient for detecting deviation from neutrality. Similar 

results were found with different regional pool richness, local community richness, and 

shapes of environmental filtering functions (see Appendix C for more details). When 

species regional abundances were unequal (modeled by a logseries distribution with 

parameter α=200) and uncorrelated with species traits, similar results were again 

obtained (Fig. C7). When species regional abundances were correlated with species trait 

values, different results were found, except for H-based tests of environmental filtering 

which were quite robust (Fig. C8). 

 

Detection of micro-habitats 

VTV was generally larger in the artificial datasets simulated with two peaks in the 

environmental filtering function than in the 1-peak communities that best fitted these 

artificial datasets. This increase in VTV value was found to be significant, at an α level 

of 5%, in 60% of the artificial datasets (Fig. 6). 

 

Discussion 

 Integrating niche and neutral processes in an inferential framework 

Hubbell’s neutral theory of biodiversity is advocated to be an ideal anchoring point for 

building a quantitative theory of community dynamics (Adler et al. 2007, Alonso et al. 

2006, Gravel et al. 2006, Holyoak and Loreau 2006). A natural next step for the 

stochastic modeling of communities is to add environmental filtering to the mechanisms 

of dispersal limitation and ecological drift already present in neutral theory (Schwilk 

and Ackerly 2005), in order to see whether species differences need to be taken into 

account to understand natural communities. In the present work, I contribute to this 

progress by modeling local asymmetrical competitive ability among species in a 
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background of ecological drift, just as selection is modeled in population genetics 

against a background of genetic drift (Wright 1931, 1937). I assume that the local 

competitive abilities of species are determined by one trait, and an environmental 

filtering function is defined, which relates the trait of a given species to its local 

competitive ability (Fig. 1). Using simulated data, I show that it is possible to infer the 

parameters of this filtering function – position of the peak in the trait space, height and 

width – together with the immigration rate from the regional pool, from the knowledge 

of species traits and of their abundances. 

 

 Understanding the influence of environmental filtering on communities 

Previous attempts to measure the intensity of environmental filtering from species traits 

were mainly based on the study of the convex volume formed by the positions in the 

traits space of the species present in the focal community (Cornwell et al. 2006). The 

present approach describes environmental filtering by three parameters: h measures the 

position of the optimal trait value, A measures the strength of the asymmetry among 

species (Alonso et al. 2008), and σ  measures the specificity of the environmental 

filtering. Using simulations, the overall intensity of filtering was found to be a 

compound effect of these three parameters, and mostly of the parameters A and σ. If one 

considers a species different from the most competitive species, the higher A, the larger 

is the difference in competitive ability between the most competitive species and the 

focal species, the reverse being true for σ. Thus an increase in A tends to make species 

abundances less even, while an increase in σ produces the reverse effect (Fig. 5a). 

Hence, a given level of abundance unevenness can be achieved either by a strong 

competitive advantage of a large number of species, or by a weaker advantage of a 

fewer number of species, as long as the ratio A/σ is roughly constant (Fig. 2b). While 

this particular criterion of constant A/σ (Box 1) is only valid for the particular model 
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developed here, the fact that filtering intensity and filtering specificity have opposite 

effects on species abundance distributions is likely to be much more general (Walker 

2007, Whittaker 1965). The present study further points out that although two filters, 

one with large A and σ, and the other one with small A and σ, can lead to similar 

species abundance distributions, the trait distributions associated with these different 

filters should be different, hence providing a way to understand how environment is 

filtering species in ecological communities.  

 

This observation is likely to have important consequences for the investigation of 

species habitat associations in species-rich communities. Such investigations are 

generally based on the study of species occurrence and/or abundance in networks of 

plots (or in partitions of large plots into many subplots), whose abiotic environmental 

properties are characterized. In such studies, a species is considered to be associated 

with a given habitat if it is significantly over-represented in this habitat (Dufrene and 

Legendre 1997, Harms et al. 2001, Plotkin et al. 2000). It is shown here that even if a 

species has a strong competitive advantage compared to poorly adapted species, it may 

fail to be over-represented locally, if many other species present similar adaptations. In 

this case, the role of historical contingency will be primordial in explaining the presence 

or absence of over-representation in habitats where a species is a good competitor 

(Purves and Pacala 2005).  

 

To decide whether a particular locally rare species is adapted or not to this local habitat, 

one needs to increase the sample size until this species has a sufficient total abundance 

across samples. This is immensely challenging for most species in mega-rich 

communities which are rare at the regional scale (eg. Pitman et al. 2001). This study 

suggests that an alternative strategy may be employed. For instance, one may look 
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where the trait value of the locally rare species is located compared to the inferred 

environmental filtering function: if it is close to the peak of the filtering function, then 

the focal species is likely to be locally rare due to historical contingency rather than 

environmental filtering.  

 

 Applicability of the inference method 

The data required to apply the present model are species abundances and species-level 

trait data in a network of plots belonging to the same region. The present model 

provides a sampling theory for analyzing such biodiversity data (Alonso et al. 2006). It 

enables filtering effects to be quantified, taking into account the fact that only a limited 

sample of the all community is available, and thus that some species may be missed in 

the sample not because they are absent from the community, but because the sample is 

of limited size. In the tests of the method, I used sample sizes typically encountered in 

1-ha tropical forest tree plots, thus the method should be powerful enough to make 

robust inferences with already existing datasets (Kleyer et al. 2008, Kraft et al. 2008, 

Prinzig et al. 2008). The present inference method does not work well for species-poor 

communities (Appendix C), but for species richness typically encountered in tropical 

forests, it has been shown to be efficient (Fig. 3). Although parameter inference is not 

robust in some parts of the parameter space (Fig. 4), it is possible to know where the 

method will fail to apply for a real dataset. Indeed, by using a subset of the ABC 

simulations as reference communities, one can obtain the typical volume of the 

posterior distribution in well-estimated communities, and compare the volume obtained 

with real data to these reference volumes: if the posterior distribution obtained with real 

data has a larger volume, then the inference should not be trusted. Logically, the 

inference does not work well when the filtering intensity is weak. More interestingly, 

the inference does not work well when environmental filtering selects species for trait 
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values close to the regional mean (ie in habitats which are widespread). In those cases, 

both the signals in the trait distribution produced by immigration and by environmental 

filtering are symmetric around the mean regional trait value, and it is therefore not 

possible to know the level of specificity of this environmental filtering (Box 1). For 

these problematic common habitats, the consideration of additional summary statistics 

measuring the similarity in traits among plots might help disentangle how specificity 

and intensity of filtering are interacting. 

 

 Comparison with other approaches for analyzing the trait composition of 

communities 

The more widely used approach for assessing environmental filtering from the 

distribution of species traits in a community consists in computing the convex hull 

volume which contains all locally present species positioned in the traits space 

(Cornwell et al. 2006, Kraft et al. 2008). The more communities are filtered, the smaller 

this volume. However, rare species with atypical traits largely contribute to the volume 

obtained, and can drastically decrease the power of this approach to detect 

environmental filtering. More refined analyses based not only on convex volumes but 

also on the distribution of individuals in this volume have been proposed (eg. Villéger et 

al. 2008). This may increase the power of such analyses for detecting and characterizing 

environmental filtering. Indeed, I found here that the structure of species abundances, 

and its correlation with species traits, was far more informative than the sole 

consideration of the range of species traits in a community for detecting environmental 

filtering (Fig. 5). Furthermore, approaches based on convex volumes and their 

extensions do not provide any robust quantification of this filtering in terms of 

community dynamics. The present approach provides a clear quantification of 

environmental filtering coupled with a more detailed description of this ecological 
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mechanism. It is based on a modeling of community dynamics, based at the individual 

level. Being parameterizable from field data, this model can be used to predict the 

dynamics of ecological communities in a more data-informed way. 

 

The results of this study further question the rationale of range-based (or its 

multidimensional convex-volume equivalent) approaches for detecting environmental 

filtering in species-rich communities. Indeed, regardless of its intensity, environmental 

filtering did not produce any range contraction compared to ranges observed in 

neutrally-assembled communities of similar richness, and this result was robust to 

variations in local and regional richness, in regional abundance structure, and in the 

shape of the filtering function (Appendix C). The reason for this is that, when observing 

a community with a given species richness, if this community is strongly 

environmentally filtered, then it has to have a larger immigration rate from the regional 

pool than a neutrally assembled community (to counter-balance the effect of filtering on 

species richness, see Box 1). This immigration brings continually less adapted species 

into the community, and this leads to wide trait ranges, which are undistinguishable 

from those found in neutral communities. This observation is likely linked to the 

modeling choice of setting the minimal competitive ability to 1. If this minimal 

competitive ability had been set equal to 0, range contraction might have certainly been 

observed in filtered communities as suggested by the results of Schwilk and Ackerly 

(2005). What distinguishes these two modeling choices? Setting minimal competitive 

ability to 0 implies that some species will be completely excluded from some habitats, 

and consequently that the study is encompassing several ecological guilds (sensu 

Hubbell 2001). On the contrary, setting the minimal competitive ability to 1 implies that 

every species will be likely to be present (although possibly rare) in every habitat. This 

is what seems to be observed in most tropical forest habitats (Hubbell 2001). This 
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distinction might explain why trait range-based studies of community assembly were 

able to detect environmental filtering in communities with limited species richness, and 

strong habitat heterogeneity (eg. Cornwell and Ackerly 2009, Cornwell et al. 2006, 

Pausas and Verdu 2008), while studies in more diverse communities, and in more 

homogeneous habitats, like tropical forests, have difficulties to detect reduction in trait 

ranges, even when differences in trait community means are detected (Kraft et al. 2008, 

Paine et al. in prep).  

 

Detection of local heterogeneity 

In real communities, the assumption that environmental conditions are homogeneous is 

unlikely to be valid (Palmer & Dixon 1990). The presence of different micro-habitats 

should enable different ecological strategies to coexist, and should decrease the 

detectability of environmental filtering. Other ecological mechanisms such as 

frequency-dependence (Connell 1971, Janzen 1970), limiting similarity (MacArthur & 

Levins 1967), storage effect (Chesson 2000), or disturbance (Grime 2006) may have 

similar effects on the detectability of environmental filtering, by decreasing the 

correlation between trait value and competitive advantage. These problems are not 

specific to this particular approach but common to all attempts to detect environmental 

filtering from trait data. A particular advantage of the present method is that it is 

possible to detect anomalies in the distribution of individuals in the trait space that are 

not explained by the model. For instance, bimodality in the trait distribution may be due 

to the presence of two micro-habitats, or it may only be due to stochasticity. I show here 

that the present approach enables to disentangle these two explanations (Fig. 6). The 

detection of such anomalies may inform us on the more complex features of local 

community structuring.  
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 Perspectives  

The present method enables the environmental filtering associated to a single trait (or a 

PCA axis) to be quantified. Hence, one can assess the importance of each trait or trait 

axis in the filtering of species from the community. A drawback of treating each trait 

independently is that it does not lead to a dynamical community model parameterized 

with multiple traits, which could be used for predicting community dynamics from 

static data. An extension of this model to use multiple traits simultaneously would thus 

be very valuable. Preliminary works on this topic suggest that such an extension might 

be performed with the same ABC approach, but this will require a careful choice of 

informative summary statistics. Such a choice is likely to greatly depend on the 

specificity of the dataset studied, such as the regional species richness, the distribution 

of individuals in the traits space, and the correlations between traits. Future studies 

investigating community modeling based on multiple traits will thus need to be tailored 

to each dataset. This will require many summary statistics to be simulated, to see which 

ones are the most correlated to the different model parameters, with the dataset studied, 

and to use these best summary statistics in an ABC framework. 

 

Another possible extension of this approach is to model the intraspecific variability in 

traits and competitive abilities. Indeed, some recent studies measured traits for each 

individual rather than for each species (Ackerly and Cornwell 2007, Paine et al. in 

prep). For instance, one could attribute to each species the variability observed in its 

traits values across the dataset. Each new recruited individual of a given species would 

be provided traits values drawn randomly in this species-specific traits distribution. This 

would enable to study how species traits vary between locations in response to different 

environmental filters (Ackerly and Cornwell 2007), and how this intraspecific variation 

is affecting community dynamics (Aarssen 1992, Chave 2004, Vellend and Geber 
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2005).  

 

A possible obstacle for trait-based studies is the existence of equalizing trade-offs 

(Chesson 2000) among species traits (Grime et al. 1997, Kneitel and Chase 2004, Reich 

et al. 2003, Tilman 1990, Westoby et al. 2002, Wright et al. 2004). These trade-offs may 

imply that different combinations of traits lead to a similar competitive ability in given 

local conditions. In this case, multiple peaks in the filtering function may occur for each 

trait, even in a homogeneous local environment. If those trade-offs are low dimensional 

in the sense that they are based on a limited set of traits, the different ecological 

strategies with similar competitive ability are likely to be connected by a ridge in trait 

space (Wainwright 2007). Hence, a way to limit the impact of such effects could be to 

decompose this set of traits in principal components. The present method would then 

infer a very large value of σ  and/or a small value of A for the axis describing the trade-

offs, but may detect environmental filtering on perpendicular axis, if they capture 

competitive differences among species once the effect of equalizing trade-offs is sorted 

out. In this vein, non-linear principal component analysis may be more flexible than the 

more widely used linear PCA (e.g. Gorban and Zinovyev 2007). The method presented 

in this contribution may thus be able to deal with low dimensional trade-offs which are 

abundantly described in the literature (Wright et al. 2004).  

 

Recent modeling works however suggest that real trade-offs may involve much more 

dimensions (Marks and Lechowicz 2006). Although such highly dimensional trade-offs 

may explain the commonly observed low dimensional trade-offs (Marks and Lechowicz 

2006), they are also likely to produce filtering functions which are highly irregular, as in 

the metaphor of holey adaptive landscapes in the theory of speciation (Gavrilets 1999, 

2004). If the simulation results of Marks and Lechowicz apply to real ecological 



Acc
ep

te
d m

an
usc

rip
t 

Acc
ep

te
d m

an
usc

rip
t 

systems, the proposed modeling approach does not provide a satisfactory description of 

the relationship between traits and species competitive abilities, since the “real filtering 

function” would have to present a great number of peaks, the high trait diversity 

observed in local communities stemming from the abundance of alternative designs 

leading to similar competitive abilities (Marks and Lechowicz 2006). However, 

simulation experiments suggest that traits measuring organism-level performance like 

shade tolerance or drought resistance may be less influenced by such alternative 

designs, and more correlated to environmental conditions than organ-level traits such as 

leaf nitrogen concentration or specific leaf area (Marks 2007). This argues for the use of 

such more informative yet more difficult to measure traits in trait-based studies of 

community assembly and dynamics to decrease the noise associated with the presence 

of alternative designs (Valladares et al. 2002, Engelbrecht et al. 2007).  

 

The problem of alternative designs is not unique to this particular approach for using 

species traits but is common to all methods aiming at using species traits to detect 

environmental filtering. It is thus surprising that this limitation has received so little 

attention in the present literature. A key advantage of the present approach is that it 

produces clear predictions of trait distributions in communities. Hence, by looking at 

more subtle patterns in species abundances and co-occurrences, it may be possible to 

detect whether species with similar traits tend to share similar ecological strategies or 

whether there is no continuous association between traits and strategies. Although such 

tests need further research to be developed, the present approach is the first to 

potentially enable to answer the question of whether local trait diversity is maintained 

through source-sink dynamics via immigration of locally less competitive species from 

the regional pool (Pulliam 1988), or to the presence of a great number of alternative 

designs leading to similar competitive abilities. To answer such difficult questions, it 
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may be necessary to make use of additional data in this framework, such as growth or 

mortality data, together with the use of multiple traits possibly linked by trade-offs. The 

flexibility of the ABC approach should enable the integration of such new data, but may 

necessitate more efficient ABC implementation (Beaumont et al. 2009, Blum and 

François in press). 
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Table 1  

Parameter definitions 

Symbol Definition 

I Immigration rate 

h Optimal trait value = Mode of the environmental filtering function 

A Height of the environmental filtering function 

σ Width of the environmental filtering function 
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Fig. 1. Illustration of the filtering function. 

Caption: Panel a: Filtering function. Each species has a trait value which determines its 

local competitive ability. This competitive ability is given by the filtering function, 

which has three parameters: h the position of the optimal trait value, A the maximal 

competitive advantage associated with this optimal trait value compared to the least 

competitive species, and σ  the standard deviation of the filtering function which 

encapsulates the width of the filtering function. Panels b, c, d: Examples of trait 

distributions in simulated communities with various strength of filtering. Each ‘+’ 

represents the abundance of one species in the local community. Panel b: Strong 

filtering. The distribution of trait values is highly peaked; species with a trait value 

different from the optimal trait value are at very low abundances. Panel c: Intermediate 

filtering. The distribution of trait values is still peaked, but more species have large 

abundances, and species with a trait value different from the optimal trait value can 

have medium abundances. Panel d: Low filtering. The distribution of trait values is only 

slightly peaked and species with very different trait values coexist at medium 

abundances. 

 

Box 1. Identifiability of the model parameters with four summary statistics. 

The immigration rate I greatly influences the species richness S of the local community 

(Fig. 2a), but it is not the sole factor in determining the local richness. A given local 

species richness (S=100 in Fig. 2b) can be produced by different combinations of 

parameter values (Fig. 2b). What matters is the total amount of filters from the regional 

pool into the local community. In the present model, both dispersal limitation (the lower 

I, the greater the dispersal limitation) and environmental filtering act as filters. The 

intensity of environmental filtering is positively correlated with the height A of the 

environmental filtering function, since a greater A implies a greater asymmetry in 
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competitive ability among species, hence a greater chance of competitive exclusion of 

poorly competitive species from the local community. The intensity of environmental 

filtering is also negatively correlated with the width σ of the environmental filtering 

function, since a larger σ implies a greater number of species with relatively good 

competitive ability in the local community. In sum, environmental filtering is positively 

correlated with the ratio A/σ . The knowledge of S enables to restrict the most likely 

parameters values through the information of total filtering intensity (Fig. 2b), but not to 

know the relative contribution of environmental filtering and dispersal limitation (Jabot 

et al. 2008). Among those simulated communities of equal richness (S=100), Shannon's 

index H is negatively correlated with the immigration rate I (Fig. 2c). Hence, the 

knowledge of S and H enables to know the relative contribution of dispersal and 

environmental filtering in this model, i.e. to know the value of I and A/σ . At fixed S 

and H (here I consider a narrow stripe of H values to have still a large number of 

simulated communities), the mean trait value in the community (MTV) is strongly 

correlated with the position of the environmental filtering function on the trait axis h 

(Fig. 2d). Hence, this additional summary statistic enables to estimate parameter h. 

Finally, for fixed S, H, and MTV values (here again, I take a narrow stripe of MTV 

values), the skewness of the trait value distribution in the community (STV) is 

correlated with the height of the environmental filtering function A (Fig. 2e). Hence 

STV enables to determine A and consequently σ, since the ratio A/σ was already known 

from the value of H. This final correlation between STV and A can be understood as 

follows. For a given level of environmental filtering intensity (A/σ), this filtering can be 

either due to the strong competitive advantage of a large number of species, or by a 

lower competitive advantage of a smaller number of species. In the second case, A and 

σ will be smaller, and the community will be composed of a few species with high local 

competitive ability, and of a lot of species nearly randomly drawn from the regional 
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pool. Here, communities filtered around a value of trait h=30 were selected, hence a 

large number of species drawn between 0 and 100 in the regional pool will have trait 

values above 30, and the distribution of trait values among individuals will tend to have 

a high skewness. On the contrary, communities simulated with larger A and σ  value 

will be composed of a greater number of species symmetrically drawn around 30 

according to the environmental filtering function (which is symmetric), and of a smaller 

number of species randomly drawn from the regional pool, hence the skewness of the 

trait distribution will be lower. If communities had been selected around a value of h 

above 50, an opposite correlation between STV and A would have been observed, but it 

would have been possible to infer the parameters as well, since what matters is the 

existence of this correlation which ensures that the summary statistics give information 

on the parameter values. A potential problem can be envisaged: for communities filtered 

around the center of the trait distribution (h=50), the value of STV might not be 

anymore correlated with A, hence the estimation of the parameters may not be possible 

anymore, at least with this approach. This is what is observed (see Results). 

 

Fig. 2. TO BE PUT IN BOX 1 Summary statistics and estimation of the model 

parameters 

Caption: In all panels, crosses represent communities of size J=500 simulated with the 

present model of community dynamics with a regional pool composed of 1000 species 

of equal abundances and evenly spaced on the trait axis (values between 0 and 100). 

Panel a: local species richness (S) is positively correlated with the immigration 

parameter ln(I). Panel b: only communities with S equal to 100 are retained. A positive 

correlation between the parameters ln(I) and ln(A/σ) can be observed. In other words, to 

keep local richness constant, communities simulated with larger ln(I) need to be also 

simulated with larger ln(A/σ). Panel c: at constant local richness value S, communities 
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simulated with larger ln(I) have lower Shannon’s index H. The vertical bars delimit the 

range of H values retained for panels d and e, so that communities next examined have 

similar H values. Panel d: mean trait values in local communities MTV are positively 

correlated with parameter h. Vertical bars delimit the range of MTV retained for panel e. 

Panel e: skewness of trait values in local communities STV are negatively correlated 

with parameter ln(A). Altogether, variations in S, H, MTV and STV enable to capture 

variations in the four parameters of the model. 

 

Fig. 3. Identifiability of the four model parameters 

Caption: Each panel represents the correlation between one parameter used in 100 

simulated communities and the corresponding parameter value inferred by ABC. The 

black line represents the line of equation y=x. Each simulated community is of size 

J=500, and species richness S=100. The regional pool used in the simulation contains 

1,000 species of equal abundances and evenly spaced on the trait axis between 0 and 

100. Panel a: immigration parameter I, panel b: parameter h, panel c: parameter A, 

panel d: parameter σ. In each panel, red circles highlight communities for which the 

parameter inference is not efficient for the parameter represented in the panel. The 

properties of these badly-inferred communities are described in Fig. 4. 

 

Fig. 4. Area of the parameter space with poor parameter identifiability 

Caption: Panel a: parameters A and σ used for the 25 communities that have at least one 

parameter poorly inferred. There are two distinct groups of communities. The first 

group (depicted by crosses) correspond to communities which are not strongly filtered, 

either because A is low, or because σ  is large. The second group (depicted by stars) 

corresponds to communities which are more strongly filtered, but for trait values around 

the mean trait value in the regional pool (see Panel c). Panel b: Volume of the 
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approximate posterior distribution of the three parameters A, σ and I in the 100 

communities, measured by the convex hull volume of the 200 first points of the 

approximate posterior distribution. The values of the 25 communities which are not well 

inferred are in red. They are larger than for well-inferred communities, i.e. communities 

which are not well inferred have a posterior distribution with a larger volume. Panel c: 

Values of the parameter h used in the 100 simulated communities. The values for the 4 

communities which are not well inferred and which are strongly filtered are in red. They 

are close to the mean value of the regional pool (h=50). Panel d (resp. e): Example of 

the approximate posterior distribution (without the h axis) of a community which is not 

well inferred (resp. well inferred) by our method. 

 

Fig. 5. Filtering shape and detectability of non-neutral patterns. 

Caption: Panel a: Color-coded values of Shannon's index H as a function of the 

parameters A and σ in 1000 simulated communities. To obtain a continuous 

representation instead of 1000 colored points, values of H at each point of the (A,σ) 

surface were interpolated with a kriging technique from the 1000 known values 

scattered in the (A,σ) surface, and then plotted. The black line corresponds to the 

minimal value of H obtained in 1000 simulated neutral communities. Hence, all 

combination of parameters A and σ  at the right of this line lead to species abundances 

that are not compatible with neutrality. The maximal value of H obtained in neutral 

simulations is not depicted, since H values in filtered communities never exceed neutral 

values. Indeed, environmental filtering as modeled here can only decrease H values 

compared to those found in neutral communities. Panels b, c, d: same as Panel a, for the 

three summary statistics Range, Range5, and VTV. All filtered communities had values 

of Range compatible with neutrality. 
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Fig. 6. Detection of multiple peaks in the filtering function. 

Caption: Panel a: Example of the test. The vertical bar stands for the VTV value in the 

simulated 2-peaks community. The histogram represents the distribution of VTV values 

in the 200 best-fit 1-peak communities. Panel b: p-values obtained in 100 simulated 2-

peaks communities. 
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Supplementary Material 

Appendix A: Connection between the environmental filtering function 

modeling and classical approaches in species niche modeling. 

 

Theoretical modeling of species niches often makes use of Gaussian functions around 

an optimal environmental position for a species (e.g. Schwilk and Ackerly 2005). This 

Gaussian function describes the competitive ability of the focal species as a function of 

the environment (Fig. A1a). If the variance and height of these niche functions are 

constant among species, and if the species optimal environmental conditions are 

perfectly correlated to species traits, the filtering function at a given environmental 

condition is a Gaussian function of same variance and height centered on the trait value 

corresponding to the local environmental condition (Fig. A1b). This result keeps true for 

all types of symmetric niche functions (ie such that f(h-x)=f(h+x) ), not just the 

Gaussian one. 
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Fig. A1. Panel a: Classical species niche modeling on a one-dimensional environmental 

axis. Panel b: Resulting filtering function as a function of species traits, under the 

assumptions that all species niche functions are symmetric and identical in shape among 

species, and that species traits are perfectly correlated to their optimal environmental 

conditions. 

 

Reference: 

Schwilk, D.W., Ackerly, D.D., 2005. Limiting similarity and functional diversity along 

environmental gradients. Ecol. Lett. 8, 272-281. 
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Appendix B: Details on the ABC implementation 

 

1-Length of the forward-in-time simulation: 

In the model considered in this article, the community dynamics necessitates to be 

simulated forward-in-time. Starting from a random draw from the regional pool, each 

species being pondered by its local competitive ability given the parameters values, the 

dynamics consist in a series of death and replacement of individuals. After some time, a 

dynamic equilibrium is reached. In the present work, the forward-in-time dynamics was 

run for J² time steps, each time step consisting of a death event followed by a 

recruitment event (J stands for the local sample size and is equal to 500 in the present 

paper). To check whether this simulation length was sufficient so that a dynamic 

equilibrium was reached, I simulated communities with forward-in-time dynamics of 

length 20* J, 100*J, 500*J and 2500*J. The same regional pool as in the main text was 

used. 24 combinations of parameters values were explored: ln(I) in {2,6}, A in {0.5,2}, 

h in {5,20,50}, σ in {5,15}. For each combination of parameters and each forward-in-

time dynamics length, 100 communities were simulated (hence 9600 communities were 

simulated in total). For each of these communities, the four summary statistics used in 

the ABC implementation were recorded: S, H, MTV and STV. Although there was an 

effect of the simulation length for small length values (data not shown), no effect was 

detectable between the lengths 500*J and 2500*J. This was assessed by 96 t-tests (one 

for each parameters combination and summary statistics). The distribution of p-values 

among these 96 t-tests (Fig. B1) was not different from a uniform distribution between 0 

and 1 (p-value=0.74). Furthermore, the few parameters combinations which lead to p-

values below 0.05 were not aggregated in the parameter space. Hence they do not 

suggest that in some parts of the parameter space, a greater simulation length needs to 

be used. 
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Fig. B1. p-values in 96 t-tests for differences between communities simulated with 

500*J time steps and communities simulated with 2500*J time steps in the forward-in-

time algorithm. 

 

2-Posterior mode estimation: 

We used a simple R function (“density”) to estimate the posterior marginal mode for 

each parameter of the model. This estimation was performed on the set of the 500 

closest ABC simulations, each one being weighted with an Epanechnikov function of its 

distance to the data (Beaumont et al. 2002). 

 

3-Number of ABC simulations for parameter inference: 

In any ABC inference, the greater the number of ABC simulations, the better is the 

inference. However, for computing limitations, there is a need to restrain the number of 
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simulations. To check whether the number of ABC simulations retained in this study of 

100,000 communities with species richness comprised between 90 and 110 (for 

estimating parameters of communities with species richness equal to 100) was 

sufficiently large, I performed the same estimation with a number of ABC simulations 

varying from 20,000 to 200,000. I then computed the correlation coefficient R² between 

parameters estimated with 200,000 ABC simulations, and parameters estimated with 

fewer ABC simulations, and summed them over the four parameters to get a global 

picture of the similarity among estimation procedures. For numbers of ABC simulations 

above 50,000, the R² is above 0.95 on average (Fig. B2). The number used of 100,000 

ABC simulations thus seems to be a good compromise between inference quality and 

inference speed. 
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Fig. B2. Circles stand for correlation coefficients between the parameters inferred in 

100 simulated communities with a number of ABC simulations equal to 200,000 and 

other smaller numbers of ABC simulations. Crosses stand for the same correlation 

coefficients on the 75 simulated communities where the ABC inference works well. The 

horizontal line stands for an average R² of 0.95 over the four model parameters. 

 

Reference: 

Beaumont, M.A., Zhang, W.Y., Balding, D.J., 2002. Approximate Bayesian computation 

in population genetics. Genetics 162, 2025-2035. 
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Appendix C: Robustness of the results to various simulation choices. 

 

A/Inference method 

To assess whether the proposed inference method was still working in other conditions 

than the one intensively explored in the main text, I reproduced similar inferences with 

different species richness in the local community, species pool sizes, regional 

abundances structure and filtering function shapes. In each case, I simulated 100,000 

ABC communities and inferred the parameters of 100 out of these 100,000 

communities. I computed the correlation coefficient R² between simulated and inferred 

parameters values with the function “rlm” in the package “MASS” of the R software, 

excluding the outliers with the arbitrary criterion “outliers = points with a weight in the 

robust regression below 0.5”. This arbitrary criterion was found visually to select 

accurately the outliers in the present case. An additional analysis was performed without 

constraint on local species richness: 1,000,000 ABC communities were simulated 

without constraint on local species richness, and the parameters of 100 out of these 

1,000,000 communities were inferred. These 100 reference communities were randomly 

picked in the 1,000,000 communities. They had local richness ranging from S=11 to 

S=243. 

 

1-Effect of the number of species in the community 

Local species richness equal to 20, 50, and 200 were considered, in addition to the case 

S=100 described in the main text. Uniform prior distributions for parameters h, ln(A), 

and ln(σ) were the same as in the main text (h in [-25;125], ln(A) in [ln(0.1) ; ln(5)], 

ln(σ) in [ln(0.5) ; ln(25)]). Parameter ln(I) had different uniform prior distributions in 

each case, so as to obtain communities with targeted local species richness: for S=20, 

ln(I) was drawn in [0; 4], for S=50, ln(I) was drawn in [1.5; 4.5], for S=200, ln(I) was 
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drawn in [4.5; 6], and when S was not constrained, ln(I) was drawn in [0;7]. R² and 

percentages of outliers were similar in each case, except in the case with lowest S=20, 

where parameter ln(σ) was poorly inferred (Table C1). Hence, the present approach is 

better suited for the analysis of species-rich communities. When S was not constrained, 

R² and percentages of outliers were similar to the results presented in the main text for 

S=100. One can note that R² for parameter ln(I) is higher in this last case. This is due to 

the fact that a wider range of values for ln(I) are examined in this case compared to 

cases with constrained S. 

 

Model 

parameters 

R² 

(without 

outliers) 

S=20 

% of 

outliers 

S=20 

R² 

(without 

outliers) 

S=50 

% of 

outliers 

S=50 

R² 

(without 

outliers) 

S=100 

% of 

outliers 

S=100 

R² 

(without 

outliers) 

S=200 

% of 

outliers 

S=200 

R² (without 

outliers) 

S not 

constrained 

% of 

outliers 

S not 

constrained 

ln(I) 0.28 3 0.65 0 0.65 1 0.65 1 0.97 2 

h 0.99 7 0.99 9 0.99 17 0.96 26 0.99 17 

ln(A) 0.76 10 0.84 10 0.73 8 0.87 6 0.81 10 

ln(σ) 0.33 4 0.61 3 0.82 9 0.54 4 0.68 14 

Table C1. R² and percentages of outliers for different local species richness (S). 

 

2-Effect of the number of species in the regional pool 

Species pool sizes equal to 300 and 3,000 were considered. The species were still 

regularly distributed on the trait axis. In the robust regressions between simulated and 

inferred parameters values, R² and percentages of outliers were similar in each case 

(Table C2). Thus species pool size does not seem to influence much the results. 

 

Model 

parameters 

R² 

(without 

outliers) 

Stot=1000 

% of 

outliers 

Stot=1000 

R² 

(without 

outliers) 

Stot=300 

% of 

outliers 

Stot=300 

R² 

(without 

outliers) 

Stot=3000 

% of 

outliers 

Stot=3000 

ln(I) 0.65 1 0.67 3 0.65 1 

h 0.99 17 0.99 11 0.98 4 

ln(A) 0.73 8 0.61 9 0.76 7 

ln(σ) 0.82 9 0.80 11 0.76 8 

Table C2. R² and percentages of outliers for different species pool sizes (Stot). 
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3-Effect of the structure in regional abundances 

In the main text, the species pool has a size of 1000 species with equal regional 

abundances. Here, for the same species pool size, I considered two additional cases. In 

both cases, the regional abundances were generated with the use of a Fisher logseries 

with parameter α equal to 200 using the function “fisher.ecosystem” of the R package 

“untb”. In the first case, regional abundances were randomly attributed to each species, 

independently of their traits, while in the second case, species regional abundances were 

not independent of species traits: I picked at random a position in the trait space, and 

then placed the species around this trait value in decreasing order of abundances so as to 

form a peak in the trait-regional abundance plot. In the robust regressions between 

simulated and inferred parameters values, R² and percentages of outliers were similar in 

each case, except for the R² of parameter σ in the case where abundances and traits were 

correlated (Table C3). Thus species regional abundances structure does not seem to 

influence much the results. 

 

Model 

parameters 

R² (without 

outliers) 

Equal 

abundances 

% of 

outliers 

Equal 

abundances

R² (without 

outliers) 

Unequal 

abundances

% of 

outliers 

Unequal 

abundances

R² (without 

outliers) 

Unequal 

abundances 

correlated 

with trait 

values 

% of 

outliers 

Unequal 

abundances 

correlated 

with trait 

values 

ln(I) 0.65 1 0.70 3 0.63 1 

h 0.99 17 0.99 9 0.98 19 

ln(A) 0.73 8 0.86 9 0.81 11 

ln(σ) 0.82 9 0.86 16 0.47 3 

Table C3. R² and percentages of outliers for different regional abundances structures. 

 

4-Effect of the shape of the filtering function 

Two additional shapes of filtering function were considered: rectangular and triangular 

functions (Fig. C1). In the robust regressions between simulated and inferred parameters 
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values, R² were similar in each case, but there were more outliers in the rectangular and 

triangular cases than in the Gaussian case treated in the main text (Table C4). A possible 

explanation for this is that the summary statistics used might perform less well for other 

shapes of filtering functions. For such other shapes, other summary statistics may be 

more adapted. Anyway, the method presented in this article is still working honorably 

for these alternative shapes of filtering function. 

 

 

Fig. C1. Panel a: rectangular filtering function. Panel b: triangular filtering function. 

 

Model 

parameters 

R² 

(without 

outliers) 

Gaussian 

function 

% of 

outliers 

Gaussian 

function 

R² (without 

outliers) 

Rectangular 

function 

% of 

outliersa
 

Rectangular 

function 

R² 

(without 

outliers) 

Triangular 

function 

% of 

outliersa
 

Triangular 

function 

ln(I) 0.65 1 0.92 16 0.87 9 

H 0.99 17 0.89 36 0.59 19 

ln(A) 0.73 8 0.91 27 0.91 30 

ln(σ) 0.82 9 0.51 13 0.77 24 

Table C4. R² and percentages of outliers for different shapes of filtering function. 

a
 For rectangular and triangular functions, the criterion for deciding that a point was an 

outlier was modified in “outliers = points with a weight in the robust regression below 

1” since the former criterion was not picking all the visually-detected outliers. 

 

B/Test of environmental filtering at the individual level 

The robustness of the results presented in the main text was assessed with different 
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values of local species richness and regional species richness, and with different 

regional abundance structures and shapes of the environmental filtering functions. For 

each situation, the neutral reference consisted in 1000 simulations with flat filtering 

functions, and the same values of local and regional species richness, together with the 

same regional abundance structure. I compared the value of four summary statistics 

among neutral and filtered communities: Shannon’s index H, the range of trait values in 

the local community Range, the range of trait values in the 5 locally most abundant 

species Range5, and the variance of trait values among individuals VTV. I then 

compared the relative power of tests of environmental filtering based either on the 

distribution of a trait at the species level using Cornwell et al. (2006)'s method (ie the 

summary statistics Range), or on the distribution of a trait at the individual level using 

either VTV or Range5 (see also Villéger et al. 2008 for other approaches), or on the 

species abundances evenness via Shannon's index H (without trait information).  

 

1-Effect of the number of species in the community 

Three additional values of local species richness were considered: S=20, 50, and 200. 

1000 neutral communities were simulated with parameter ln(I) randomly drawn in [0 ; 

4] for S=20 (resp. [1.5 ; 4.5] for S=50, and [4.5 ; 6] for S=200). 1000 filtered 

communities were simulated with the same prior for ln(I) as in neutral communities, 

and with h equal to 25, ln(A) in [ln(0.1) ; ln(5)], and ln(σ) in [ln(0.5) ; ln(25)]. The 

results were similar to those obtained in the main text (Fig. 5), with the statistics Range 

failing to detect environmental filtering, while the use of the three other statistics 

managed to detect it (Fig. C2, C3, C4).  Furthermore, in communities with intermediate 

values of local richness S (S=50, and S=100), environmental filtering was easier to 

detect when of low intensity (ie. low A, and largeσ). 
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Fig. C2. Filtering intensity and detectability of non-neutral patterns – S=20. 

 

Fig. C3. Filtering intensity and detectability of non-neutral patterns – S=50. 
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Fig. C4. Filtering intensity and detectability of non-neutral patterns – S=200. 

 

2-Effect of the number of species in the regional pool 

Two additional values of regional species richness were considered: Stot=300, and 

Stot=3000. 1000 neutral communities were simulated with parameter ln(I) randomly 

drawn in [3 ; 5.5] for Stot=300 (resp. [3 ; 5] for Stot=3000). 1000 filtered communities 

were simulated with the same prior for ln(I) as in neutral communities, and with h equal 

to 25, ln(A) in [ln(0.1) ; ln(5)], and ln(σ) in [ln(0.5) ; ln(25)]. The results were similar to 

those obtained in the main text (Fig. 5), with the statistics Range failing to detect 

environmental filtering, while the use of the three other statistics managed to detect it 

(Fig. C5, C6). Range5 was a little less efficient for Stot=300, while the effect of Stot on 

the performance of the three other statistics for detecting environmental filtering was 

very small. 
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Fig. C5. Filtering intensity and detectability of non-neutral patterns – Stot=300. 

 

Fig. C6. Filtering intensity and detectability of non-neutral patterns – Stot=3000. 
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3-Effect of the structure in regional abundances 

In the main text, regional abundances are all equal. Two additional cases were 

considered. In both cases, regional richness was equal to 1000, and the regional 

abundances were generated with the use of a Fisher logseries with parameter α equal to 

200 using the function “fisher.ecosystem” of the R package “untb”. In the first case, 

regional abundances were randomly attributed to each species, independently of their 

traits, while in the second case, species regional abundances were not independent of 

species traits: I picked at random a position in the trait space, and then placed the 

species around this trait value in decreasing order of abundances so as to form a peak in 

the trait-regional abundance plot. 1000 neutral communities were simulated with 

parameter ln(I) randomly drawn in [3.5 ; 5.5]. 1000 filtered communities were 

simulated with the same prior for ln(I) as in neutral communities, and with h equal to 

25, ln(A) in [ln(0.1) ; ln(5)], and ln(σ) in [ln(0.5) ; ln(25)]. When regional abundances 

were uncorrelated with trait values, the results were similar to those obtained in the 

main text (Fig. 5), with the statistics Range failing to detect environmental filtering, 

while the use of the three other statistics managed to detect it (Fig. C7). When regional 

abundances were correlated with trait values, different results were obtained (Fig. C8). 

In the case studied, regional abundances were maximal for trait values equal to 90, 

while environmental filtering was favoring species with trait values equal to 25. Hence, 

immigration from the regional pool and environmental filtering were favoring species 

with different trait values. In this case, it was only possible to detect environmental 

filtering with the use of H or VTV: in the parameter space situated at the right of the 

black line, H (resp. VTV) was smaller (resp. larger) in filtered communities than in 

neutral communities (Fig. C8). 
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Fig. C7. Filtering intensity and detectability of non-neutral patterns – Unequal regional 

abundances, not correlated with trait values. 

 

Fig. C8. Filtering intensity and detectability of non-neutral patterns – Unequal regional 
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abundances, correlated with trait values (maximal regional abundance for trait value 

equal to 90). 

 

4-Effect of the shape of the filtering function 

Two other shapes of environmental filtering functions (rectangular and triangular) were 

used (Fig. C1). 1000 neutral communities were simulated with parameter ln(I) randomly 

drawn in [3 ; 5]. 1000 filtered communities were simulated with the same prior for ln(I) 

as in neutral communities, and with h equal to 25, ln(A) in [ln(0.1) ; ln(5)], and ln(σ) in 

[ln(0.5) ; ln(25)]. The results were similar to those obtained in the main text (Fig. 5), 

with the statistics Range failing to detect environmental filtering, while the use of the 

three other statistics managed to detect it (Fig. C9, C10). 

 

 

Fig. C9. Filtering shape and detectability of non-neutral patterns – Rectangular 

functions. 
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Fig. C10. Filtering shape and detectability of non-neutral patterns – Triangular 

functions. 

 




