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Optimization of Control Strategies for Epidemics in Heterogeneous Populations
with Symmetric and Asymmetric Transmission

Martial L. Ndeffo Mbah∗,a, Christopher A. Gilligana

aDepartment of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom. Tel: +44(0)1223 330229; Fax:
+44 (0)1223-333953

Abstract

There is growing interest in incorporating economic factors into epidemiological models in order to identify optimal
strategies for disease control when resources are limited. In this paper we consider how to optimize the control of a
pathogen that is capable of infecting multiple hosts with different rates of transmission within and between species.
Our objective is to find control strategies that maximize the discounted number of healthy individuals. We consider
two classes of host-pathogen system, comprising two host species and a common pathogen, one with asymmetrical
and the other with symmetrical transmission rates, applicable to a wide range of SI (susceptible-infected) epidemics
of plant and animal pathogens. We motivate the analyses with an example of sudden oak death in California coastal
forests, caused by Phytophthora ramorum, in communities dominated by bay laurel (Umbellularia californica) and
tanoak (Lithocarpus densiflorus). We show for the asymmetric case that it is optimal to give priority in treating
disease to the more infectious species, and to treat the other species only when there are resources left over. For the
symmetric case, we show that although a switching strategy is an optimum, in which preference is first given to the
species with the lower level of susceptibles and then to the species with the higher level of susceptibles, a simpler
strategy that favours treatment of infected hosts for the more susceptible species is a robust alternative for practical
application when the optimal switching time is unknown. Finally, since transmission rates are notoriously difficult
to estimate, we analyze the robustness of the strategies when the true state with respect to symmetry or otherwise is
unknown but one or other is assumed.

Key words: epidemiological modeling, economic modeling, control theory, species coexistence

1. Introduction

Many plant and animal pathogens can infect more
than one host species. Amongst diseases of contempo-
rary interest that can spread in this way, are sudden oak
death in plant communities (Rizzo et al., 2002; Rizzo
and Garbelotto, 2003), foot and mouth disease (Fer-
guson et al., 2001; Keeling et al., 2001), blue-tongue
virus in livestock (Bethan et al., 2005), and bird in-
fluenza that can spread between wild and domestic birds
with a risk to humans (Alexander, 2000). The spread
of disease in each case can be viewed as a series of
coupled epidemics on sub-populations of each species,
with occasional, or sometimes frequent, transmission
of infection between species. It follows that targeting
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control of infection (and hence disease) on one of the
host species influences the infection pressure and dis-
ease risk for the other species. Host species may dif-
fer in susceptibility to the pathogen, in amenability and
cost of control, or in intrinsic value. The question natu-
rally arises of how best to deploy resources for disease
control, especially when resources are limited. Here,
we address the problem using a combination of eco-
nomic control theory (Goldman and Lightwood, 2002;
Rowthorn, 2006; Forster and Gilligan, 2007) in combi-
nation with a metapopulation framework for disease dy-
namics (Hanski, 1998; Park et al., 2003). The metapop-
ulation framework is a convenient devise to separate
each host species into a sub-population with coupled
epidemics between sub-populations. We motivate the
problem for the control of sudden oak death caused
by the Oomycete, Phytophthora ramorum, a fungal-
like organism, that is mainly transmitted by rain splash.
The pathogen has a wide host range and is currently
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spreading rapidly through coastal regions of California
(Rizzo et al., 2002, 2005). Here we focus initially on
spread through communities dominated by two major
host species with asymmetrical transmission between
bay laurel (Umbellularia californica) and tanaok (Litho-
carpus densiflorus) (Maloney et al., 2005).
Rowthorn et al. (2009) recently analysed optimal

strategies for the deployment of disease control on a
single host species comprising two or more spatially-
separated sub-populations in which infected individ-
uals recover and can be reinfected. This form of
SIS (Susceptible-Infected-Susceptible) model is com-
monly used to describe some sexually-transmitted dis-
eases such as gonorrhea. Rowthorn et al. (2009) re-
vealed a counter-intuitive result for the SIS type of dis-
ease in which giving preference to the sub-population
with the higher level of infection is the worst strat-
egy for diseases of the SIS form. The optimal strat-
egy instead involved giving preference to the species
with the lower level of infected individuals and hence
the higher level of susceptibles. What should happen
in an SI (Susceptible-Infected) system typical of sud-
den oak death and many other plant and animal dis-
eases hosts in which hosts do not recover but new sus-
ceptible hosts arise by reproduction and transmission
rates within species differ? To answer this, we consider
whether or not preference should be given to treating
the species with the higher transmission rate, and show
that it is possible to identify an analytical solution for
the optimal strategy. Many epidemics, including those
of sudden oak death, involve cryptic spread of infection
from hosts that are infected prior to spread. Additional
realism is conferred to the analysis by the introduction
of a threshold for detection of visible symptoms of dis-
ease.
The differential transmission rates for P. ramorum

for bay laurel and tanoak, and several other species
(Meentemeyer et al., 2004), can be inferred from sim-
ple pathology experiments. The relative transmission
rates may not be known in advance for some emerging
epidemics prior to the implementation of control strate-
gies. Accordingly, we generalize the methods for asym-
metric transmission to consider a two-species model for
SI epidemics with births of susceptibles, in which there
is symmetrical transmission of infection between host
species. The additional analysis serves two purposes.
Firstly, it provides a lower bound to the (zero) differ-
ence between transmission rates from which it is possi-
ble to test the consistency of the results for asymmetri-
cal and symmetrical transmission. Secondly, it allows
a test of the robustness of the optimal control strategies
when transmission rates are erroneously assumed to be

asymmetric when in fact they are not, and vice versa.

2. Methods

2.1. The model
We consider a community comprising two suscep-

tible species with a pathogen that can infect both
hosts. The model is motivated and parameterized for
the spread of sudden oak death through mixed species
stands of bay laurel and tanoak, in which there is asym-
metrical transmission of infection between species. Pa-
rameterization (Table 1) was derived from Meente-
meyer et al. (2004). The model is then generalized to
consider what happens when there is symmetrical in-
fection between the two host species. The disease dy-
namics on each species are described by a simple SI
compartmental model, in which the vital dynamics and
natural competition between host species are taken into
consideration. Disease dynamics in the absence of con-
trol are described by the following set of differential
equations:

Ṡ 1 = g1 − β11S 1I1 − β21S 1I2 − d1S 1
İ1 = β11S 1I1 + β21S 1I2 − μ1I1 − d1I1 (1)

Ṡ 2 = g2 − β22S 2I2 − β12S 2I1 − d2S 2
İ2 = β22S 2I2 + β12S 2I1 − μ2I2 − d2I2 (2)

in which i = 1, 2 denotes species 1 and species 2, re-
spectively. The host dynamics are characterised by a
recruitment function (gi) and a death rate (di) for each
species. For the sake of simplicity, we characterise
the recruitment function with a simple monomolecular
form,

gi(S 1, I1, S 2, I2) = bi(κ − S 1 − I1 − S 2 − I2),

where κ is the carrying capacity, bi is the rate of recruit-
ment of species i, and all trees are assumed to exhibit
equivalent competitive effects irrespective of species or
disease status (Holt and Pickering, 1985; Preedy et al.,
2007; Borer et al., 2007). However, the results of the
optimization problem remain unchanged for the use of
more complex growth functions such a logistic function.
We also assume identical death rates for each species,
d1 = d2, without loss of generality. The pathogen is
characterised by transmission rates within (β11, β22) and
between (β12, β21) species, with different infectious pe-
riods 1/μi on each species.
Control is introduced by culling of infected individ-

uals. Only those individuals that have been detected as
infected elicit culling and so control is introduced in the
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model by adding the term −α fiIi to the infection term
of Eq. 1 and Eq. 2 in which α reflects the rate of detec-
tion of infected individuals and fi is the proportion of
detected individuals that is culled in species i (i = 1, 2).

2.2. Optimal Control

We assume that expenditure on control is subject to a
budget constraint cα ( f1I1 + f2I2) ≤ M, where c is the
cost of culling per detected infected individual, and M
is the expenditure limit. This constraint encompasses
the amount of logistic and human resources at the point
of infection. We also assume that finance is not trans-
ferable through time, so that money which is not spent
immediately cannot be saved for future use. If there
are sufficient resources, all detected individuals will be
culled. Otherwise, resources are allocated so as to max-
imize the total utility attached to healthy individuals of
both species over time. Therefore, we choose f1 and f2
in order to maximize the following integral,

J =
∫ ∞

0
e−rt(p1S 1 + p2S 2)dt. (3)

by optimizing the current value of the Hamiltonian
(Pinch, 1993; Seierstad and Sydsaeter, 1986) for the dis-
ease dynamics equations subject to the constraints of the
epidemiological and economic system. Here, we denote
respectively by p1 and p2 the intrinsic value attached to
a healthy individual of species 1 and 2: r is the discount
rate. The discount rate represents the rate the policy-
maker is willing to pay to trade-off the value of control-
ling today against the ensuing cost of increased infec-
tion in the future (measured by loss of healthy individ-
uals) (Dixit and Pindyck, 1994). Here we assume the
p1 and p2 are of order one, i.e. that the intrinsic values
of healthy individuals of each species are similar. We
also assume that the total populations of each species
are initially of similar size.
We investigate the optimal culling strategies for two

scenarios that differ in reciprocal transmission rates be-
tween species in mixed, two-species populations. In the
first scenario, we assume asymmetric rates of transmis-
sion in which species 1 is the one mainly driving the
epidemic. Accordingly: β11 > β12 ≥ β22 and β11 ≥ β21.
Moreover, we also assume that μ2 ≥ μ1, consistent with
a positive correlation between transmissibility and in-
fectious period. This positive correlation can be ob-
served in many natural systems such as the spread of
P. ramorum in bay laurel-tanoak communities (Meen-
temeyer et al., 2004), and that of foot-and-mouth dis-
ease between dairy cattle and sheep (Orsel et al., 2009).
In the second scenario, we assume that the model is

symmetric with respect to the disease dynamics, so that
β11 = β22 and β12 = β21, with β11 > β12. In the symmet-
ric case, the condition β11 > β12 implies that infection in
each species is mainly the result of intra-species rather
than cross-species infection.

2.3. Optimization
Our objective is to maximize the discounted utilities

of healthy (i.e. susceptible) individuals (Eq. 3) subject
to the disease dynamics equations and the constraint,

((S 1, I1, S 2, I2), ( f1, f2)) ∈ A(t) ∀ t ≥ 0,

where

A = {(x, y) ∈ R
4
+ × [0, 1]

2 : ifα (x2 + x4) ≤ M/c,
y1 = y2 = 1; otherwise α (y1x2 + y2x4) = M/c}.

The above constraint implies that all detected individu-
als will be culled as long as there are resources available
to do so. Hence, if α (I1 + I2) ≤ M/c, then f1 = f2 = 1
and it is optimal to remove all detected individuals.
The main challenge is to find the trajectory for op-

timal control strategies when there is insufficient re-
source to remove all detected individuals. We denote
by B = {(S 1, I1, S 2, I2) : α(I1 + I2) ≤ M/c} the region
within which all detected individuals can be culled. In
other words, so long as the total level of infection in the
community is within B, there are enough resources to
cull every single individual that is detected as infected.
If the following condition for detection of visible symp-
toms of disease is satisfied,

β11S ∗1 + β12S
∗
2

μ1 + d1 + α
≤ 1 (4)

(where (S ∗1 and S
∗
2) are the pathogen-free equilibrium

densities of the susceptible hosts), it is possible to bring
the epidemic under control and eliminate the pathogen
[see Supporting information, Appendix A]. Under this
boundary condition of B, any path that enters Bmust re-
main permanently within the set. The criterion is analo-
gous to the epidemic reproductive criterion, R0 (Ander-
son and May, 1979; Van den Driessche and Watmough,
2002) and is a necessary but not sufficient criterion to
prevent invasion of an epidemic.
We now consider two cases in which the efficiency of

detection is set so that α either does or does not satisfy
the condition Eq. 4. When α satisfies the condition (cf
Eq. 4), the pathogen may be eliminated and all admis-
sible paths fall into two categories: those that never en-
ter region B, and those that enter this region and never
leave it again [see Supporting information, Appendix
A]. When α does not satisfy Eq. 4 the disease may not
be eliminated.
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2.4. First Case: α satisfies Eq. 4
The current value of the Hamiltonian (Pinch, 1993) is

given by:

H = e−rt (p1S 1 + p2S 2) + m1Ṡ 1
+m2 İ1 + m3Ṡ 2 + m4 İ2

(5)

where mi are the costate variables. We are only inter-
ested in the case where α (I1 + I2) ≥ M/c, and since
α f1I1 = M/c − α f2I2 under this condition, the Hamilto-
nian can be written as

H = e−rt (p1S 1 + p2S 2) + m1
(
b1(κ − S 1 − I1

−S 2 − I2) − d1S 1 − β11S 1I1 − β21S 1I2
)

+m2
(
β11S 1I1 + β21S 1I2 − d1I1 − μ1I1 − (M/c

−α f2I2)
)
+ m3
(
b2(κ − S 2 − I2 − S 1 − I1) − d2S 2

−β12S 2I1 − β22S 2I2
)
+ m4
(
β12S 2I1

+β22S 2I2 − d2I2 − μ2I2 − α f2I2
)

f2 (and hence f1) has to be chosen so as to maximize
the Hamiltonian (Seierstad and Sydsaeter, 1986). Max-
imization yields the following result:

Ifm2 − m4 > 0 then f2 = min(1,M/cαI2)
and α f1I1 = M/c − α f2I2,

(6)
Ifm2 − m4 < 0 then f1 = min(1,M/cαI1)

and α f2I2 = M/c − α f1I1.

And it must be the case that

ṁi = −
∂H
∂xi
, (7)

where xi is the state variable corresponding to mi.

2.5. Interior solution
We suppose that there exists an allowable path that

satisfies the above maximal conditions on the Hamilto-
nian, and for which there exists an open interval where
we have m2 = m4. By differentiating m2 − m4 over that
open interval, we obtain

ṁ2 − ṁ4 = (m1 − m2)(β11 − β21)S 1 − m2μ2 (8)
+m2μ1 + (m3 − m4)(β12 − β22)S 2

= 0.

From an economical view point, the co-state variables
can be interpreted as shadow prices. The variablesmi in-
dicate respectively the marginal benefit to society of in-
creasing by one unit the stock of the corresponding state
variable (Behncke, 2000; Dorfman, 1969; Rowthorn

and Brown, 2003). Because infection is harmful, and
increasing the stock of infected individuals decreases
the stock of susceptibles, the shadow prices m2 and
m4 must be negative. −mj ( j = 2, 4) represent the
amount that society is willing to invest for control, that
would result in reducing the stock of infected individ-
uals by one unit respectively in the first and second
species. The shadow prices m1 and m3 must be posi-
tive. (m1 − m2) ≥ 0, (m3 − m4) ≥ 0 and − m2 ≥ 0.

2.6. Asymmetric case
Here, we assume that the dynamics of infection in the

community are mainly driven by the first species and
β11 > β12 ≥ β22 and β11 ≥ β21. From the previous sec-
tion on interior solutions, if μ2 ≥ μ1 (cf Eq. 8), then the
sign of m2 −m4 is either constant or switches only once
from negative to positive. Therefore according to the
maximal condition on the Hamiltonian given by Eq. 6,
whenever α(I1 + I2) > M/c, the optimal culling strategy
is one of the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

High β strategy:
f1 = min(1,M/cαI1); α f2I2 = M/c − α f1I1.

Low β strategy:
f2 = min(1,M/cαI2); α f1I1 = M/c − α f2I2.

Switching high to low β strategy:
with a single switch from implementing
the high β strategy to implementing
the low β strategy.

2.7. Symmetric case
Here we assume that the dynamics of infection are

equally driven by both species (i.e. β11 = β22, β12 = β21
and μ1 = μ2). From Eq. 8 and the economical interpre-
tation of costate variables as shadow prices, we easily
show that if an interior solution exists it will satisfy at
least one of the following condition on the open interval
[see Supporting information]:

If S 1 = S 2 on the interval, then (9)
α f1I1 = α f2I2 = M/2c,

If S i > S j on the interval, then
f j = min(1,M/cαI j) and (10)

α fiIi = M/c − α f jI j, with i, j = 1, 2.

We assume that adding infecteds to the species with the
higher level of susceptibles is more harmful to the sys-
tem than adding infecteds to the species with lower level
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of susceptibles. Such an assumption can be justified by
the fact that the rate of infection within is greater than
the rate between species. Increasing the amount of in-
fected individuals in the species with the higher level
of susceptibles will surely generate more infection than
the same increase in the other species. Therefore, the
following equation satisfies Eq. 6,

If S j > S i then f j = min(1,M/cαI j)
α fiIi = M/c − α f jI j. (11)

Accordinglywe derive the following strategies as candi-
dates for optimality, in addition to the reciprocal switch-
ing strategies from one to the other:

1. give priority to the species with higher level of sus-
ceptibles;

2. give priority to the species with lower level of sus-
ceptibles.

2.8. Second Case: α does not satisfy Eq. 4

Now we assume that α does not satisfy Eq. 4. Under
this condition, it is not possible to prove that if an ad-
missible path enters region B it will never leave again.
Because of the difficulty in undertaking any analytical
investigation, we rely on numerical simulation to gain
some insights on the optimal strategy of control. For the
Asymmetric case, using the same method as described
in the First Case, it is evident that on every interval on
which an admissible solution enters region B just once,
the optimal strategy of control is one of those obtained
when Eq. 4 is satisfied. For the symmetric case, we
compare the strategies which were derived for α satis-
fying Eq. 4.

2.9. Numerical test

Simulations were done for different initial levels of
infection. We used a large set of initial conditions to
test the robustness of the ranking of control strategies.
To build the set of initial condition, we consider two sce-
narios. Firstly, we assume a disease outbreak starts on
one of the species with a very small proportion of indi-
viduals being infected. We run the epidemic until equi-
librium, and record the values of the state of the system
at 50 different points in time so as to span the trajectory
of the epidemic. we use these to build a 50×50 array of
initial conditions. Secondly, we assume that the disease
outbreak starts simultaneously on both species with an
equal level of infection. We repeat the same process as
above, and build another 50 × 50 array of initial condi-
tions [see Supporting information for more details].

3. Results

3.1. Asymmetric case
When there are more detected individuals than can be

culled, a systematic analysis shows that there are only
three candidates for optimality:

1. ‘High β strategy’: give priority to the species with
the higher transmission rate;

2. ‘Low β strategy’: give priority to the species with
the lower transmission rate;

3. ‘Switch high to low β strategy’: a single switch
from giving priority to species with the higher
transmission rate to giving priority to the species
with the lower transmission rate.

Numerical simulation shows that the ‘High β strategy’
outperforms the other two strategies (Figure 1).

3.2. Symmetric case
Here we assume equality of the rates of infections

thus β11 = β22 and β12 = β21. Without loss of gener-
ality, we also assume that β11 > β12 and that μ1 = μ2.
Regardless of the value of α, we were able to derive an-
alytically four candidates for optimality:

1. ‘High susceptibles strategy’: give priority to the
species with the higher level of susceptibles;

2. ‘Low susceptibles strategy’: give priority to the
species with the lower level of susceptibles;

3. ‘Single switch from high to low susceptibles strat-
egy’: single switch from giving priority to the
species with the higher level of susceptibles to giv-
ing priority to the species with the lower level of
susceptibles;

4. ‘Single switch from low to high susceptibles strat-
egy’: single switch from giving priority to the
species with the lower level of susceptibles to giv-
ing priority to the species with the higher level of
susceptibles.

Following the analysis of an SIS model by Rowthorn et
al. (2009) we also added the following two strategies

5. ‘Low infectives strategy’: give priority to the
species with the lower level of infection;

6. ‘High infectives strategy’: give priority to the
species with the higher level of infection.

By giving priority, it means that resources for control
are used preferentially to treat (i.e. to cull detected
individuals) on the target species (e.g. the one with
the higher level of susceptibles): only when there are
resources left over, are detected individuals from the

5
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other species treated. We note that the ‘low susceptible
strategy’ effectively results in equalizing the levels of
susceptibles of both species, while the ‘high infectives
strategy’ effectively results in equalizing the levels of
infectives of both species. Switching strategies involve
fixed but a priori unknown switching times.
Using a range of values to explore parameter space,

simulations show that the ‘single switch from low to
high susceptibles strategy’ always outperforms the other
five candidates for optimality. Although it was not pos-
sible to prove this analytically, extensive numerical sim-
ulation supports the hypothesis [see Supporting infor-
mation, Appendix B].
Further numerical exploration identified two classes

of solution; one in which the optimal switching time
occurs when control is initiated, the other, accounting
for only ∼ 10% of the range of initial conditions, oc-
curs at some later time. It follows that, since the opti-
mal switching occurs at time zero, the optimal switching
strategy is equivalent to the ‘high susceptibles strategy’
(cf Case 1 in Figure 2) for the majority of initial condi-
tions.

4. Conclusions and discussion

We have used a simple SI two-species model with
vital host dynamics to describe an epidemic spreading
through a mixed two-species stand of host plants that
are susceptible to a common pathogen. For simplic-
ity, the vital dynamics of the species are described by
a simple monomolecular-type function to limit the to-
tal population size. Our results, however, hold for more
complex functions such as a logistic function and in-
corporating Lotka-Volterra competition to describe the
intrinsic host dynamics. Our investigation was done for
two different conditions involving asymmetric and sym-
metric scenarios in the dynamics of transmission be-
tween the two species. Assuming that resources avail-
able for the control of disease outbreaks are limited, we
first identify a simple epidemiological threshold for in-
vasion of the pathogen that incorporates α, the rate of
detection of infected individuals. Below this threshold
there are sufficient resources to control all infected indi-
viduals. Above the threshold, we seek to identify opti-
mal strategies for the deployment of control when there
are not enough resources to treat all infected individu-
als. The asymmetric scenario is motivated by contem-
porary concerns for the control of sudden oak death in
bay laurel - tanoak communities, an example of a devas-
tating disease of natural communities (Rizzo and Garbe-
lotto, 2003). It also allows rigorous analysis to identify
the optimal culling strategy when resources for control

are limited. The symmetrical scenario generalises to SI
epidemics of plant and animal pathogens in which the
transmission rates are similar on different hosts and sus-
ceptible hosts are replenished by births.
We were able to find an optimum solution for both

the asymmetric and symmetric scenarios when the de-
tection rate, α, is chosen to satisfy condition Eq. 4,
whereby it is possible to bring the epidemic under con-
trol and eliminate the pathogen. For the asymmetric
scenario, we have shown that it is optimal to give pri-
ority to the more infectious species. In the symmet-
ric case, an optimum solution ordinarily consists of a
single switch strategy in which priority is first given
to the species with the lower level of susceptibles be-
fore switching at a critical switching time to give pri-
ority to the species with the higher level of suscepti-
bles. The switching time is critical in implementing this
optimum control strategy. Even though our numerical
results show that the switching time frequently occurs
when control begins, the optimal switching time cannot
usually be determined in advance (Forster and Gilligan,
2007), in common with many optimal solutions for dis-
ease control (Behncke, 2000; Greenhalgh, 1988; Mor-
ton and Wickwire, 1974). Implementing a switching
strategy is always subject to the risk of missing the opti-
mal switching time, with the result, confirmed here, that
the switching strategy then fails to outperform simpler
alternative, if non-optimal, strategies. Our results show
that giving priority to the species with more suscepti-
bles is always the second best strategy for the symmet-
ric case (cf Figure 2). We conclude that though this may
be sub-optimal it is is the most robust control strategy
for practical implementation. It is tempting to suppose
that further analysis of epidemics arising from differ-
ent initial conditions would identify conditions for the
switching time to correspond with the onset of control.
In practice, this is difficult because it involves explor-
ing four-dimensional space for the state variables, with
the additional complexities of births and deaths. Further
progress may, however, be made for a simplified model.
When α does not satisfy Eq. 4, analytical investiga-

tion is not possible because of the complexity of the
long term behavior of the trajectories of disease prop-
agation. Numerical results show that giving priority to
the more infectious (high β) species is optimal. We were
unable to establish an unequivocal result for the sym-
metric case but again numerical simulation shows that
the single switch strategy (from targeting low to high
susceptible sub-populations) is locally optimum. Once
again, following extensive numerical investigation we
showed the sensitivity of the optimal strategy to errors
in the switching time, and the robustness of adopting the

6



Acc
ep

te
d m

an
usc

rip
t 

next best alternative (the ‘high susceptibles strategy’)
when, as would usually be the case, the switching time
is not known.
Our models assume some knowledge of the system

and in particular the relative magnitude of the trans-
mission rates for each species. We now consider what
should be done if the relative transmission rates are not
known before control is implemented (Table 2) Suppose
that we assume the system to be symmetric when it is
indeed asymmetric. The analyses suggest that for a ro-
bust strategy, the ‘high susceptibles strategy’ ought to
be preferred. The outcome depends upon two factors,
the initial conditions (which sub-population is infected
first) and the conditions at the time control is initiated
(which sub-population has the higher level of suscepti-
bles) (Table 2). If infection started in the high β species,
the ‘high susceptibles strategy’ is equivalent to the ‘low
β strategy’ and hence is the worst strategy.
The error is modified when infection is initiated in

the low β species, and depends upon the state of sys-
tem when control is started (Table 2). If the level of
susceptibles is greater in the low β species when con-
trol is initiated, the ‘high susceptibles strategy’ remains
the worst policy. The result is transformed, however,
to the best (i.e. optimal) policy when the condition is
reversed and there are more susceptibles available for
infection in the high β species. The corresponding so-
lutions when the transmission rates are assumed to be
asymmetric are also summarised in Table 2. We con-
clude that prior knowledge of the relative magnitudes
for transmission rates in metapopulations are essential
to avoid serious errors in implementing policies based
upon optimal control theory.
The optimality of the ‘high β strategy’ for the asym-

metric case is based upon a rather general assumption
β11 > β12. However, numerical simulation shows that
if β12 > β11, the ‘switch high to low β strategy’ would
instead be optimal.
In this analysis, we have used the conventional eco-

nomic device of a discount rate to give more weight for
the criterion of optimization to shorter than long-term
control. The choice of the discount rate (r) affects the
relative valuation of the present and future disease. For
different value of r, other than the default value 0.05, the
qualitative nature of our results remain unchanged.
Our models make two important assumptions. The

first concerns the absence of a delay between detec-
tion and culling. This assumption can be easily re-
laxed by adding delays between detection and culling,
and subdividing the infected compartment into two sub-
compartments: infected but not yet detected, and de-
tected. The introduction of a delay increases the number

of states variables. It makes the analysis more volumi-
nous in handling the extra variables, but still tractable.
Our exploratory analyses show that the qualitative na-
ture of the results remains unchanged. One logical
and profitable extension of these analyses would be to
consider the balance between detection and eradication.
The second assumption concerns the way in which the
treatment affects the epidemiological dynamics. While
we use culling as a means of control, our analyses also
hold for treatment of infects, for example by application
of an eradicant pesticide or drug, to shorten the infec-
tious period.
Our results here are established for deterministic sys-

tems using optimal control theory. Methods to incor-
porate uncertainty in our knowledge of the state of the
system will be the subject of a separate investigation.
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Figure 1: Strategies for optimizing control in asymmetric two-species
model. The ’high β strategy’ outperforms the ’low β’ and the ’switch-
ing high to low β’ strategies. The switching strategy is shown for a
range of arbitrarily-selected switching times extending from the onset
of control to the time, (τ = 1)), at which the the combined path for
the disease trajectories enters region B, in which it is possible to treat
all detected individuals (see Methods and Supplementary Information
for details). The value of the control strategy is expressed relative to
the value of the ’high β strategy’). Default parameters are given in
Table 1 with α = 0.25, M = 0.02 and c = 1.

Figure 2: Effect of switching time on the relative performance of the
’single switch from low to high susceptibles strategy’ compared with
the high susceptibles strategy. Two possible classes of solution are
indicated: Class 1, in which the optimal switching time occurs at the
onset of control (denoted by switching time = 0) ; Class 2 in which the
the optimal switching occurs at some later time. The relative perfor-
mance of the switching strategy for each class is shown for a range of
arbitrarily-selected switching times. These extend from the onset of
control to the time, (τ = 1), at which the combined path for the disease
trajectories enters region B, in which it is possible to treat all detected
individuals (see Methods and Supplementary Information for details).
Default parameters are given by Table 1 with α = 0.25, M = 0.02 and
c = 1.
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Table 1: Default parameters used in simulations
Symbol Description Asym� Sym⊥

κ carrying capacity 3 3
bi birth rate (i = 1, 2) 1/100 1/100
di natural death rate (i = 1, 2) 1/100 1/100
β11 rate of infection within species 1 0.2 0.2
β12 rate of infection from species 1 to species 2 0.16 0.1
β22 rate of infection within species 2 0.14 0.2
β21 rate of infection from species 2 to species 1 0.12 0.1
μ1

−1 infection period of species 1 1/80 1/5
μ2

−1 infection period of species 2 1/5 1/5
p1 utility of species 1 per individual/time 1 1
p2 utility of species 2 per individual/time 1 1
r discount rate 0.05 0.05

�Asymmetric
⊥Symmetric
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