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Abstract (299 words):  
Considering their extremely complicated and hierarchical structure, a long standing question 
in vascular physio-pathology is how to characterize blood vessels patterns, including which 
parameters to use. Another question is how to define a pertinent taxonomy, with applications 
to normal development and to diagnosis and/or staging of diseases. 
 

To address these issues, fractal analysis has been applied by previous investigators to a large 
variety of healthy or pathologic vascular networks whose fractal dimensions have been 
sought. A review of the results obtained on healthy vascular networks first shows that no 
consensus has emerged about whether normal networks must be considered as fractals or not.  
 

Based on a review of previous theoretical work on vascular morphogenesis, we argue that 
these divergences are the signature of a two-step morphogenesis process, where vascular 
networks form via progressive penetration of arterial and venous quasi-fractal arborescences 
into a pre-existing homogeneous capillary mesh. Adopting this perspective, we study the 
multi-scale behavior of generic patterns (model structures constructed as the superposition of 
homogeneous meshes and quasi-fractal trees) and of healthy intracortical networks in order to 
determine the artifactual and true components of their multi-scale behavior. We demonstrate 
that, at least in the brain, healthy vascular structures are a superposition of two components: at 
low scale, a mesh-like capillary component which becomes homogeneous and space-filling 
over a cut-off length of order of its characteristic length; at larger scale, quasi-fractal branched 
(tree-like) structures. Such complex structures are consistent with all previous studies on the 
multi-scale behavior of vascular structures at different scales, resolving the apparent 
contradiction about their fractal nature.  
 

Consequences regarding the way fractal analysis of vascular networks should be conducted to 
provide meaningful results are presented. Finally, consequences for vascular morphogenesis 
or hemodynamics are discussed, as well as implications in case of pathological conditions, 
such as cancer. 
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1. INTRODUCTION 
 
The main function of the blood vascular system in higher vertebrates is to transport 

oxygen and nutrients to every cell in the peripheral tissue. For that purpose, the vascular 
system is comprised of three distinct compartments:  

- the arteries, which carry blood away from the heart through a divergent 
arborescence;  

- the capillaries, where oxygen and nutrient delivery from blood to tissues, as well as 
metabolic waste removal, occur and which have therefore to supply the entire volume of the 
organism;  

- the veins, which carry blood back to the heart through a convergent arborescence.  
 
Functionally, these compartments are organized in series: blood flow proceeds from 

the upstream arteries to the downstream veins through the capillaries. However, their spatial 
organization is much more complex. First, arterial and venous trees are hierarchical branching 
structures covering a wide range of diameter scales, from centimeters at heart level to tens of 
micrometers at their micro-vascular (arteriolar or veinular) extremities. Second, arterial and 
venous trees interdigitate, with numerous veins observed paralleling the arteries at various 
scales. Third, despite their close proximity in space, arterial and venous trees are not directly 
connected to each other, except in pathological situations. Instead, they are connected by their 
micro-vascular extremities through the capillary network, the smallest vessels of 4-10 µm 
diameters. This part of the vascular network, composed of arterioles, veinules and capillaries, 
is embedded within the organ supplied and is called microcirculation. Fourth, there is a 
marked variability of vascular patterns among organs. Finally, many pathological conditions, 
such as atherosclerosis, cancers, arteriovenous malformations, infections, stroke, 
hypertension, diabetes, obesity and Alzheimer's disease, as well as normal aging, induce 
changes to vessels’ morphology or spatial organization. 

 
Owing to their extremely complicated and hierarchical structure, a long standing 

question in vascular physio-pathology is how to characterize blood vessel patterns, including 
which relevant parameters to use for that purpose. A subsequent question is how to define a 
pertinent taxonomy, with applications to normal growth and development and to diagnosis 
and/or staging of diseases. A further non-resolved problem is to understand how such 
complex structures can morphologically evolve and how the design and function cross-talk 
during development to create the adult vascular architecture. 

 
 To address these issues, fractal analysis has been applied to a large variety of healthy 
or pathologic vascular networks whose fractal dimensions (df) have been sought (Gazit et al. 
1995, Panico & Sterling 1995, Sandau & Kurz 1997, Kirchner et al. 1996, Wilting et al. 1996, 
Vico et al. 1998, Parsons-Wingerter et al. 1998, Bergman & Ullberg 1998, Baish & Jain 2000, 
Herman et al 2001, Arlt 2003, Masters 2004, Gaudio et al. 2005, Cassot et al. 2006, Risser et 
al. 2007). However, from these previous studies, no consensus has emerged about whether 
normal vascular networks must be considered as fractals (at least within a limited range of 
scales, i.e. quasi-fractals1) or not. One of the most recent studies (Risser et al. 2007), 
performed on very large three-dimensional (3D) datasets of healthy (primate and rat) intra-
cortical networks imaged at high resolution, even suggested that their nature is dependent on 
scale, vascular structures being fractal at small scale and homogeneous at large scale. These 
discrepancies shed doubt on the potential of fractal analysis as a quantitative staging/diagnosis 
                                                            
1 Here, the term quasi-fractal denotes an object that shows power-law scaling over a finite range of scales, 
following Halley et al. (2004).  
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tool and induce confusion on the spatial organization and relevant scales of healthy vascular 
structures. In turn, this confusion impairs our understanding of  normal angiogenesis, because 
several scenarios of vascular development are invalidated or, on the contrary, confirmed, 
depending on the real structure of vascular networks. In addition, the relevant approach for 
modeling blood flows and oxygen transfers is highly dependent on the underlying vascular 
architecture. 
 
 The aim of the present paper is to clarify both the spatial organization and scales of  
healthy vascular structures and the potential of fractal analysis in this context by a careful 
mathematical analysis of the significance of fractal dimension estimation in biological 
vascular patterns. Our hypothesis is that, aside from methodological problems (see 
Hamburger et al. 1996, Halley et al. (2004) and Russ (1994)), the lack of consensus on the 
fractal nature of healthy vascular structures is rooted in their morphogenesis, which proceeds 
in two successive steps, as described in a series of theoretical papers (Fleury & Schwartz 
1999, 2000, Nguyen et al. 2006). Indeed, according to these authors,  vascular networks form 
via progressive penetration of arterial and venous arborescences into a previously formed 
capillary mesh, by means of a laplacian growth mechanism of hemodynamical origin, 
suggesting that mature vascular structure should be the union of quasi-fractal trees and of a 
homogeneous capillary mesh.  
 
 Adopting this perspective, the multi-scale behavior of two-dimensional (2D) generic 
patterns constructed as the union of quasi-fractal trees and homogeneous meshes is studied, 
demonstrating some unexpected features due to effects of finite spatial scales and effects of 
structure superposition. The same study is also performed for healthy human intra-cortical 
networks (Cassot et al. 2006). However, determining artifactual and true components of the 
multi-scale behavior of such complex (generic and “real-life biological”) structures 
necessitate performing a large number of meticulous tests, leading to a long and somehow 
tedious inspection of the results obtained by various multi-scale tools. Thus, this technical 
part (methods and original results) is presented in Appendix A. 
 
 This paper is organized as follows. In Section 2, the results obtained by fractal analysis 
of healthy vascular networks by previous investigators are reviewed. In Section 3, an 
overview of the morphological development of the vascular system is followed by a review of 
existing vascular branching morphogenesis theoretical models and their predictions regarding 
the mature vascular architecture. In Section 4, based on these theoretical predictions, 2D well 
controlled generic patterns are generated by numerical simulation and the conclusions 
emerging from the study of their multi-scale behavior (as detailed in Appendix A, Section A1) 
are summarized. Section 5 is focused on the multi-scale behavior of healthy intra-cortical 
networks, with additional details available in Appendix A, Section A2. In Section 6, the 
previous results are discussed and a unifying view of the structure of healthy vascular 
networks is proposed. Methodological recommendations regarding the way fractal analysis of 
vascular networks should be conducted in order to provide meaningful results are presented. 
Finally, consequences regarding vascular morphogenesis or hemodynamics are discussed, as 
well as implications in case of pathological conditions. 
 
 
2. FRACTAL ANALYSIS OF HEALTHY VASCULAR NETWORKS: A REVIEW 
 
 Strictly speaking, biological specimens cannot be considered as fractals. Indeed, a true 
random fractal must exhibit statistical scale-invariance over an infinity of length scales. 
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However, the size of the elementary constituents of a biological system (cells) is not very 
different, in orders of magnitudes, from the size of a complete organ or organism. Therefore, a 
biological system can at best be a quasi-fractal, i.e. exhibit scale invariance within a limited 
scale range. In addition, beside these intrinsic scales limitations, it is technically very 
challenging to collect morphometric data on sufficiently large volumes of tissue at high 
resolution (Cassot et al. 2006, Heinzer et al. 2006, Risser et al. 2007). Therefore, almost every 
previous study of the scale-invariant properties of healthy vascular networks is either limited 
to the microvascular end of the vascular network (Gazit et al. 1995, Panico & Sterling 1995, 
Arlt 2003, Gaudio et al. 2005) or to its arterial and/or venous arborescences (Gazit et al. 1995, 
Sandau & Kurz 1997, Kirchner et al. 1996, Wilting et al. 1996, Vico et al. 1998, Parsons-
Wingerter et al. 1998, Bergman & Ullberg 1998, Herman et al 2001, Masters 2004). In the 
latter studies, the spatial resolution is not sufficient to resolve the capillary vessels, which is 
evident while looking at typical images of the vascular networks used for such fractal 
analysis. For example, in Fig. 1(a) of Gazit et al. (1995), the arterial and venous trees 
suddenly stop after a few branching orders, without any connections between them; whereas 
in reality, numerous capillaries, such as those displayed in Fig. 1(b) of the same reference, 
must be present to establish a connection. Consequently, it is not surprising that the fractal 
dimensions (evaluated either by the box-counting, the sand-box algorithms, or by spectral 
approaches, see Appendix A, Section A1) are different in these two categories of studies. For 
a synthetic summary of the 2D box-counting results, see Table 1.  
 
 However, despite the dispersion of the results, some meaningful tendencies can be 
noted. First, all types of quasi-2D vascular networks have been found to be quasi-fractals 
when observed at low resolution (i.e. without resolved capillaries), see Table 1, upper part. 
Second, the fractal dimension is higher at high resolution (see Table 1, lower part). Moreover, 
in three of the four studies focusing on the microcirculatory network, a homogeneous (non-
fractal) behavior (df=2) has been obtained (Gazit et al. 1995, Panico and Sterling 1995, Baish 
and Jain 2001). An identical result has been obtained for the brain microvascular vessels in 
3D, which have been shown to become volume filling (df=3) above a cut-off equals to 96 µm 
(Cassot et al. 2006). From this point of view, the fractal dimension of 1.86 obtained by Arlt et 
al. (2002) in the developing CAM is surprising. However, the cut-offs used for obtaining this 
result are not available, leaving open the possibility of a methodological bias because any 
estimate of df critically depends on the spatial scales used, especially the lower and upper cut-
offs (Berntson and Stoll 1997). 
 
 The quasi-fractal nature of 2D vascular networks at low resolution (large scale) is 
consistent with studies performed on corrosion casts of diverse healthy 3D vascular systems 
(coronary (Kassab (2000) and references therein), pulmonary (Gan et al 1993, Jiang et al. 
1994), hepatic (Hahn et al. 2003)). In these studies, the typical scale range spans from 50 µm 
to organ size and the fractal dimension is derived from the branching and length-order ratios 
in a variant of the “Horton-Strahler” ordering scheme (Turcotte et al. 1998), evidencing their 
quasi-fractal nature. An identical result has also been obtained in the brain arterio-venous 
network, using the same methodology (Cassot et al. 2006).  
 
 From these previous studies, it is thus tempting to conclude that vascular networks are 
quasi-fractal structures at large scale but are homogeneous at low scale, down to some cut-off 
length. This view is consistent with the usual description of vascular structures as the union of 
a “tree-like” distribution network and a “mesh-like” capillary network (West et al. 1999, 
Kassab 2000, Cassot et al. 2006). However, it is in complete contradiction with the 
conclusions of a recent study (Risser et al. 2007) performed on very large (tens of cubic 
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millimeters) 3D datasets of healthy intra-cortical networks imaged by high resolution 
synchrotron tomography (voxel side: 1.4 µm). In this study, using several multi-scale 
methods, the authors stated ambition is to “give a new coherent picture of normal and 
pathological complex vascular structure” and to “resolve the apparent contradiction of 
previous studies for which normal vascular networks have been found to be either fractal or 
not”. Their analyses indicate that normal cortical vascular networks have scale-invariant 
fractal properties on small scale from 1.4 µm up to 40 ~ 65 µm and that, above this threshold, 
vascular networks can be considered as homogeneous. They further define the length scale for 
which the transition between fractal to non-fractal occurs as being the Representative 
Elementary Volume (REV) of the vascular structure, in the usual sense given in the porous 
media literature2 (Bear 1972). 
 
 These results are all the more disconcerting that the methodology used by the authors 
is very meticulous. The use of very large datasets for the fractal analysis (performed by the 
box-counting and by the sand box algorithms) leads to clearcut linear trends with very small 
error bars in the estimated fractal dimensions and cut-offs. The results are confirmed by a 
complementary analysis of the power spectrum of the avascular space. Thus, to the best of our 
knowledge, these authors present the first complete study of the multi-scale behavior of a 
complete 3D vascular network (including arteries, veins and capillaries) at high resolution 
over three decades of scales. However, we believe that their interpretation of the data is 
incorrect. Indeed, relying on a series of theoretical papers about vascular morphogenesis 
(Fleury & Schwartz 1999, 2000, Nguyen et al. 2006), we will construct simple examples 
demonstrating that the usual multi-scale tools can lead to counter-intuitive results when the 
structures under study are not true fractals. For that purpose, the main features of vascular 
morphogenesis are first introduced. 
 
 
3. VASCULAR BRANCHING MORPHOGENESIS: PREDICTIONS REGARDING 
THE MATURE VASCULAR ARCHITECTURE 

 
In this Section, after an overview of the morphological development of the vascular 

system, models of vascular branching morphogenesis will be reviewed, as well as their 
predictions regarding the mature vascular architecture.  

 
It is first noteworthy that models of branched growth in biology must provide a 

reasonable phylogeny (Fleury 2000, Fleury & Schwartz 2001), i.e. be compatible with their 
emergence during the evolutionary history of species, as well as a realistic ontogeny (Murray 
1995), i.e. be based on the real biological situation and try to isolate the key steps of the 
growth process. Indeed, although one of the recurrent ideas behind the study of the multi-
scale behavior of vascular networks is that it is potentially useful in revealing the physical 
mechanisms underlying their morphogenesis (Gazit et al. 1995, Bergman & Ullberg 1998, 
Baish & Jain 2000, Masters 2004, Cassot et al. 2006), several authors warn that two 
branching patterns with the same fractal dimension have not necessarily been formed by the 
same class of fundamental processes (Vico et al. 1998, Murray 1995, Meakin et al. 2001, 
Fleury & Schwartz 2001). In case of vascular morphogenesis, models must thus be consistent 
with the morphogenetic events and dynamics known to be involved in the formation of new 
vascular structures. 

 

                                                            
2 REV: scale at which the porous medium may be considered as a continuum. 
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Schematically, the growth of a mature vascular structure begins by the formation of a 
network of interconnected capillaries, called a capillary plexus, which can develop by two 
distinct mechanisms, vasculogenesis and angiogenesis (Risau 1997, Patan 2000). The term 
vasculogenesis denotes the process by which randomly distributed precursor cells coalesce to 
form a network of interconnected capillary tubes. The term angiogenesis is the process by 
which capillary vessels are forming from pre-existing ones, which emit sprouts (sprouting) or 
are split into two distinct vessels along their axis (intussusception). Vasculogenesis is 
typically observed in early phases of embryogenesis, where the first capillary plexi form 
before the onset of plasma or blood perfusion. It is also responsible for the vascularization of 
organs appearing later, such as the lung and spleen. After onset of perfusion, angiogenesis 
allows the expansion of previously formed capillary plexi as well as the vascularization of so 
far avascular regions, such as the brain. Mathematical models of vasculogenesis (see Tosin et 
al. 2006 and references therein), angiogenesis (see Mantzaris et al. 2004, Plank & Sleeman 
2004, Codling et al. 2008 and references therein) or both (Merks et al., 2008) have been 
proposed but their description is beyond the scope of this paper, which focuses on the later 
stages. 

 
These newly formed vascular plexi are rapidly remodeled into structures resembling 

the mature branching pattern. To a large extent, this remodeling is linked to hemodynamics, 
such that non-perfused capillaries regress whereas vessels undergoing a large flow are likely 
to enlarge (Risau 1997, le Noble et al. 2004). It begins as soon as blood circulation is 
established in a given organ (either because the onset of heart beat or because individual 
capillary sprouts join to form a connected network (Patan 2000)). In chick embryos, when 
blood circulation fails to establish, e.g. after heart removal, capillary plexi fail to remodel, 
although continuing to grow for several days (le Noble et al. 2004). Furthermore, 
manipulation of blood flow, for example by ligation of an artery, dramatically affects the final 
vascular pattern (Nguyen et al. 2006, le Noble et al. 2004). 

 
 Thus, the formation of the mature vascular system occurs by progressive selection of 
small capillaries from a previously formed capillary network, so that every large vessel in the 
hierarchical branching vasculature was once a vessel of the smallest size (Risau et al. 1997).  
 
 To our knowledge, only few models (Honda & Yoshizato 1997, Gödde & Kurz 2001, 
Fleury & Schwartz 1999, 2000, Nguyen et al. 2006) account for this fundamental feature. 
However, Honda & Yoshizato (1997) do not reproduce the interdigitation of arterial and 
venous arborescences, whereas Gödde & Kurz (2001), while producing interdigitating 
vascular patterns, begin with an initial stochastic capillary growth phase which ends “as soon 
as supplying and draining vessel structures approach each other”. In other words, in their 
model, there is no intrinsic mechanism to avoid the direct shunting between arterial sources 
and venous sinks. Yet, such a mechanism has been recently elucidated: as they grow, arterial 
vessels progressively disconnect from the surrounding capillaries. This disconnection 
progressively moves the arterial sources for the blood entering the capillary plexus toward the 
distal end of the arterial arborescence and avoids direct proximal shunting. This mechanism 
has been confirmed by experiments on the developing chicken yolk-sac (le Noble et al. 2004) 
after having been suggested by Fleury and Schwartz (1999) in a simple model of shear-
dependent progressive selection of vessels from a previously formed capillary mesh in a 
laplacian pressure field. For convenience, this simple model has been implemented using 
classical concepts of statistical physics in which the Laplace equation is approximately solved 
by performing statistics over the pathways followed by a large number of fictitious random 
walkers (Courant et al. 1928, Zwillinger 1998). Of course, this methodological trick does not 



Acc
ep

te
d m

an
usc

rip
t 

 7 

imply that endothelial cells do walk around until they randomly encounter an existing artery 
during vascular morphogenesis. For the reader unfamiliar with such statistical methods, a 
simple illustration is presented in the Appendix B: the Poiseuille flow of a Newtonian fluid in 
a straight tube, where diffusion is negligible compared to convection and where, as a 
consequence, fluid particles do not physically behave as random walkers, is solved using 
fictitious random walkers. The initial approach proposed by Fleury and Schwartz (1999) as 
well as the progressive improvements introduced in Fleury and Schwartz (2000) and Nguyen 
et al. (2006) are summarized below, while the justification for using Diffusion Limited 
Aggregation (DLA) (Witten & Sander 1983) as a tool for progressively selecting the 
capillaries which become arteries or veins is summarized in Appendix C. 
 

− Step 1: Initial conditions: a regular lattice of capillaries must first be provided and the 
positions of arterial sources and venous sinks, representative of the arterial and 
venous rudiments allowing the blood circulation to establish in a given organ, must be 
prescribed. These sources and sinks can have a discrete or a continuous spatial 
distribution. 

− Step 2: Growth of the arterial tree: random walkers are iteratively launched from the 
venous rudiments and grow the arterial tree by DLA. In the DLA original version, a 
seed particle is fixed at the origin of the coordinate system. Random walkers are 
iteratively launched at a large distance from the seed and wander randomly over the 
capillary lattice, until they escape at large distance or they contact the aggregate (i.e. 
the seed at first iteration), to which they stick irreversibly. Here, the seeds for the 
growing aggregates are the arterial rudiments.  

− Step 3: Arterial disconnection: the first particles having attached to the arterial 
aggregate are disconnected from the capillary lattice, such that only a given 
percentage of the aggregated particles remain active for further growth. 

− Step 4: Growth of the venous tree: random walkers are launched from the arterial 
extremities (i.e. the active part of the arterial aggregate) to grow the venous tree by 
DLA. The seeds for the growing venous aggregate are the venous rudiments. 

− Step 5: Effect of tissue growth: effect of tissue growth has been introduced in Nguyen 
et al. (2006) but is beyond the scope of this paper. 

 
 To our knowledge, this model of vascular morphogenesis is the only model allowing 
the self-organized generation of realistic vasculatures as well as the prediction of the 
consequences of localized alterations of blood flow on the arterio-venous global patterning 
(see Nguyen et al. (2006) where this model is used to generate the entire yolk-sac vasculature, 
and to predict the effect of an arterial occlusion on its development). It is also the only model 
allowing a self-consistent description of the connectivity and spatial relationships between 
arteries, veins and capillaries (Al-Kilani et al. 2007). This model predicts that mature vascular 
architectures should be quasi-fractal at large scale (DLA trees modified by disconnection and 
tissue growth), connected by the extremities to a regular lattice of capillaries. Moreover, it 
predicts that the lower cut-off of the quasi-fractal DLA tree must corresponds to the 
characteristic length of the capillary lattice. Indeed, in this model, the size of the fictitious 
random walkers launched to construct the arterial and venous arborescences corresponds to 
the characteristic size of the capillary mesh, which defines the grid (and pixel) size. 
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4. FRACTAL ANALYSIS OF GENERIC PATTERNS 
 
 In this Section, the multi-scale behavior of generic patterns, constructed as the union 
of homogeneous meshes and quasi-fractal resampled DLA-type trees (see Fig. 1), is studied. 
Such a rough model of vascular structure is obviously inspired from the architecture of mature 
vascular networks predicted by the models of vascular branching morphogenesis described in 
the previous Section. For control purposes, the multi-scale behavior of their two elementary 
components (homogeneous mesh and resampled DLA-type tree) is also studied. To this end, 
the same multi-scale tools as Risser et al. (2007), i.e. the box-counting and sand-box 
algorithms as well as a spectral approach, are used. These methods and the results obtained 
are presented in Appendix A, Section A1.  
 
 The main conclusion of Section A1 is that, when studied using various multi-scale 
tools implemented following Risser et al. (2007), the two kinds of generic patterns 
constructed in the present work (Fig. 1) artifactually appear to be fractal at low scale and 
homogeneous at large scale. Indeed, by construction (resampling, see Appendix A, Section 
A1(a)), a lower cut-off for self-similarity, corresponding to the characteristic length of the 
capillary lattice, has been imposed to the DLA trees, so that these generic patterns are not 
fractal at low scale. In addition, these generic patterns are neither homogeneous at large scale 
due to the presence of the quasi-fractal DLA trees.  
 
 Moreover, the results obtained when analyzing the multi-scale behavior of both kinds 
of generic patterns (Fig. 1) are similar to the results obtained by Risser et al. (2007) when 
analyzing large datasets of healthy vascular networks imaged at high spatial resolution (see 
Appendix A, Section A1.(d)). Consequently, based on Risser et al.’s results, it is impossible to 
conclude that vascular networks are fractal at low scale and homogeneous at large scale. 
Indeed, the generic patterns introduced in the present work are simple counter-examples: they 
appear to be, but they are not, fractal at low scale when studied by classic multi-scale tools 
(box-counting and sand box methods) and by a spectral approach; they are not homogeneous 
at large scale, due to the presence of the quasi fractals resampled DLA clusters, but they 
appear to be homogeneous at large scale because of the hindering effect due to the capillary 
lattice. In addition, the present work demonstrates that Risser et al.’s results can be consistent 
with the usual description of vascular structures as the union of a “tree-like” distribution 
network and a “mesh-like” capillary network. As a consequence, they also demonstrate that 
their results can be consistent with all the previous studies regarding the fractal analysis of 
healthy vascular structures (see Section 1). 
 
 Finally, following the present work, it is tempting to conclude that the cut-off scales, 
extracted by these authors using the box-counting, the sandbox and the spectral approach, do 
not correspond to the Representative Elementary Volume (REV) of the vascular structure, but 
rather give estimates of the characteristic length of the capillary lattice.  
 
 To test this hypothesis and to conclude on the nature of vascular networks, it is 
necessary to study in more detail the capillary lattice of real vascular structures. Indeed, the 
available data do not permit to decide whether their behavior at low scales (high frequencies) 
is truly self-similar or artifactual. That is why the following Section is devoted to the fractal 
analysis of the capillary lattice of healthy intra-cortical networks. 
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5. FRACTAL ANALYSIS OF INTRA-CORTICAL NETWORKS 
 

In order to progress in the characterization of vascular structures, we have focused on 
the capillary lattice of healthy human intra-cortical vascular networks (see Fig.2 and 
Appendix A, Section A2). Using the same multi-scale tools as previously, we have 
demonstrated that such capillary lattices are space filling over a cut-off length of order 25 to 
75 µm, which also gives an estimate of the characteristic length of the capillary lattice. 
Furthermore, we have shown that the multi-scale tools used are not well-suited to settle on the 
nature (random or fractal) of the capillary lattice at lower scales, because it is difficult to 
discriminate between fractality and “apparent fractality originating from underlying 
randomness” (Hamburger et al. 1996, Halley et al. 2004). For example, simple random 
distributions, such as random distributions of discs at low concentration in 2D, display an 
apparent fractal behavior between a lower cut-off corresponding to the size of the discs and an 
upper cut-off which is approximately the average distance between them3 (Hamburger et al. 
1996, Halley et al. 2004).  

 
We have therefore introduced a complementary method, based on the analysis of the 

regional maxima of the distance map (Fig. 3), to discriminate between both hypotheses. Using 
this method, the random nature of healthy human intra-cortical capillary lattices has been 
demonstrated.  

 
In addition, as demonstrated in Section A2.(c), capillary networks become volume-

filling over a cut-off of the order of the characteristic size of the capillary mesh. In other 
words, healthy capillaries fills the available space completely down to this cut-off length and 
guarantees that no point in the tissue is, on average, further from some point of the 
vasculature than half of this cut-off. This provides an efficient way for feeding every cell in 
the interstitial space, the main function of the capillary network. 
 
 
 
6. DISCUSSION AND CONCLUSIONS  
 
 All together, the present work demonstrates that, at least in the brain, healthy vascular 
structures are a superposition of two components, which interdigitate: at low scale, a mesh-
like capillary component which becomes homogeneous and space-filling over a cut-off length 
of order of its characteristic length; at larger scale, branched (tree-like) structures which have 
been systematically demonstrated to be quasi-fractals by others when studied separately from 
the capillary component (Gazit et al. 1995, Sandau & Kurz 1997, Kirchner et al. 1996, 
Wilting et al. 1996, Vico et al. 1998, Parsons-Wingerter et al. 1998, Bergman & Ullberg 
1998, Herman et al 2001, Masters 2004, Cassot et al. 2006, Kassab 2000, Gan et al. 1993, 
Jiang et al. 1994, Hahn et al. 2003). Because of the variety of vascular structures considered 
in these studies (subcutaneous, extra-embryonic, pial, retinal, coronary, pulmonary, hepatic, 
intra-cortical) and because the homogeneous nature of capillaries has also been demonstrated 
in various systems (subcutaneous (Gazit et al. 1995, Baish & Jain 2001), epifoveal (Panico & 

                                                            
3 Indeed, at very low scale (smaller than the diameter of the disks) as well as at very large scales (greater than the 
typical distance between disks), two space-filling regimes are attained. Between these two regimes, there is a 
region of reconnection where a linear regime, with a different slope, can be observed, which is entirely an 
artifact and not caused by self similarity at all (Halley et al 2004). The same phenomenon is observed when 
studying homogeneous random networks of “thick” capillaries. 
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Sterling 1995), hepatic (Gaudio et al. 2005)), this conclusion appears to be very general. It 
immediately implies two additional conclusions:  

-  First, for the fractal analysis of a given vascular structure to make sense, its two 
components must be separated beforehand. If not, for scales greater than the 
characteristic length of the capillary lattice, the tree-like structures are masked. This 
separation if often de facto accomplished by the choice of the observation method. At 
low resolution, capillaries are automatically removed. At high resolution, due to the 
necessary compromise between size and resolution, the field of view is usually 
reduced, thus removing large branched structures. The only exception is when specific 
techniques are used to image large domains at high resolution (Cassot et al. 2006, 
Heinzer et al. 2006, Risser et al. 2007). In this case, the capillary lattice must be 
separated from the tree-like structures, for example by thresholding the vessels 
hydraulic resistance above a prescribed value (Lauwers et al. 2008). This 
methodological comment also holds if the vascular structure is intersected with a 
surface, as for example in histological studies. Indeed, even if in strict mathematical 
terms, intersecting a fractal object of dimension D with a plane produces a fractal 
intersection whose dimension is D-1 (Russ 1994), this principle can break down when 
the structure under study is not an ideal fractal (Halley et al. 2004), leading once again 
to counter-intuitive results. In addition, this comment must be accounted for if, instead 
of studying fractal properties, one seeks out the spatial relationships and/or 
correlations between the large scale (arterial or venous) structures (Al-Kilani et al. 
2008). 

-  Second, taking into consideration these methodological aspects, the description of 
healthy vascular structures as a superposition of the two components described above 
is consistent with all the previous studies regarding the multi-scale behavior of 
vascular structures, briefly reviewed in Section 2. Thus, the present work proposes a 
unifying view of healthy vascular networks based on arguments related to vascular 
morphogenesis and should close the controversy regarding the fractal nature of healthy 
vascular structures.  

 
 It should be noted that such a unifying view is compatible with the dual function 
(distribution and exchange) of the vasculature. Indeed, based on allometric scaling arguments 
(West et al. 1999), a volume filling structure provides the most efficient way for feeding every 
cell in the interstitial space, the main function of the capillary network, whereas a fractal 
distribution network is consistent with the constraint that the time for supplying resources as 
well as the length of distribution pathways should be minimized. From a transport modeling 
perspective, this description implies that the complete vascular network can be viewed as the 
superposition of several coupled flow components:  

− a slow homogeneous capillary component, for which the existence of a REV, 
corresponding to the characteristic capillary length, has been evidenced, and can thus 
be viewed as a fictitious continuum characterized by effective properties (Bear 1972), 

− fast arterial and venous fractal components, which cannot be homogenized because of 
the absence of any specific length scale, i.e. the concept of REV becomes irrelevant. 
These fractal components can alternately be modeled using a discrete network 
approach. 

Thus, even if it is clear that, from a geometrical perspective, the superposition of these two 
components remains space-filling at large scale, this complex structure cannot be considered 
homogeneous at large scale with regard to transport. In the same way, the existence of a 
homogeneous capillary structure does not imply that the blood flow is homogeneous in the 
capillaries, in contradiction with experimental measurements in mature micro-vascular beds 
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(Pries et al. 1990). Indeed, it is well known that significant heterogeneities of the flow 
parameters (e.g. mean pore velocity) can be observed at mesoscopic level (scale of the REV) 
in homogeneous porous media, resulting from differences in pore size and connectivity. In 
particular, such heterogeneities can be found in space-filling homogeneous networks, for 
example in packed bed reactors, i.e. random distributions of spheres or parallel cylinders, 
even in case of slow flow (Georgiadis et al. 1996): although these structures become 
homogeneous and space filling above a length scale of the order of the typical distance 
between spheres or cylinders (Halley 2004, Hamburger 1994), they are still heterogeneous on 
smaller length scales, exhibiting a large distribution in pore sizes. This also holds for brain 
microvascular capillary networks, which exhibit a clear heterogeneity in capillary diameters 
and lengths (Cassot et al. 2006). In addition, in the case of capillary networks, the coupling 
with the feeding and draining fractal structures (heterogeneous sources and sinks) introduce 
an additional source of heterogeneity. 
 

The previous description of healthy vascular structures as a superposition of two 
components is also compatible with the current knowledge of normal vascular 
morphogenesis, as briefly reviewed in Section 3. Moreover, while the conclusions reached by 
Risser and al. (2007) are in complete contradiction with the mature vascular structure 
predicted by the most relevant theory on vascular morphogenesis (Fleury & Schwartz 1999, 
2000, Nguyen et al. 2006), the present work constitutes strong support in favor of this theory. 
Indeed, as observed by Murray (1995) who warns about the abuse of multi-scale analysis in 
neuroscience, it is essential to “return to the biology with predictions, comments and 
suggestions for illuminating experiments” in order for a theory in this field to be validated. 
Here, the pitfalls of multi-scale analysis applied to complex experimental data have been 
understood based on a simple theoretical prediction.  

 
However, it should also be noted that, at present, this conclusion cannot be generalized 

to pathological conditions. In particular, regarding cancer, the situation is probably more 
complex. Briefly, when studied at low resolution, tumor vasculatures (obtained by inoculation 
of various cancerous cell lines in mice bearing dorsal skinfold chambers) have been shown to 
be fractals, with fractal dimensions ranging approximately from 1.8 to 1.95 (Gazit et al. 1995, 
Baish & Jain 2000), significantly higher than that of healthy vasculatures. When studied at 
high resolution over large domains, tumor vasculatures obtained by injection of gliosarcoma 
cells in rat brains exhibited a complex behavior qualitatively similar to, but quantitatively 
significantly different from, the behavior of healthy vasculatures (Risser et al. 2007)4. From 
these results, in the same way as for healthy structures, Risser et al. conclude that tumor 
vasculatures are fractal at low scale but homogeneous at large scale. However, in the same 
way as for healthy structures, this conclusion is in contradiction with the previous studies of 
tumor vasculature performed at low resolution (Gazit et al. 1995, Baish & Jain 2000), which, 
as discussed above, uniquely focus on the large scale structures. Thus, tumor vasculatures are 
probably the superposition of several components, including fractal components at large scale.  
However, at low scale, a random homogeneous component must be ruled out, due to the great 
heterogeneity characteristic of tumors. In order to improve our understanding of their vascular 
architecture, further work performed over restricted regions imaged at high resolution should 

                                                            
4  Indeed, the box-counting and sand-box results exhibited two linear domains separated by a clear cut-
off. In all cases, above the cut-off, the slope was equal to 3. Below the cut-off, the slope was between 1.9 and 
2.4, significantly higher than the slope at low scale obtained for healthy vasculatures. In addition, the cut-off 
length between these domains was significantly greater for tumors. The power spectrum also exhibited two 
domains, with a linear decrease at high frequencies and saturation at low frequencies. The cut-off length between 
these two domains was also significantly greater for tumors. 
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be conduced. In addition, because the classification of blood vessels (between capillary and 
non capillary vessels) developed for normal tissues based on structure (anatomy) and function 
(physiology) may not be applicable to tumors (Gazit et al. 1995, Jain 1988), the relevant 
criteria for defining and separating these tumor vascular components are still to be found. For 
example, in tumors such as clear cell renal cell carcinoma, both differentiated and 
undifferentiated vessels (i.e. vessels made up of cells that have grown to the normal mature 
stage of development and vessels made up of cells that remain in an immature or “primitive” 
stage) coexist, which could serve as a basis for an alternative classification (Yao et al. 2007). 
Therefore, it seems to us that the studies aiming at determining a fractal dimension from 2D 
thin tissue sections of tumor tissues (for example Sabo et al. (2001), Weyn et al. (2004)) must 
be interpreted with great caution until these methodological issues are resolved. In particular, 
it is not surprising that the clinical significance of the “fractal dimension” deduced from these 
studies, as a prognostic indicator of patient survival, is still highly controversial (Sabo et al. 
2001, Weyn et al. 2004, Grizzi et al. 2001, Sabo et Resnick 2001).  

 
In summary, the present work meticulously addresses the issues of spatial organization 

and scales in "real-world" biological structures, highlighting effects of finite spatial scales and 
effects of structure superposition. It could be of interest in a large number of biological 
branched structures, from lung to neurons, or non branched structures, such as bone, for 
which fractal analysis is an increasingly popular staging and/or diagnosis tool. 
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APPENDICES 
 
APPENDIX A : Technical analysis of complex generic patterns and “real-life” biological 
structures. 
 
This appendix is devoted to the technical analysis of complex generic patterns (Section A1) 
and “real-life” biological structures (Section A2). In Section A1, the method for constructing 
bi-dimensional generic patterns as the union of homogeneous meshes and quasi-fractal DLA 
trees –imposing a lower cut-off corresponding to the characteristic length of the homogeneous 
meshes– will first be presented. Then, the multi-scale tools used, as well as the procedures 
used for their validation, will be described. Finally, the results obtained will be presented and 
compared to the results obtained by Risser et al. (2007) on very large datasets of healthy intra-
cortical networks imaged at high resolution. In Section A2, the datasets used for the analysis 
of the capillary lattice of human healthy intra-cortical networks will first be presented. Then, 
the implementation in three-dimensions of the multi-scale tools presented in Section A1 will 
be described and validated. The results obtained will be subsequently presented. A new multi-
scale tool, based on the computation of the regional maxima of the distance map, will then be 
introduced in order to conclude on the nature of the capillary lattice.  
 
A1. FRACTAL ANALYSIS OF GENERIC PATTERNS 
 
(a) Construction of generic patterns 
 
 As argued in Section 3, in a rough approximation, mature vascular structures should 
be the union of homogeneous capillary meshes and DLA-type trees with a lower cut-off 
corresponding to the characteristic capillary length. In the whole following, binary structures 
constructed over 4096 x 4096 domains have been considered. The characteristic length of the 
capillary lattice, denoted by n, has been fixed to 16. 
 
 Two kinds of homogeneous meshes have been considered: n x n square grids and 
random networks exhibiting a Gaussian distribution of cells' areas. Such networks have been 
constructed by randomly choosing one point in every elements of a n x n square grid and by 
subsequently extracting the voronoi diagram of this random set of points (see Fig. A1(A)). In 
this way, a regular random network has been obtained, with a Gaussian probability 
distribution function of cell's areas approximately centered on n2 (see Fig. A1(B) and legend). 
Indeed, for five realizations, the Gaussian's mean µ was found, by least squares regression, to 
be 252 ± 0.11 (mean ± sd) and its variance σ2 was found to be 4126 ± 24, with a coefficient of 
determination R2 systematically greater than 0.996. 
 
 DLA trees have been generated using dla-nd, an off lattice DLA simulator freely 
available under the Gnu General Public License at http://markjstock.org/dla-nd/. First, in 
order to test the multi-scale tools described below, DLA clusters consisting of 500 000 
particles have been generated (Fig. A2). However, for such DLA trees, the lower cut-off is 
equal to one pixel, corresponding to the size of the randomly moving particles. Thus, in order 
to generate quasi-fractals with a lower cut off equal to n, DLA clusters of 5000 particles have 
been generated over smaller domains (256 x 256) and subsequently resampled to a final size 
of 4096 x 4096 by dividing each pixel in n x n pixels areas5.  
 
                                                            
5 This procedure is equivalent to the construction of 5000 particles’ DLA clusters over 4096 x 4096 domains 
using random walkers of size n x n. 
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 Generic patterns have been defined as the union of these quasi-fractals and of either 
kind of homogeneous meshes (see Fig. 1). By construction, as a lower cut-off for self-
similarity has been imposed to the DLA trees, these generic patterns are not fractal at low 
scale. They are neither homogeneous at large scale due to the presence of the quasi-fractal 
DLA trees. 
 
(b) Multi-scale tools 
 
 The multi-scale tools used in the present work have been chosen following Risser et 
al. (2007) and have been implemented following the additional details available in Risser 
(2007). In particular, neither skeletonization nor edge detection was performed prior to 
analysis. The fractal dimension has been evaluated by box-counting and sand-box methods. 
As a complement to these approaches, the distance map of the avascular space has been 
analyzed by a spectral approach.  
 

i. Box-counting and sand-box approaches 
 
 Briefly, in the box-counting method, a regular grid of square elements of size r is 
superimposed to the pattern, and the number N(r) of square elements intersecting the pattern 
is counted. For a fractal object, the plot of N as a function of r in a bi-logarithmic scale is 
linear, its slope being opposite to the fractal dimension. Baish et Jain (2001) caution that N(r) 
depends on the origin chosen for the grid and that the strict estimation of the fractal dimension 
requires shifting the grid to all possible locations until the minimum value of N(r) is found. 
However, following Risser (2007), this step was omitted. Nevertheless, in order to avoid 
coincidences of the box-counting grid with the n x n square grid underlying the resampled 
DLA, the box-counting origin was shifted by one pixel in both directions of space. 
 
 In the sand-box method, a pixel belonging to the pattern is randomly chosen as a 
centering site. Square boxes of size r (comprised between 3 and 2511) are centered on it and, 
for boxes totally contained in the 4096 x 4096 domain, the total number of white pixels N(r) 
falling in each box is counted. The procedure is repeated for a large number η of centering 
sites. For a fractal object, the plot of the average of N as a function of r in a bi-logarithmic 
scale is linear, its slope corresponding to the fractal dimension.   
 
 Both methods have been validated using originally sampled 500 000 particles DLA 
clusters (see Fig. A3). The slopes of the bi-logarithmic plots have been sought using the 
procedure introduced by Berntson and Stoll (1997) for quantitatively determining the spatial 
scales over which the structure under study shows self-similarity. Briefly, this technique 
consists in removing extreme points of the plot until a statistical test for curvilinearity 
becomes negative, i.e. the addition of a second order term for fitting the residual plot (i.e. plot 
of the residuals versus values predicted by a linear fit) becomes not significant at the 1% level 
(Sokal & Rohlf 1994). By this way, the fractal dimension measured using the box-counting 
method over three realizations was 1.665 ± 0.016. The linear range spanned from 11± 6 to 
2048 ± 0 pixels, i.e. more than two decades of scales. The fractal dimension measured using 
the sand-box method was 1.688 ± 0.011. The linear range spanned from 56 ± 21 to 584 ± 382 
pixels, i.e. one decade. In both cases, the coefficient of determination R2 was greater than 
0.999. These results are in accordance with the theoretical mean-field prediction for DLA in 
2D (df=(22+1)/(2+1)=1.667) (Vicsek 1992).  
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ii. Spectral approach 
 

Classically, in the spectral approach, the fractal dimension is deduced from the Fourier 
power spectrum of the 2D pattern. For a fractal object, the plot of this power spectrum as a 
function of the spatial frequency in a bi-logarithmic scale is linear. According to Halley et al. 
(2004), its fractal dimension is related to the slope s of the plot by df = (5+s)/2. An alternative 
version of this classical approach, focusing on the distance map of the avascular space and not 
on the vascular pattern, has been introduced by Risser et al. (2007). Indeed, the distance map, 
which represents the distance of any black pixel (tissue point) from the nearest white pixel 
(vessel) can provide information on the spatial delivery of oxygen by the vascular network. 
However, it is noteworthy that, from this alternative approach, the fractal dimension of the 
initial 2D pattern cannot be deduced, because no simple relationship can be drawn between fd 
and the slope of the power spectrum of the avascular space’s distance map. 

 
Briefly, the distance map d(i,j) of the avascular space is first computed. The Fourier 

transform of the distance map ),(~
ji ffd  is computed using a bidimensional fast-Fourier 

transform algorithm, the relevant range of spatial frequencies fi and fj lying between the 
inverse image size 1/(4096 pixels) and the high frequency limit 1/(2 pixels). The power 
spectrum P(fi,fj) is obtained as | ),(~

ji ffd |2. This power spectrum is finally averaged over 

concentric circles in the Fourier plane ( cstefff jiij =+= 22 ) to obtain the averaged power 

spectrum P(fij). For a fractal avascular space, the plot of  P as a function of fij in bi-logarithmic 
coordinates is linear.  

 
The spectral approach has first been validated in its classical version by studying the 

Fourier spectra of originally sampled 500 000 particles DLA clusters. Indeed, these clusters 
have been demonstrated to be fractal objects by the box-counting and sand-box methods. The 
slopes of the bi-logarithmic plots have been sought using the same procedure as above. By 
this way, the linear range over three realizations spanned from 8.6 ± 0 pixel-1 to 225.4 ± 42.5 
pixel-1, i.e. more than one decade of frequency scales. The slope s was -1.55 ± 0.016 with 
coefficients of determination R2 greater than 0.995. Thus, the fractal dimension of the 500 000 
particles DLA clusters obtained by this method (df = (5+s)/2) was 1.722 ± 0.008, which 
slightly overestimates the theoretical prediction (1.667, see above). Second, the alternative 
approach focusing on the distance maps of the same clusters has been tested. The spectra 
obtained by this alternative approach were linear (s = -3.07± 0.008) with coefficients of 
determination R2 greater than 0.999. However, the linear range of frequency scales 
(51.8 ± 5.7 pixel-1 to 163.5 ± 26.5 pixel-1) was reduced compared to the linear range obtained 
with the classical approach, which is not surprising due to the finite size of the domain under 
study (side effects). 

 
(c) Multi-scale analysis 

 
In this Section, the box-counting and sand-box methods are successively applied to the 

5000 particles resampled DLA clusters, to both kinds of homogeneous meshes and to both 
kinds of generic patterns (Fig. 1). Then, the distance map of their avascular space is analyzed 
by the spectral approach.  
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i. Box-counting and sand-box analyses 
 

First, 5000 particles resampled DLA clusters have been analyzed (see Fig. A4) and the 
spatial scales over which they show self-similarity have been determined using Berntson’s 
procedure (see Section A1.(b).i). By this way, the fractal dimension measured using the box-
counting method over five realizations was 1.623 ± 0.003. The linear range spanned from 
1 ± 0 to 4096 ± 0 pixels, i.e. the whole range of scales for these structures. The fractal 
dimension measured using the sand-box method was 1.637 ± 0.011. The linear range spanned 
from 3 ± 0 to 2511 ± 0 pixels, i.e. almost three decades. In both cases, the coefficient of 
determination R2 was greater than 0.998. Thus, even if a lower cut-off for self-similarity has 
been imposed while generating these resampled DLAs, they appear to be self-similar over the 
whole range of scales when studied by both multi-scale tools. 

 
Second, the n x n square grid, which is by construction homogeneous for scales above 

n and a linear object for lower scales, has been analyzed. As expected, in both cases, the plot 
of N as a function of r in a bi-logarithmic scale exhibits two domains (see Fig. A5). The cut-
off length between these two domains has been detected automatically by comparing the local 
slope s(r) to the slope S~  between the data obtained at minimal and maximal box sizes 
( S~ = (N(rmax)-N(rmin))/(rmax-rmin)) : for increasing r, the cut-off length rcut is reached as soon as 
|s(r)| becomes greater than S~ . By this method, rcut was determined as 12 pixels by the box-

counting method and as 39 pixels by the sand-box method, that is to say, lower and upper 
bound values for n. At larger scale, a homogeneous space-filling behavior (slope = ± 2) is 
observed. In this domain, linearity of the data was confirmed by use of Berntson’s procedure : 
the linear range spanned from 16 to 4096 pixels (box-counting) and from 51 to 2511 pixels 
(sand-box), with a coefficient of determination R2 greater than 0.999. At lower scale, 
Berntson’s statistical test for curvilinearity was always positive at the 1% level. Thus, the 
linear behavior is only apparent, even if the best linear fit for box sizes smaller than rcut 
(dotted lines on Fig. A5) has high coefficients of determinations6. Thus, both multi-scale tools 
are able to discriminate between the low scale region, where the square grid is only apparently 
fractal, and the large scale region, where it is homogeneous and space filling.  
 

The same behavior is observed for random networks (see Fig. A6). For five 
realizations, rcut was determined as 10 ± 0 pixels (box-counting) and as 25 ± 0 pixels (sand-
box), i.e. lower and upper bound values for n. At large scale, the linear range spanned from 
12 ± 0 pixels to 4096 ± 0 pixels (box-counting) and from 31 ± 0 pixels to 2511 ± 0 pixels 
(sand-box), with slopes of -1.999 ± 4x10-5 (box-counting) and 1.999 ± 3.2x10-4 (sand-box) 
and coefficients of determination greater than 0.999. At low scale, linearity was only 
apparent, as determined by Berntson’s procedure. Thus, as expected, random networks are not 
fractal at low scale. In addition, both multi-scale tools demonstrate that these networks are 
homogeneous at large scale.  
 

Third, both kinds of generic patterns (see Fig. 1) have been analyzed. In both cases, 
the plots of N as a function of r in a bi-logarithmic scale exhibit two linear domains (see Figs. 
A7 and A8). The cut-off lengths rcut between these domains have been detected automatically 
as above. The linear ranges of each domain, as well as their slopes, have been determined 
using Berntson’s procedure. The data obtained for five realizations are summarized in 
Table A1.  
                                                            
6  Incidentally, this result demonstrates that there is no inconsistency between the results obtained by Arlt 
et al. (2003) in the developing CAM and the description of capillary networks as homogeneous meshes.  
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By construction, the union of 5000 particles resampled DLA clusters and of either 
kind of meshes is not self similar for scales below than n. However, they appear to be self-
similar at low scale when studied by both multi-scale tools, with fractal dimensions ranging 
from 1.22 to 1.76 (see Table A1, left). In addition, the self-similar nature of the resampled 
DLA cluster at large scale is masked by the presence of the superimposed mesh, leading to 
slopes approximately equal to 2 (Table A1, right). As a conclusion, these multi-scale tools 
give an estimate of the characteristic length of the underlying (capillary) lattice, because the 
cut-off values obtained by the box counting and the sand-box methods are respectively a 
lower bound and an upper bound value for n7. However, they are not adapted to study the 
fractal behavior of the large structures (DLA clusters) when the image resolution is 
sufficiently high to display the capillary mesh.  In addition, they are not adapted to study the 
lower scales, where they erroneously detect self-similarity.  

 
Therefore, when studying real vascular structures, it is impossible to conclude that 

they are fractal at low scale and homogeneous at large scale only on the basis of similar 
results obtained by box-counting and sand-box analyses. That is why it is important to check 
whether the spectral approach is more robust.  For that purpose, in the next sub-section, the 
spectral approach is applied to the resampled DLA clusters superimposed, or not, to both 
kinds of homogeneous meshes. 
 

ii. Spectral approach 
 
The averaged power spectra of five realizations of the distance maps of 5000 particles 

resampled DLA clusters superimposed, or not, to the square grid are displayed on Fig. A9(A). 
For comparison, the power spectrum of the square grid distance map is displayed on the same 
figure. First, this spectrum displays clear peaks, the first one at kc = 256 pixel-1, indicating a 
periodic structure with a characteristic length lc of 4096/kc, i.e. 16 pixels, the imposed period 
of the grid. A plateau at lower frequencies indicates the absence of any specific relevant scale, 
i.e. a homogeneous structure, beyond 16 pixels. Second, the spectrum of the distance maps of  
the 5000 particles resampled DLA clusters is approximately linear (slope = -3.12 ± 0.13), 
with a coefficient of determination greater than 0.999, but the linear range according to 
Berntson’s procedure is limited to kij ranging from 48.5 ± 30.4 pixel-1 to 201.5 ± 130 pixel-1. 
Finally, the spectrum of the distance maps of  the superposed structures is linear 
(slope = -3.99 ± 0.016) for frequencies beyond kc, with a linear range spanning from 
kij = 258.5 ± 0 pixel-1 to 2048 ± 0 pixel-1, i.e. the whole range of frequencies above kc, but a 
coefficient of determination of only 0.76 due to the presence of the frequency peaks. In 
addition, this spectrum saturates at low frequencies. Thus, as previously, the superposed 
structures appear to be self-similar at large frequencies (low scale) and homogeneous at low 
frequencies (large scales) when studied by the spectral approach.  

 
The averaged power spectra of five realizations of 5000 particles resampled DLA 

clusters superimposed, or not, to random meshes are displayed on Fig. A9(B). For 
comparison, the averaged power spectrum of the random meshes is displayed on the same 
figure. A smooth maximum, centered on kc = 256 pixel-1, is observed in the spectrum of 
regular meshes, indicating a quasi periodic structure with a characteristic length lc of 16 

                                                            
7 Note that the cut-off value obtained by the BC method is directly related to the characteristic length of the 
capillary mesh whereas the cut-off obtained by the SB method depends on this characteristic length as well as on 
the relative number of pixels belonging to the DLA cluster and to the capillary lattice (i.e. the relative weight of 
the DLA), in a complex fashion. Therefore, in practice, the BC cut-off provides a better estimate of the 
characteristic length of the capillary mesh. 
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pixels. In addition, a plateau at low frequencies (typically below 140 pixel-1) indicates the 
absence of any specific relevant scales beyond 29 pixels. At large frequencies, however, a 
linear behavior is observed. According to Bernton’s procedure, its linear range spans from kij 
= 586.5 ± 5.5 pixel-1 to 1258.5 ± 15.8 pixel-1 with a slope of -3.9791 ± 0.009 and a coefficient 
of determination greater than 0.999. The same behavior (slope of -4.000 ± 0.003 with a linear 
range spanning from kij = 601.5 ± 4.5 pixel-1 to 1262.5 ± 5.5 pixel-1) is observed at high 
frequencies when resampled DLA clusters are superimposed to the random meshes. In this 
latter case, saturation of the power spectrum at low frequencies is still observed, even if it is 
less pronounced than the saturation observed for the meshes alone. Thus, once again, the 
superposed structures appear to be self-similar at large frequencies (low scale) and 
homogeneous at low frequencies (large scales) when studied by the spectral approach. 

 
As a conclusion, in the same way as for the box-counting and sand-box methods, the 

spectral approach is not adapted to study the multi-scale behavior of generic patterns 
constructed as the union of quasi-fractal trees and homogeneous meshes, because the results 
obtained are counter-intuitive. In order to seek whether such an idealized generic structure 
could properly describe a real vasculature such as the intra-cortical vascular network, the 
results presented above are compared to the results obtained by Risser et al. (2007).  

 
(d) Comparison with the results of Risser et al. 
 

The results obtained when analyzing the multi-scale behavior of both kinds of generic 
patterns (Fig. 1) are very close to the results obtained by Risser et al. (2007) when analyzing 
large datasets of healthy vascular networks imaged at high spatial resolution.  
 

First, in the present work, two domains are evidenced by the box-counting and sand 
box analyses: a linear domain at low scale (note that even if the linear ranges indicated in 
Table A1, as determined by Berntson’s procedure, seems to bee small, the best linear fits for 
box sizes smaller than the cut-off length, displayed as dotted lines in Figs. A7 and A8, always 
have coefficients of determinations greater than 0.997). The apparent fractal dimension 
obtained by the box-counting method for this linear domain is always smaller than the 
apparent dimension obtained by the sand-box method. In addition, the cut-off lengths between 
the two domains determined by the box-counting method are always smaller than the cut-off 
determined by the sand-box method. At higher scale, a homogeneous, space-filling behavior 
(df = 2) is obtained. All these results have also been obtained by Risser et al. (2007), although 
in 3D, where the homogeneous, space-filling behavior is characterized by df = 3.  
 

The most significant difference with their results concerns the spectral approach. 
Indeed, neither the square grid nor the random networks used in the present work are able to 
reproduce a clear linear trend at high frequencies (i.e. a linear trend over the whole range of 
frequencies above kc associated to a large coefficient of determination). In the case of the 
square grid, the coefficient of determination is low due to the signature of the frequency 
peaks. In the case of the random networks, the smooth maximum centered on kc induces a 
deviation from linearity for frequencies just above kc, which reduces the range of the linear 
trend. However, this last effect, due to the quasi-periodic nature of the random meshes 
constructed in 2D, disappears in 3D (see Fig. A10 and legend). Furthermore, the slope 
obtained in the 3D case (-4.56) is very close to the slope obtained by Risser et al. (2007) for 
healthy networks (-4.8 or -4.9). 
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 Consequently, based on Risser et al.’s results, it is impossible to conclude that vascular 
networks are fractal at low scale and homogeneous at large scale. Indeed, the generic patterns 
described above are simple counter-examples: they appear to be, but they are not, fractal at 
low scale when studied by classic multi-scale tools (box-counting and sand box methods) and 
by a spectral approach; they are not homogeneous at large scale, due to the presence of the 
quasi fractals resampled DLA clusters, but they appear to be homogeneous at large scale 
because of the hindering effect due to the capillary lattice.  

 
 
 
 

A2. FRACTAL ANALYSIS OF INTRA-CORTICAL NETWORKS 
 

In this Section, the multi-scale tools described above, but implemented in 3D, are used 
to analyze intra-cortical capillary networks. Finally, a complementary analysis, based on the 
analysis of the regional maxima of the distance map of their avascular space, is introduced to 
conclude on their behavior at low scale. 

 
 (a) Datasets 
 

The datasets used for analysis have been previously obtained by Cassot et al. (2006) 
from thick sections (300 µm) of an india ink-injected human brain (Duvernoy collection, 
Duvernoy et al. 1981) by confocal laser microscopy, with a spatial resolution of 1.22 µm x 
1.22 µm x 3 µm. To study in more details the capillary lattice, six limited areas (256 x 256 x 
64 voxels) have been manually selected by visual inspection in the lateral or top region of the 
collateral sulcus of the temporal lobe: three lateral regions (L1 to L3) and two top regions (S1 
and S2), only containing capillaries (i.e., following Cassot et al. (2006), vessels of diameter 
smaller than 9 µm), as well as one lateral region with capillaries surrounding the distal 
extremity of an arterial arborescence (LA1). Four of these regions are represented on Fig. 2. 
 
(b) Multi-scale tools in 3D 
 

The box-counting and sand-box methods have first been implemented in 3D as a direct 
extension of the 2D procedures described in Section A1.(b). Here, as the voxels are not 
isotropic, the dimensional value of the box side r* is related to its adimensional value r (in 
voxels) by a conversion factor equals to the cubic root of the voxel volume. In addition, a 
pseudo 3D implementation of the sand-box method has been introduced, where parallelepiped 
boxes of size r x r x 33 are used instead of cubic boxes. In this case, the dimensional value of 
the box side r* is simply 1.22 r. With the two former methods, a homogeneous space-filling 
structure exhibits a fractal dimension of three, whereas with the third method, such a structure 
exhibits a dimension of two. 

 
In the 3D spectral approach, the distance map of the avascular space d(i,j,k) is first 

computed in 3D. The Fourier transform of the distance map ),,(~
kji kkkd  is then computed 

using a bidimensional fast-Fourier transform algorithm twice in succession. The power 
spectrum P(ki,kj,kk) is obtained as | ),,(~

kji kkkd |2. This power spectrum is first averaged for 

each kk over concentric circles in the Fourier plane ( cstekkk jiij =+= 22 ) and finally 
averaged over kk to obtain the averaged power spectrum P(kij). 
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(c) Multi-scale analysis 
 
 The results obtained for region L1 by the multi-scale tools described above are 
displayed on Fig. A11. As previously, the existence of two domains is revealed by the box-
counting, the sand-box and the pseudo 3D sand-box methods and the cut-off lengths between 
these two domains (respectively 26.35, 51.05 and 47.58 µm) have been detected automatically 
(see Section A1.(c).i). Once again, the sand-box cut-offs are greater than the box-counting 
cut-off. Above these cut-offs, a homogeneous, space-filling behavior is detected by the box-
counting and the pseudo 3D sand-box methods (fractal dimension of 3 and 1.949, 
respectively), whereas the maximal box size attainable by the sand-box method (64 x 64 x 64 
voxels, due to the limited depth of the datasets) precludes reaching such a domain, with a 
slope equal to 2.765. Below these cut-offs, the best linear fit exhibits slopes of -2.179 by box-
counting (very close to value of 2.17, interpreted as a fractal dimension, given by Cassot et al. 
(2006) for the capillaries of a middle layer cortex region) and of 2.06 by sand-box. However, 
by box-counting, the linearity is only apparent, because Berntson’s statistical test for 
curvilinearity is always positive at the 1% level. Conversely, by sand-box, a linear range at 
intermediate scales (11.5 to 41.2 µm) with a slope of 1.686 is detected by Berntson’s 
procedure. Below this range, a slope approaching 3 is obtained, due to the 3D nature (at low 
scale) of the vascular segments studied. However, the linear-range at intermediate scale is not 
detected when the vascular network contained in region L1 is first skeletonized, suggesting 
“apparent fractality originating from underlying randomness” (Hamburger et al. 1996, Halley 
et al. 2004)8. Thus, the behavior of the intra-cortical capillary network L1 does not differ from 
the behavior of a homogeneous random network when analyzed by box-counting or sandbox. 
 

In addition, the power spectrum (Fig. A11(D)) also displays two domains: a saturated 
domain at low frequencies and a decreasing domain at high frequencies. In case of region L1, 
the cut-off frequency kc between these two domains is 6.34 pixel-1, corresponding to a cut-off 
length of 256/kc, i.e. 49.28 µm, which is very close to the values obtained by both sand-box 
methods. Above kc, the power spectrum is linear, of slope = -4.79, very close to the slopes 
obtained by Risser et al. (2007) for healthy networks (-4.8 or -4.9). The linear range as 
detected by Berntson’s procedure spans over half a decade of frequency scales (from 6.34 to 
29.4 pixel-1). Thus, when studied by the spectral approach, the behavior of the intra-cortical 
capillary network L1 does not differ from the behavior of 3D homogeneous random networks 
(see Fig. A10), whose slope at high frequencies (-4.56) is also of same order of magnitude. 
 
 Similar results (see Table A2) have been obtained with every dataset studied, except 
for the box-counting slope at high scale for the summit regions S1 and S2, which is 
significantly smaller than 3. In this case, the maximal box size attainable due to the limited 
depth of the datasets once again precludes a homogeneous, space-filling behavior to be 
reached. However, the results obtained by the other methods (pseudo 3D sand-box and 
spectral methods) suggest that these summit regions are effectively space-filling at large scale.  
 

                                                            
8 As pointed out by an anonymous reviewer, because the images acquired by Risser et al. (2007) are so well 
resolved that the capillaries are much wider than the voxel size, this same phenomenon could also introduce 
some bias in their analysis. In this context, it is noteworthy that, when studied by box-counting, the behavior of 
homogeneous random 4-pixels thick meshes of characteristic length 40 pixels exhibits a linear domain (spanning 
from 2 to 16 as determined by Berntson’s procedure) independent of the overlap of a resampled DLA tree. 
However, the slopes of  these linear domains are different (-1.462 + 5.6 10-4 (no overlap) and -1.692 + 0.015 
(overlap)), the difference being highly significant (p<0.0001 as tested by a single classification ANOVA with 
two groups). In addition, the last slope is very close to the fractal dimension of DLA in 2D (1.667).  
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All together, these results demonstrate that healthy intra-cortical capillary networks 
are space filling over a cut-off length of order 25 to 75 µm, which should give an estimate of 
the characteristic length of the capillary lattice. Indeed, these values are in close 
correspondence with the mean capillary length (57.37 to 63.26 µm) determined by Cassot et 
al. (2006). In addition, these values also are in accordance with the mean value of the 
extravascular distance (50 µm), which provides an alternative definition for the order of 
magnitude of the capillary mesh (Cassot et al. 2006).  

 
However, even though it is tempting to conclude that healthy intra-cortical capillary 

networks are not fractal, but rather random, at lower scales, the analytical tools used above are 
inconclusive, because, once again, the obtained results are compatible with both behaviors. In 
other words, the analysis of the data does not permit to discriminate between true fractality 
and apparent (or artifactual) fractality. Therefore, additional investigations are needed to 
conclude on the nature of vascular networks at low scale. For that purpose, we introduce an 
alternative method based on the multi-scale analysis of the regional maxima of the distance 
map.. Indeed such an analysis keeps the essential information regarding the capillary mesh 
heterogeneities while avoiding artifacts due to the 3D nature of its elementary constituents 
(i.e. the capillaries).  

 
(d) An alternative approach 
 
 In Risser et al. (2007), the box-counting and sand-box methods are used to analyze the 
vessels’ network whereas the spectral approach is used to analyze its avascular space. Here, 
we propose a method allowing the study of the avascular space by the box-counting and sand-
box methods. The idea is to provide a new tool for determining whether the volumes of tissue 
contained in each elementary capillary mesh span several orders of magnitudes or not.  
 

i. Method 
 
Briefly, the regional maxima of the distance map d(i,j,k), i.e. the connected 

components of voxels with a constant d value and whose external boundary pixels all have a 
lower d value, are first computed (see Fig. 3 for a simultaneous representation of these 
regional maxima and of the vascular network in a sub-volume of region L1) and, after 
cropping by 4 voxels on lateral faces to remove side effects, are subsequently analyzed using 
the box-counting and both sand-box methods. This procedure has first been validated in 2D 
by using a fractal mesh-like structure containing empty spaces with surfaces spanning more 
than five orders of magnitude, the 8th order inverted Sierpinski carpet (Baish & Jain 2000). 
The set of the regional maxima of its distance map was studied by the box-counting and the 
sand-box methods. In both cases, a fractal behavior was demonstrated. The box-counting 
(respectively the sand-box) fractal dimension was 1.884 (respectively 1.845). The linear range 
determined by Berntson’s procedure spanned from 1 to 4096 pixels, i.e. the whole range of 
scales under study (respectively from 3 to 1259 pixels, i.e. more than two decades). In both 
cases, the coefficient of determination R2 was greater than 0.999. 
 

ii. Analysis of intra-cortical capillary networks 
 
The results obtained for region L1 are displayed on Fig. A12. First, regarding box-

counting, the log-log plot of N versus r does not exhibit any linear domain, which is 
confirmed by use of Berntson’s procedure. Instead, a continuous variation in its local slope is 
obtained and no clear cut-off scale can be identified. A similar behavior is obtained with the 
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sand-box method (dots in Fig. A12(B)). Second, regarding the pseudo 3D sand-box 
(continuous line in Fig. A12(B)), a linear domain, of slope 1.981, is detected by Berntson 
procedure for r between 47.58 and 152.5 µm. Below, a continuous variation in the local slope 
is observed.  
 
 Regarding the box-counting method, similar results have been obtained for every 
dataset studied. Regarding sand-box methods, similar results have also been obtained except 
that, in addition, a linear domain at very low scale (typically half a decade, between 5 and 25 
µm) has been evidenced in several regions. In regions L3 and LA1, such a domain has been 
found by both sand-box methods, whereas in regions L2 and S1 such a domain has been 
found by only one of them. However, even in these cases, no clear cut-off scale could be 
deduced.  
 
 These results clearly demonstrate that the distributions of regional maxima of healthy 
capillary networks are not fractal at low scale. Thus, at low scale, healthy capillary networks 
are homogeneous. The fractal behavior of the capillaries of a middle layer cortical region 
deduced by Cassot et al. (2006) using the box-counting method was therefore purely 
artifactual. Of course, this comment doesn’t hold for the fractal behavior of the intra-cortical 
tree-like vascular structures evidenced by the same authors after having separated these 
structures from the capillary lattice. 
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APPENDIX B: Resolution of the pressure field of Poiseuille flow using fictitious random 
walkers 
 
The steady flow of fluid through a pipe of circular cross section is a well known exact 
analytical solution of the Navier-Stokes equations, displaying a parabolic velocity profile and 
a linear pressure drop. In this type of flow, diffusion is negligible compared to convection. As 
a consequence, fluid particles (i.e. infinitesimal volumes of fluid large enough to contain 
many molecules) do not physically behave as random walkers but rather deterministically 
follow straight trajectories. Nevertheless, the pressure field of Poiseuille flow, which, 
according to the Navier-Stokes equations is governed by: 

02

2
=

∂
∂

x
p , 

where x is the longitudinal coordinate, can be solved using fictitious random walkers, as 
illustrated below, from the known entry and outlet pressures (pin and pout). 
 
First, this differential equation is approximated on a square grid (i,j) by a finite difference 
method, leading to: 

( )jijiji ppp ,1,1, 2
1

+− += . 

This recursive equation can be interpreted as a set of transition probabilities that determine the 
motion of fictitious random particles according to the following rules: if a particle is at 
position (i,j) at step K, then, at step K+1, the particle goes to (i-1,j) with probability 0.5 or to 
(i+1,j) with probability 0.5 (Zwillinger 1998).  
 
For each position (i,j) of the grid, the value of the pressure pi,j is approximated by launching a 
large number N of particles from (i,j). When a particle n reaches the inlet or outlet boundaries, 
the particle is stopped and the pressure value on the boundary is stored (pn = pin or pout). An 

approximation to the solution, at the point (i,j), is given by the average ∑ =
N
n

np
N 1
1 of all the 

values stored. Of course, the numerical accuracy of this approach increases with increasing N, 
as displayed on Figs. B1 and B2. 
 
As a conclusion, the use of  random walkers as a tool do not need to be supported by a 
physical reality, where real random walkers are moving, in order to describe physical 
processes. In the case of a Poiseuille flow, the relevant physics is purely convective : diffusion 
is negligible and, as a consequence, fluid particles do not follow random walks but 
determinist straight trajectories. However, statistics performed over the trajectories of a large 
number of fictitious random walkers allow to evaluate the pressure field, which is a physical 
reality. 
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APPENDIX C. Justification for using a DLA growth process for modeling vascular 
morphogenesis 
 
The justification for using a DLA growth process, well known to produce highly branched 
fractals structures, during the steps 2 and 4 of Fleury’s model, as described in Section 3, is 
based on the analogy between DLA and Dielectric Breakdown (DB) (Niemeyer et al. 1984, 
Vicsek 1992), which is itself formally identical to the selection of capillary vessels by shear 
stress in a laplacian pressure field to remodel into arteries or veins (Fleury & Schwartz 1999). 
 
Indeed, a capillary lattice may be considered as a porous media. If, as a crude approximation, 
its permeability k is assumed to be isotropic and uniform, implying that each capillary has the 
same radius R, and if the blood is assumed to be incompressible and newtonian, the flow q is 
governed by Darcy's law: 

q = - (k / µ).grad(P), 
where µ is the dynamic viscosity and P is the pressure. If the medium if further assumed to be 
non-deforming, the continuity equation leads to a laplacian pressure field (Bear 1972):  

ΔP = 0. 
In addition, under the same hypotheses, the flow in each capillary tube must be a Poiseuille’s 
flow, with a parabolic velocity profile. Thus, in each capillary tube, the wall shear stress τ can 
be evaluated as 4µV/R, where V is the mean tube velocity. The pressure gradient can be 
related to the local flow (πR2V) by Poiseuilles’s law: 

grad(P)=-8µ(πR2V)/(πR4)= -8µV/R2. 
Thus, in each capillary tube, the wall shear stress can be related to the pressure gradient by:  

τ = -R.grad(P)/2. 
If the probability p for a given capillary to enlarge, becoming an arterial segment under the 
action of flow, is proportional to the wall shear stress, then: 

p = -K grad(P), 
where K is proportional to the time scale of the sequence from membrane transduction to 
cellular reactions, in interaction with perivascular cells and matrix components, until a large 
vessel has been completed (Fleury 1999). Finally, if the pressure drop in arterial segments is 
neglected (i.e. if the hydraulic resistance of the arterial segments is supposed to be negligible 
compared to the resistance of the capillaries), then, the pressure along the arterial 
arborescence is constant and imposed by the pressure at the arterial entry points. 
 
 This problem is formally identical to DB, introduced in order to simulate phenomena 
ranging from atmospheric lightning to electric treeing in polymers. In these cases, if a 
sufficient voltage difference is imposed, a conducting phase invades an insulating material, 
exhibiting a randomly branched, fractal structure. The growth velocity of this conducting 
phase is stochastically proportional to the local electric field (E = - grad φ), whereas the 
electric potential φ satisfy Laplace's equation (Δφ  = 0). The conducting phase is assumed to 
be equipotential (infinitely conducing). Thus, in DB, the growth probability depends on the 
local field (potential) determined by the equipotential growing pattern.  
 

Finally, it is well known that DB is equivalent to DLA, except for a slight difference in 
the boundary conditions (Vicsek 1992): the sticking condition used in DLA corresponds to an 
equipotential in the sites adjacent to the growing aggregate whereas, in DB, the equipotential 
is the growing pattern itself. As a consequence, a DLA growth process is well suited to model 
the growth of the arterial and venous trees in steps 2 and 4 of Fleury’s model. 
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TABLES: All tables appear above the corresponding table legend 
 
 

Table 1: Synthetic summary of the 2D box-counting fractal dimensions in various types of healthy vascular 
network, at different scales of observation. Image processing: B (Box-counting), E (Box counting after edge 
detection), S (Box counting after skeletonizing), n (number of samples); Box cut-offs: values of the lower and 
upper cut-offs used for determining the fractal dimension by linear regression in a log-log plot (see Section 4).  
Abbreviations used: AV: Arterio-Venous, CAM: Chorioallantoic membrane, ID: Incubation Day, SEM: 
Scanning Electron Microscopy; NA: not available; NC: No Capillaries: the experimental technique does not 
allow the observation of capillaries; CR: Capillaries Resolved: the experimental technique allows the observation 
of capillaries. 
Symbols used: *: 3D organs: the box dimension has been estimated after projecting the vascular network in two 
dimensions; ~: estimates from the data available. 
 
 
 

Network type Resolution 
(µm/pixel) 

Image size 
(pixels) 

Image size 
(mm2) 

Image 
processing

Box  
cut-offs 

(µm) 

2D box-counting 
fractal 

dimension  

Refs 

Subcutaneous AV ~ 20  280 x 280 ~ 5.6 x 5.6 S (n=12) NA 1.70 ± 0.03 Gaz95,
Bai01 

Developing CAM 
(ID 15) 

11 512 x 512 5.6 x 5.6 E (n=23) NA 1.416 ± 0.046 - 
1.485 ± 0.037 

San96 

Developing CAM 
(ID 13 – ID 18) 

NA, NC NA NA S 
(n=3 - 32) 

100 - 
7900 

~ 1.1 – 1.8 Kir96 

Developing CAM 
(ID 13) 

11 NA NA B (n=6) 22 - 220 1.26 ± 0.03 Wil96 

Developing CAM 
(ID 3 – ID 6) 

~ 80 640 x 480 ~ 5 x 3.5 S ~ 160 - 
NA 

1.3 - 1.68 Vic98 

B ~ 1.6 – 1.75 Developing CAM 
(ID 6 – ID 12) 

5, NC 480 x 480 2.4 x 2.4 

S 

5 - 2400 

1.37 ± 0.01 - 
1.54 ± 0.03 

Par98 

Placenta's arterial* 85 2300 x 2900 195 x 220 E (n=22) 1700 - 
17000 

1.86 Ber98 

Pial vasculature 12.5 640 x 480 8 x 6 S (n=6) NA 1.31 ± 0.03 Her01 

Retinal 
vasculature 

NA, NC NA NA S (n=10) NA 1.7 ± 0.02 Mas04 

Subcutaneous 
capillary 

~ 2  280 x 280 ~ 0.56 x 0.56 S (n=12) NA  1.99 ± 0.01 Gaz95,
Bai01 

Epifoveal vessels NA, CR NA ~ 0.9 x 0.9  B (n=1) NA  2.00 Pan95 

Developing CAM 
(ID 14) 

0.98 1110 x 766 1.1 x 0.75 B (n=4) NA 1.86 ± 0.01 Arl02 

Hepatic sinusoidal 
network 
(superficial layer) 

SEM NA NA E (n=39) NA 2.01 ± 0.01 Gau05 

Lo
w

 re
so

lu
tio

n
H

ig
h 

re
so

lu
tio

n



Acc
ep

te
d m

an
usc

rip
t 

 29 

Cut-off
Slope r cut Slope

DLA + Grid -1.318 ± 0.006 1 ± 0 10.4 ± 0.9 12.8 ± 1.8 -2 ± 0 16 ± 0 4096 ± 0
DLA + Random -1.224 ± 0.003 2 ± 0 6 ± 0 10.8 ± 1.1 -1.999 ± 0.003 13.6 ± 2.2 4096 ± 0

Cut-off
Slope r cut Slope

DLA + Grid 1.727 ± 0.011 3 ± 0 28.6 ± 2.7 39 ± 0 1.973 ± 0.027 208 ± 98 2135 ± 840
DLA + Random 1.756 ± 0.014 3.4 ± 0.9 111 ± 20 152 ± 15 1.979 ± 0.008 230 ± 28 2511 ± 0

Box-counting

Linear range Linear range
Large ScaleLow scale

Sand-box
Low scale Large Scale

Linear range Linear range

 
Table A1: Cut-off length, slopes and linear ranges obtained by Berntson’s procedure for box-counting (upper 
panel) and sand-box (lower panel) performed over five realizations of 5000 particles resided DLA clusters 
superimposed to a square grid (DLA + Grid) or random networks (DLA + Random). In all cases, the slopes 
were determined with coefficients of determination greater than 0.999. 
 
 
 
 
 
 
 
 
 
 

Low scale Cut-off (µm) Large Scale Low scale Cut-off (µm) Large Scale Cut-off (µm) Large Scale
Slope r cut Slope Slope r cut Slope r cut Slope

L1 -2.179 26.3 -3 1.595 47.6 1.949 40.4 -4.787
L2 -2.241 26.3 -3 1.629 62.2 2.014 40.4 -4.656
L3 -2.251 26.3 -3 1.624 47.6 1.924 48.0 -4.31

LA1 -2.265 26.3 -2.977 1.700 62.2 1.957 48.0 -4.418
S1 -2.224 26.3 -2.5 1.573 76.9 1.958 48.0 -4.444
S2 -2.227 26.3 -2.524 1.580 62.2 1.983 48.0 -4.602

Box-counting Pseudo 3D Sand-box Power Spectrum

Table A2: Cut-off length and slopes of the best linear fits for box-counting, pseudo 3D sand-box and spectral 
approach performed over six intra-cortical vascular networks, described in section A2.(a). In all cases, the 
slopes were determined with coefficients of determination greater than 0.99. 
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FIGURES: All figures appear below the corresponding figure legend 
 
Figure 1: 672 x 672 highlight of generic patterns constructed using a square grid (above) and a random 
network (below). The characteristic length of the capillary lattice, denoted by n, has been fixed to 16. By 
resampling, the smallest scale in the quasi-fractal DLA-type tree is also n (which is equivalent to use random 
walkers of size n x n to construct the DLA, see Appendix A, Section A1(a)). 
 
 

 

 
 

10 n 
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Figure 2: Volume rendering of a selection of representative datasets of healthy intra-cortical networks 
from the collateral sulcus in the temporal lobe (a) Capillary mesh in a lateral region of the sulcus (L1) ; (b) 
Capillary mesh surrounding the distal extremity of an arterial arborescence (indicated by stars) in a lateral region 
of the sulcus (LA1). The red box in Fig. 2(a) corresponds to a region highlighted in Fig. 3 ; (c) Capillary mesh in 
a top region of the sulcus (S1) ; (d) Capillary mesh in a top region of the sulcus, exhibiting a preferential 
orientation of vessels (S2). 
 

(a)      (b)   

    
 

(c)      (d)   

 
 

* 
*
*

*

*

200 µm 



Acc
ep

te
d m

an
usc

rip
t 

 32 

Figure 3: Simultaneous representation of the vascular network contained in the sub-volume of region L1 
(~ 120 x 120 x 45 voxels) highlighted by the red box in Fig. 2a and of the regional maxima of the distance 
map of its avascular space. Two different views of the same area are provided. The colour-map is encoding for 
the depth (in voxels). The regional maxima of the avascular distance map are represented by dots. 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 

 



Acc
ep

te
d m

an
usc

rip
t 

 33 

 
Figure A1: A random network exhibiting a Gaussian distribution of cells' areas. This network has been 
constructed by randomly choosing one point in every element of a 16 x 16 square grid in a 4096 x 4096 domain, 
and by subsequently extracting the voronoi diagram of this random set of points. A: Highlight of a 160 x 160 
domain. Dotted lines: 16 x 16 square grid ; Dots: random set of points ; Lines: voronoi diagram. B: Histogram of 

cell's areas. Line: best fit of the data to a Gaussian function ⎟
⎟
⎠

⎞
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⎜
⎝

⎛ −−= 2

2

2
)(exp)(

σ
µxKxf . 

 
 
 
 
 
 
 
 
 
 
 
 

  K=3663 
  µ=252.3 
  σ2=4164 
  R2=0.996

A 

B 



Acc
ep

te
d m

an
usc

rip
t 

 34 

Figure A2: DLA cluster consisting of 500000 particles over a 4096 x 4096 domain. 
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Figure A3: Box-counting analysis (A) and sandbox analysis (B) of the DLA cluster shown in Fig. A2: 
Continuous lines and symbols : N as a function of  r. Dotted lines: best linear fit for box sizes included between 
rlow and rhigh. This range represents the largest range for which a statistical test for curvilinearity is negative (see 
text).  
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Figure A4: Box-counting analysis (A) and sand-box analysis (B) of a 5000 particles resampleed DLA 
cluster. Continuous lines and symbols: N as a function of r. Dotted lines: best linear fit for box sizes included 
between rlow and rhigh. This range represents the largest range for which a statistical test for curvilinearity is 
negative (see text). 
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Figure A5: Box-counting analysis (A) and sand-box analysis (B) of a n x n square grid.  Symbols: N as a 
function of r. Dotted lines: best linear fit for box sizes smaller than rcut. Plain lines: best linear fit for box sizes 
larger than rcut.  For the ranges where a statistical test for curvilinearity is negative, see text. 
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Figure A6: Box-counting analysis (A) and sand-box analysis (B) of a random network.  Same conventions 
as in Fig. A5.   
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Figure A7: Box-counting analysis (A) and sand-box analysis (B) of a resampled DLA superimposed to a 
square grid. Same conventions as in Fig. A5. In addition, the points belonging to the linear range obtained by 
Berntson’s procedure for r < rcut have been encircled by a dashed-dotted curve. 
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Figure A8: Box-counting analysis (A) and sand-box analysis (B) of a resampled DLA superimposed to a 
random network.  Same conventions as in Fig. A5. In addition, the points belonging to the linear range 
obtained by Berntson’s procedure for r < rcut have been encircled by a dashed-dotted curve. 
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Figure A9: Power spectrum analysis of 5000 particles resampled DLA clusters superimposed, or not, to a 
square grid (A) or to random meshes (B). The averaged power spectrum P, averaged over five realizations, is 
displayed as a function of kij. Dots: DLA clusters ; Plain lines: Meshes ; Plain lines + Dots: DLA clusters 
superimposed to meshes ; Vertical dashed-dotted lines ; cut-off frequencies ; Dotted lines: Linear fits obtained 
using Berntson’s procedure. 
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Figure A10: Power spectrum analysis of tri-dimensional random meshes. These meshes are constructed by 
generalizing the 2D procedure introduced in Section S1.(a): first, a random set of points is constructed by 
randomly choosing one point in every elements of a n x n x n cubic grid over a 256 x 256 x 64 domain ; second, 
the vertices of its voronoi diagram are extracted. The averaged power spectrum P, calculated as described in 
section S2, averaged over five realizations, is displayed as a function of kij. Vertical dashed-dotted line: cut-off 
frequency kc = 15.5 (corresponding to a cut-off length of 256/ kc = 15.5 pixels, very close to the size of the cubic 
grid used to generate the initial random set of points) ; Dotted line: Linear fit obtained using Berntson’s 
procedure: the linear range spans from kij = 17.4 to 46.4, with a slope equal to -4.55 and a coefficient of 
determination greater than 0.998. 
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 Figure A11: Box-counting (A), sand-box (B), pseudo 3D sand-box (C) and power-spectrum (D) analyses 
of the 256 x 256 x 64 voxel region of the healthy human intra-cortical vascular network L1 displayed in 
Fig. 2a: A, B and C: same conventions as in Fig. A5. In addition, the points belonging to the linear range 
obtained by Berntson’s procedure for r < rcut have been encircled by a dashed-dotted curve ; D: same conventions 
as in Fig. A9. 
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Figure A12: Box-counting (A) and sand-box (B) analyses of the regional maxima of the distance map of 
the healthy human intra-cortical vascular network L1. (A) Continuous line: N as a function of r ; (B) 
Continuous line: N as a function of r by pseudo 3D sand-box ; Dotted line: linear domain determined by 
Berntson’s procedure ; Dots: N as a function of r by sand-box. 
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Figure B1: From top to bottom, iso-pressures obtained with N = 103, 104, 105 and 106. The exact solution of the 
Navier-Stokes equations predicts that iso-pressures are straight vertical lines. The “random walk” approach of resolution 
introduces noise, the intensity of which decreases when increasing the number of fictitious walkers. 

 

 

   
 

 
 
 
 
Figure B2: Mean pressure in each cross section. With N = 106, the well known linear decrease is obtained. 

 
 
 




