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Abstract 

In this paper the effect of lethality on error threshold and extinction has been studied in 

a population of error-prone self-replicating molecules. For given lethality and a simple 

fitness landscape, three dynamic regimes can be obtained: quasispecies, error 

catastrophe, and extinction. Using a simple model in which molecules are classified as 

master, lethal and non-lethal mutants, it is possible to obtain the mutation rates of the 

transitions between the three regimes analytically. The numerical resolution of the 

extended model, in which molecules are classified depending on their Hamming 

distance to the master sequence, confirms the results obtained in the simple model and 

shows how an error catastrophe regime changes when lethality is taken in account.  

 

Keywords: single-peaked landscape, population dynamics, mathematical model, error 

catastrophe, selection-mutation balance. 

 

1. Introduction  

The Quasispecies model was originally developed by Eigen to study the origin of 

genetic information in a prebiotic scenario (Eigen, 1971). However, it has turned out to 

be very useful as a general model of evolutionary dynamics of populations with both 
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selection and high mutation rates. Although mathematically equivalent to the classical 

selection-mutation balance of population genetics (Biebricher and Eigen, 2006; Wilke, 

2005), the explicit consideration of high mutation rates, and a great number of loci, 

make it especially appropriate for populations with high genetic variability such as 

prebiotic self-replicative molecules (Eigen, 1971), RNA viruses (Domingo et al., 1978), 

the immune system (Kamp et al., 2002), bacteria (Webb and Blaser, 2002), and even 

cancer cells (Solé and Deisboeck, 2004). 

 

One of the most remarkable results of the model is that, in certain fitness landscapes, a 

quasispecies presents an error threshold, i.e. a maximum mutation rate beyond which 

the population suffers an error catastrophe. Error catastrophe has been classically 

interpreted as a loss of the genetic information contained in the quasispecies 

(Biebricher and Eigen, 2005; Eigen, 2002) . On the basis of this result, treatment with 

mutagenic drugs has been postulated as a possible therapy against highly variable 

pathogens such as RNA viruses (Holland et al., 1990) and cancer cells (Solé and 

Deisboeck, 2004). After having been successfully probed with RNA viruses in cell 

culture, the experimental result was called lethal mutagenesis (Domingo et al., 2006; 

Grande-Perez et al., 2002; Loeb et al., 1999; Sierra et al., 2000).  

 

Initially, lethal mutagenesis was explained as the result of an RNA virus crossing the 

error threshold due to the increase in the mutation rate. However, it has recently been 

proposed that lethal mutagenesis cannot be reducible to crossing the error threshold, 

and that in fact they are essentially different phenomena (Bull et al., 2005; Bull et al., 

2007). These papers consider that error catastrophe is a genetic-evolutionary process 

whereby a population shifts to the most mutational robust phenotypes, due to the 

imposition of mutation over selection. However, no experimental evidence has been 

obtained of a shift to a more robust phenotype after mutagenic treatment of viral 
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populations (Martin et al. 2008). Lethal mutagenesis is considered to be extinction, i.e. 

a demographic process that can be independent of population structure.  

Error catastrophe is a characteristic result of the quasispecies model in some fitness 

landscapes. Knowing its relation to extinction can be very useful in understanding the 

effect of high mutation rates in error-prone biological populations, particularly in RNA 

virus populations.  

 

Taking previous results into account (Wagner and Krall, 1993), some authors have 

stated that error catastrophe cannot take place in the presence of lethal mutants 

(Summers and Litwin, 2006; Wilke, 2005). However, a recent paper (Takeuchi and 

Hogeweg, 2007) has demonstrated the existence of error catastrophe in a fitness 

landscape with lethal mutants. The paper also affirmed that the results described by 

Wagner and Krall were based on a very restrictive initial hypothesis: the use of a one-

dimensional genotype space, and a simple mutation mechanism in which each 

genotype can only mutate to the adjacent genotypes. (Takeuchi and Hogeweg, 2007). 

On the other hand, as Wilke has pointed out (Takeuchi and Hogeweg, 2007), Takeuchi 

and Hogeweg considered a constant population size, which meant that extinction was 

not allowed, and therefore its results cannot be interpreted in the context of the 

relationship between error catastrophe and lethal mutagenesis. But in most cases, 

constant population size is a general constraint in quasispecies models. Thus, 

extinction by an increasing mutation rate has rarely been studied (Bonnaz, 1999) . 

 

In this paper a simple model in which there is no restriction to population size has been 

developed, in order to study the relationship between extinction and error catastrophe. 

The main novelty of the model, with respect to previous formulations, is the introduction 

of lethality in such a way that some regions of the sequence space cannot self-
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replicate. The second section of the paper presents a general quasispecies model in 

the presence of lethality. The third section proposes a simple case study of the general 

model. Its analysis has enabled the effect of lethality on the error threshold and on the 

extinction threshold to be determined analytically, i.e. the mutation rate beyond which 

population becomes extinct. The model has been extended in the fourth section in 

order to study the effect of lethality on the error catastrophe regime, and to validate the 

results obtained in the previous section. Finally, the results are discussed in the context 

of the quasispecies dynamics. 

 

2. Quasispecies model with lethality 

The quasispecies model describes the evolutionary dynamics of a population 

composed of error-prone self-replicative species subjected to selection. In this model, a 

quasispecies is defined as the stationary population distribution resulting from the 

action of the two evolutionary forces, namely mutation and selection (Eigen, 1971). 

Self-replicative species are represented by binary strings of length ν. Each sequence 

replicates with an amplification rate (Ai) and degrades with a degradation rate (Di). New 

sequences arise by mutation during the replication process. Each position in the 

sequence is copied correctly with probability q, this being constant for all the positions. 

Consequently, the mutation rate per position is µ = 1-q.  

 

Following the original formulation of the model, a sharply peaked fitness landscape has 

been used. In this approach a sequence, called the master, has an amplification rate 

(Am), higher than that of any other sequence. The sequences different from the master 

have the same amplification rate Ak, irrespective of the number of mutations (Swetina 

and Schuster, 1982). The degradation rate is constant for the whole sequence space 
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(Dm = Dk = D). To deal with this problem, the 2ν
 sequences are grouped in ν+1 error 

classes, depending on the number of mutations with respect to the master sequence.  

 

The lethality scheme introduced in the fitness landscape implies that there are n fixed 

positions in the sequence, whose mutation with respect to the master sequence implies 

that the emerging sequence cannot replicate, so that its amplification factor is zero (Al 

= 0). In this scheme, the distribution of lethal mutants among the sequence space is 

not uniform. The sequences with greater Hamming distance from the master have a 

higher fraction of lethal sequences. Fig 1. shows the lethal sequence fraction as a 

function of the Hamming class for a different number of lethal positions, n.  

 

2.1. A simple model 

As a first approach, all the sequences have been grouped in three classes: master (A = 

Am), non-lethal mutants (A = Ak) and lethal mutants (A = Al = 0). For the sake of 

simplification, back mutation from lethal mutants to the master sequence has not been 

taken into account. This simplification is usually used in quasispecies models (Swetina 

and Schuster, 1982) because the probability of obtaining a given specific sequence by 

mutation is extremely low.  

 

The linear differential equation system of this model is:   

 

( )

(1 ) ( )

(1 ) (1 )

m
m m

n n nk
m m k k

n nl
m m k k l

dx A q D x
dt

dx A q q x A q D x
dt

dx A q x A q x Dx
dt

ν

ν −

= −

= − + −

= − + − −

 (1) 



Acc
ep

te
d m

an
usc

rip
t 

 6

which refers to the time evolution of master (xm), non-lethal (xk) and lethal (xl) classes, 

respectively. In the first place, the equations show that, discarding back mutation, the 

production of master sequence depends only on the correct self-replication of its ν 

positions. The class of non-lethal mutants can be produced from master sequence if 

one or more mutations take place in any of its ν- n non-lethal positions, but not in the 

rest of the lethal positions. The probability of this happening is qn (1-(qν-n)). Next, if any 

non-lethal mutant copies its n lethal positions correctly, with probability qn, it will give 

rise to another non-lethal species in spite of the number of non-lethal positions that 

have been miscopied. Finally, a lethal species is produced when, during the replication 

of any master or mutant non-lethal species, at least one mutation is introduced in any 

of the n lethal positions, which happens with probability 1 – qn.  

 

No population constraint has been introduced in these equations. It can be shown that 

population fractions are the same as in the constant populations quasispecies model 

(Schuster and Stadler, 2008). 

The linear differential equations system can be expressed in matrix form as:  

 x Wx=  (2) 

where the W matrix is 

 
0 0

(1 ) 0
(1 ) (1 )

m
n n n

m k
n n

m k

A q D
W A q q A q D

A q A q D

ν

ν −

⎛ ⎞−
⎜ ⎟= − −⎜ ⎟
⎜ ⎟− − −⎝ ⎠

 (3) 

W being a triangular matrix. Its eigenvalues are the elements of the main diagonal, 

each one with its associated eigenvector. The model presented is linear, so 

populations grow infinitely or decrease until extinction. However, during this process 

the population reaches an equilibrium distribution. In biological terms, eigenvalues are 

the growth or decrease rates of the population, whereas eigenvectors are the 
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population distribution associated to those rates (Caswell, 2001). Among the possible 

eigenvalues of W, the system reaches the final state given by the dominant eigenvalue 

or spectral radius, i.e. the one with greater value.  

 

The dominant eigenvalue is the growth rate of the population. If it is greater than zero, 

the population will grow indefinitely. If it is lesser than zero, it will become extinct, i.e. 

the dominant eigenvalue refers to the demographic process. On the other hand, the 

normalized dominant eigenvector is the stationary population distribution expressed in 

the molar fraction   

 i
i

i
i

xy
x

=
∑

 (4) 

 

resulting from the selection-mutation process, so it refers to the genetic-evolutionary 

component. Each eigenvalue-eigenvector pair defines an evolutionary regime. The first 

eigenvalue λ1 = w11 = Akqν-D is associated with the eigenvector v1 

 1

(1 ) ( )

(1 )( )(1 )

n n n
m m

m k m k
n n

m k m k

m k m k
nn

m k

m k

A q q A q q
A A A A

A q A q A q A qv
A A A A

qA A q
A A

ν ν

ν ν

−⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −= =⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−− −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 (5) 

which is characterized by a given stationary distribution of master, non-lethal and lethal 

species. Consequently, this eigenvector-eigenvalue pair defines the quasispecies 

regime.  

The eigenvalue λ2=W22=Akqn-D is associated with the eigenvector v2:  



Acc
ep

te
d m

an
usc

rip
t 

 8

 2

0

1

n

n

v q
q

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

 (6) 

in which there is no master sequence, the population being composed exclusively of 

non-lethal and lethal mutants. This eigenvector-eigenvalue pair defines error 

catastrophe. In single-peaked landscapes without back mutation, error catastrophe 

implies the disappearance of the master sequence. Finally, the third eigenvalue, λ3 = 

W33 = -D, can only be dominant in the particular case of Ak=Am=0. In this case all 

sequences are lethal, so the population just decays exponentially.  

When two eigenvalues are equal, a transition from one evolutionary regime to another 

occurs. If q is the only parameter to be changed, the value at which this transition takes 

place can be obtained.  

Although it is simple, this model has the great advantage of clearly separating genetic 

processes from demographic processes, so it is very easy to study each one 

separately, and then its relationship.  

Thus, the error threshold (qc) is defined as the value of q at which the transition to error 

catastrophe occurs (Biebricher and Eigen, 2005). In the same way, the extinction 

threshold (qex) is defined as the value of q at which the population begins to become 

extinct (Bull et al., 2005). It is possible to obtain explicit values for both thresholds from 

the W matrix.  

 

2.2. The error threshold 

As we have seen, the error threshold can be obtained by equalling both eigenvalues 

associated with the quasispecies and error catastrophe regimes:  

 W11 = W22  (7) 
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 Amqν − D = Akq
n − D  (8) 

and therefore 

 n k

m

Aq
A

ν − =  (9) 

 qc =
Ak

Am

ν − n =
1
σ

ν − n  (10) 

where σ is the superiority of the master sequence over the error tail which, in this case, 

is just the ratio between amplification factors.  

Equation (10) shows that, in this lethality scheme, the population behaves as if its 

sequence length were decreased, and equivalent to the number of non-lethal positions. 

Therefore, the error threshold decreases when the number of lethal positions (n) 

increases. The value νef = ν – n is called the effective sequence length.  

Particularizing the original premise of Eigen’s paper (Eigen, 1971) to the presence of 

lethality, it is possible to obtain a general expression for any single-peaked fitness 

landscape. In Eigen’s original paper, the error threshold is obtained by equalling the 

selective value of the master sequence to the residual mean productivity, or error tail 

productivity:  

 

 AmQm − Dm = Ei≠m  (11) 

where 
i i

i m
i m

i
i m

E x
E

x
≠

≠

≠

=
∑
∑

 

In the presence of lethality, the mean productivity of the error tail can be expressed as 

the sum of all the contributions of lethal and non-lethal populations:  
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 , ( ) ( )i m let k k l k kE q A D y Dy A y D≠ = − − = −  (12) 

since only non-lethal mutant fractions (ynl) replicate. By inserting (12) into equation (11) 

and assuming D to be constant, the following expression can be obtained:   

 
  
qc

ν =
Ak yk (q)

Am

=
yk (q)

σ
=

1
σ ef

 (13) 

where  

 ( )
( )ef

k

q
y q

σσ =  (14) 

is the effective superiority of the master over the error tail.  

Since ynl < 1, this implies that σef > σ, and  therefore the error threshold will always be 

lower when lethality is introduced in the landscape, and its value will decrease 

whenever lethality increases in the population. So, in general, lethality decreases the 

error threshold due to an increase in the effective superiority of the master sequence 

over the error tail.  

Applying this to the simple model established in section 2, the error threshold can be 

found from the expression (14), by simply evaluating the effective superiority in the 

error threshold:  

 ( )
( )ef c n

k c c

q
y q q

σ σσ = =  (15) 

The error threshold will therefore be:  

 

 
1 n

c
c

ef

qqν

σ σ
= =  (16) 
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1

n
cq ν

σ
−=  (17) 

which is the same value obtained before, since the original premise expressed by 

Eigen is formally identical to the equality of eigenvalues in the simple linear model. 

However, it is worth emphasizing that in the lethality scheme used here, the general 

premise of an increase in the effective superiority is equivalent to a lower effective 

sequence length.  

 

2.3. The extinction threshold 

The extinction threshold is defined as the value of q at which the dominant eigenvalue 

becomes negative. Therefore, its value will depend on the evolutionary regime of the 

population.  

When the population is in the quasispecies regime, the extinction threshold is obtained 

from the eigeinvalue λ1 = W11  

 W11 = Amqν − D = 0  (18) 

 ex
m

Dq
A

ν=  (19) 

which is constant, and independent from lethality, since it depends only on the absolute 

fitness of the master sequence.  

When the population has crossed the error threshold, and is in the error catastrophe 

regime, the extinction threshold is obtained from the eigenvalue λ2 = W22 

 W22 = Akq
n − D = 0  (20) 

 nex
k

Dq
A

=  (21) 
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This value depends on both lethality (n), and the absolute fitness of the mutant species. 

Beyond the error threshold, the population’s growth rate is the mean residual 

productivity, which is the sum of the contribution of lethal and non-lethal 

subpopulations:  

 ( )k m k k l k kE A D y Dy A y D≠ = − − = −  (22) 

It is easy to show that, beyond the error threshold, extinction happens when a lethal 

mutant fraction in the population exceeds a threshold value defined by:  

 Ek ≠m = Ak yk − D = 0  (23) 

 k
k

Dy
A

=  (24) 

 yl = 1−
D
Ak

=
Ak − D

Ak

 (25) 

2.4. Critical lethality 

When lethality is low, the error threshold is greater than the extinction threshold in the 

quasispecies regime. Increasing the mutation rate causes the population to cross the 

error threshold, and it subsequently becomes extinct when the mutation rate becomes 

greater than the extinction threshold defined for error catastrophe. As lethality 

increases, the error threshold decreases, until it finally falls below the extinction 

threshold of the quasispecies. Beyond this point, that we call critical lethality, the 

population becomes extinct before it enters error catastrophe, i.e. beyond this point the 

error threshold disappears.  This value can be obtained by equalling both expressions 

of error threshold for both evolutionary regimes:  

 n = ν
ln( Am / D)
ln Ak / D( ) (26) 
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The value of n depends on the length sequence, and on the ratio between the master 

and the mutant fitness. As the number of lethal positions in the sequence must be an 

integer, critical lethality nc is the first integer above the value of n obtained from (26).  

A phase diagram can be drawn, using the results obtained in previous sections, to 

describe the behaviour of the population as a function of lethality, and the mutation rate 

for the given values of Am, Ak and D.  

Figure 2 shows this diagram for different single-peaked landscapes, each one 

characterized by different amplification or degradation factors for the master and 

mutant species. In every case, three different regimes appear: quasispecies, error 

catastrophe and extinction. The borders between the regimes are the error and 

extinction thresholds. When the amplification factor of the mutant class increases from 

Ak = 2 (fig. 2a) to Ak =5 (fig. 2b), the error catastrophe regime expands out of both the 

quasispecies and the extinction regime. On the other hand, beyond the critical lethality, 

the extinction threshold does not change, as it only depends on master amplification 

(Am) and degradation factor (D). The increase of degradation factor from D = 1 (fig. 2a 

and 2b) to D = 4 (fig. 2c) expands the extinction regime, increasing the extinction 

threshold for all n. On the other hand, the error threshold does not change as D does 

not affect the error threshold when D is constant for all the population. Finally, an 

increase in the amplification factor of the mutant and the master class that keeps 

constant the effective superiority σef, (fig. 2a and 2d) does not change the error 

threshold, but decrease the extension of the extinction regime. 

 

 

 

2.5. Other lethality schemes 
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In order to compare the effect of lethality distribution on the extinction and error 

thresholds of the population, other simple lethality schemes have been applied to the 

model proposed here.  

If a uniformly distributed lethality in the whole sequence space is assumed (Bonnaz, 

1999), every error class will have a constant fraction (1-p) of lethal mutants, and the W 

matrix will be:  

 
0 0

(1 ) 0
(1 )(1 ) (1 )

m

m k

m k

A q D
W A q p A p D

A q p A p D

ν

ν

ν

⎛ ⎞−
⎜ ⎟= − −⎜ ⎟
⎜ ⎟− − − −⎝ ⎠

 (27) 

where the probability of producing non-lethal mutants is proportional to p, i.e. to the 

non-lethal mutant fraction on the sequence space. Similarly, the probability of 

producing a lethal mutant is proportional to (1-p).  

Proceeding in the same way as in the previous lethality scheme, the error threshold is:  

 qc =
pAk

Am

⎛

⎝⎜
⎞

⎠⎟

1
ν

=
p
σ

⎛
⎝⎜

⎞
⎠⎟

1
ν

 (28) 

which can be expressed in terms of an effective superiority as:  

 σ ef (qc ) =
σ

ynl (qc )
=

σ
p

 (29) 

 

1

1
c

ef

q
ν

σ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (30) 

Consequently, the error threshold decreases as the lethal mutant fraction on sequence 

space, p, decreases. The extinction threshold depends, as in the previous scheme, on 

the evolutionary regime. For the quasispecies regime it is the same as in the previous 

lethality scheme:  
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 ex
m

Dq
A

ν=  (31) 

However, an extinction threshold for an error catastrophe regime is not defined using q, 

but by the lethality degree, p:  

 0kA p D− =  (32) 

 c
k

Dp
A

=  (33) 

 1 k
c

k

A Dp
A
−− =  (34) 

 

  This means that if the population is beyond the error threshold, and the lethal mutant 

fraction (1-p) is greater than the critical value (1-pc), the population will become extinct. 

However, if (1-p) is less than (1-pc), the population will survive in an error catastrophe 

regime. This means that, in this scheme, extinction and error catastrophe cannot 

coexist for any given value of p (Bonnaz, 1999) . 

  

3. The extended model  

In the previous section a simple model was studied in order to obtain explicit 

expressions of the error and extinction thresholds as a function of lethality. In the 

model, sequences were grouped in three classes: master, lethal mutants, and non-

lethal mutants, which allowed an analytical treatment. However, it is necessary to 

classify and group the sequences in ν+1 Hi error classes, depending on the number of 

mutations with respect to the master sequence, for a more detailed study of how 

lethality affects the delocalization of the population over the whole sequence space. It 

is also possible to discard the no-back-mutation assumption which, as will be shown, 

has no qualitative effect.  
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To take the lethality into account in this model, each error class was divided into two 

subpopulations of lethal and non-lethal mutants. Since the master sequence is always 

non-lethal, and the sequence with ν mutations is always lethal , 2ν Ik subpopulations 

are obtained  where subscript k refers to the non-lethal subpopulation of Hamming 

class Hk when k≤ν, and refers to lethal subpopulations of Hamming class Hk-(ν+1) when 

k>ν. 

 

With these subpopulations a 2ν x 2ν W matrix is obtained. The elements of the W 

matrix are the production rates of the different subpopulations of each Hamming class. 

Since each class has been divided into two subpopulations, the subscripts of the matrix 

elements do not refer directly to the Hamming class, but to the different subpopulations 

given above.  

The elements Wij are the production rate of a subpopulation i from any other 

subpopulation j:  

  

Wij = Qij Aj − D ∀ i = j

Wij = Qij Aj    ∀ i ≠ j  

where Qij is the probability of obtaining a sequence of the subpopulation i  from any 

sequence of the subpopulation j by mutation. As the amplification rate of lethal species 

is Al = 0, the elements of the W matrix are:  

  

Wij = −D      ∀ i = j j > ν +1

Wij = 0    ∀ i ≠ j j > ν +1  

To find the probabilities of mutation from non-lethal sequences, namely the Qij with j 

≤ν+1, the expression of Qij in the absence of lethality (Nowak and Schuster, 1989), has 

been taken into account, with the following premises:  
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1. The probability of the master sequence replicating without error is:  

 0,0Q qν=  (35) 

2. The probability of passing from any class j to a non-lethal subpopulation of any 

class i, plus the probability of passing from the same class j to the lethal 

subpopulation of the class i, equals the probability of passing from class j to 

class i in the absence of lethality.  

 , , ,( , ) ( , ) ( , )k i j k i j i jQ q Q q Q qνν ν ν= = ++ =  (36) 

3. To pass from any class j to the non-lethal subpopulation of class i, the n lethal 

positions must be correctly copied, and then the number of necessary 

mutations must be introduced in the ν-n remaining positions. That is:  

 , ,( , ) ( , )n
k i j k i jQ q q Q q nν ν= == −  (37) 

4. From this, the following can be deduced by substituting (37) in (36):   

 , , , , ,( , ) ( , ) ( , ) ( , ) ( , )n
k i j i j k i j i j i jQ q Q q Q q Q q q Q q nν ν ν ν ν ν= + == − = − −  (38) 

It is possible to obtain the W matrix for any values of q, n and ν for any given fitness 

landscape from these equations. As stated in the previous section, this paper is limited 

to sharply peaked fitness landscapes, so the amplification rates of the elements of any 

Hamming class, excepting the master class, are the same. Moreover, the degradation 

rates of all the species, including the master one, are the same.  

The dimension of the resulting W matrix, even for small ν, is too great to make possible 

the derivation of the explicit expressions of its eigenvalues and eigenvectors. However, 

it is possible to calculate the eigenvalues and eigenvectors of the W matrix numerically. 

MATLAB® software has been used to do this.  

 

3.1 The Effect of lethality on the error catastrophe 
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Beyond the error threshold, population gets delocalized, drifting over the whole 

sequence space. Therefore, the deterministic approach becomes inappropriate to 

study error catastrophe, as this approach predicts that all the sequences will be equally 

populated, which is materially impossible. However, if this result is taken as the 

distribution, not of the population, but of the probability of the population to be in a 

given region of the sequence space, the effect of lethality on delocalization can be 

studied. This effect will change the error catastrophe distributions.  

 

Taking this into account, the error catastrophe is, in the deterministic approach, an 

essentially constant evolutionary regime, despite in reality describing populations that 

are continuously changing. In the error catastrophe, any increase in the mutation rate 

hardly affects the probability distribution of the population on the sequence space. That 

is, if a population had been in error catastrophe its mutation rate could not be inferred 

from its probability distribution, even though all the other parameters were known. 

Figure 3 shows, for n = 0, that when q decreases, the average Hamming distance 

progressively increases until it reaches a maximum value of ν/2 at the error threshold. 

At this point a discontinuity takes place, beyond which the average Hamming distance 

remains constant. In the deterministic approach, this result comes from the population 

delocalization and the fact that sequence space classification in Hamming or error 

classes is not uniform, as each error class comprises a different number of sequences.  

When lethality is considered this behavior changes. Figure 3 shows the variation of 

average Hamming distance versus (1 – q) for different degrees of lethality. On one 

hand, a decrease in the error threshold can be observed, as the simple model 

predicted. On the other, a decrease in the average Hamming distance at the error 

threshold can also be observed. Finally, the average Hamming distance is no more 

constant beyond error threshold, linearly increasing with mutation rate, being this 

increase greater as greater is the lethality degree.  
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4. Other fitness landscapes 

 

To assure the validity of the previous results other fitness landscapes have been 

studied. In the first place, the lethality scheme used throughout this paper has been 

applied to a multiplicative fitness landscape. In this fitness landscape each mutation 

has an independent effect (1-s) on the amplification factor of the self-replicating specie. 

Thus, the amplification factor of Hamming class i is Ai = Am(1− s)i , where Am  is the 

amplification factor of the master sequence.  In this case a simple analytical solution 

cannot be obtained, so the eigenvalues and the eigenvectors of the system have been 

numerically evaluated. 

As has been described in previous papers, (Schuster and Stadler, 2008; Woodcock 

and Higgs, 1996), this fitness landscape does not have an error threshold or an error 

catastrophe regime, so a population can only be in the quasispecies or the ex tinction 

regime. Figure 4 shows that the extinction threshold increases as the deleterious effect 

of each mutation (s) is increased.  

Moreover, a generalization of the single-peak landscape based on Bull et al., 2005 has 

been studied. In this fitness landscape there are three phenotypes with decreasing 

amplification factors (Ai). The robustness and uniformly distributed fraction of the non-

lethal mutants (pi) are also different. Each phenotype mutates only to the next 

phenotype, i.e. back-mutation is not allowed. A lethal phenotype, in which lethal 

mutants from any other phenotype are grouped, is considered. The resulting W matrix 

is: 
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1 1 1

1 1 2 2 2 2

2 2 3 3 3 3

1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

0 0 0
(1 ) 0 0

0 (1 ) 0
(1 ) (1 )(1 ) (1 ) (1 )(1 ) (1 ) (1 )

A Q p D
A Q p A Q p D

A Q p A Q p D
A Q p A Q p A Q p A Q p A Q p A Q D

⎛ ⎞
−⎜ ⎟

⎜ ⎟− −⎜ ⎟
− −⎜ ⎟

⎜ ⎟− + − − − + − − − + − −⎝ ⎠
 (39) 

Where iQ is a phenotypic quality factor in which the degeneration of its neutral network 

is taken into account by means of a parameter r.  

 [1 (1 )] [1 (1 )]i i i iQ r Q r qν= − − = − −  (40) 

 1 (1 ) (1 )i i i iQ r Q r qν− = − = −  (41) 

where ri ranges between 0 and 1, and expresses the effect of the genotypic mutation 

rate on the phenotypic change. Thus, it can be taken as an inverse measure of the 

robustness of the phenotype. When ri = 1, iQ qν= , i.e. there is no robustness, the 

phenotype behaves as if it were composed of just one sequence. When ri = 0, 1iQ = , 

i.e: the phenotype reproduction is not affected by mutation rate, it behaves as if it had 

infinite robustness.  

As there is no back mutation, the four eigenvalues of the W matrix are the elements of 

the main diagonal. As stated in section 2.1, these eigenvalues define the four possible 

evolutionary regimes. The numerical calculation of the eigenvalues and eigenvectors 

shows that the greatest eigenvalue defines a quasispecies regime in which the three 

phenotypes and their lethal mutants coexist. In contrast, the second eigenvalue defines 

a first error catastrophe regime in which the first phenotype disappears, while the third 

eigenvalue defines a second error catastrophe regime in which both the first and the 

second phenotypes disappear. It is possible to find the analytical expression of error 

and extinction thresholds as was done in sections 2.2 and 2.3. This fitness landscape 
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displays two error thresholds and three extinction thresholds, whose general 

expressions are:  

 1 1
,

1 1 1

1 i i i i
c i

i i i i i i

A p A pq
A p r A p r

ν + +

+ + +

−= −
−

 (42) 

 ,
( 1)i i i

ex i
i i i

A p r Dq
A p r

ν
− +=  (43) 

Figure 5 shows a phase diagram for this fitness landscape. For the sake of simplicity, 

all the phenotypes have the same lethal fraction of mutants. Figure 6 shows the 

variation of phenotype fractions with the mutation rate. 

 

5. Discussion  

In this paper the effect of a given lethality scheme on the population dynamics of self-

replicating species in a sharply peaked landscape has been studied. The most 

remarkable effects are the decrease of the error threshold with lethality, the changes in 

the error catastrophe regime, and the occurrence of extinction at a mutation rate which 

depends on the degree of lethality.  

As lethality increases, the effective superiority of the master sequence increases and 

then, necessarily, the error threshold decreases, so a higher mutation rate is needed to 

reach error catastrophe. This has been studied in detail for a single-peaked landscape 

in section 2.2. In the same section, we show that in the particular lethality scheme used 

in this paper, the concept of effective superiority is equivalent to an effective sequence 

length, both being inversely related. This effective sequence length corresponds to the 

number of non-lethal positions. 
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The dependence of the error threshold on effective superiority for a uniform lethality 

scheme is derived in section 2.5. An important conclusion can be drawn from the 

concepts of effective superiority and effective sequence length: the lethal mutants do 

not contribute to the transition from quasispecies regime to the error catastrophe 

regime. Equation (14) shows this as the effective superiority depends explicitly on the 

fraction of non-lethal mutants in the population. Taking into account the fact that the 

dimension of the sequence space depends on the sequence length, the effective 

sequence length means that the populations behave as if the sequence space were 

formed exclusively by the non-lethal mutants. In fact, the extended model can be used 

to verify that the transition to error catastrophe of a population of sequence length ν 

and n lethal positions can be approximated by the transition of a population of length ν-

n without lethality (fig. 3). This is because the lethal regions of the sequence space 

cannot replicate, and therefore they behave as population sinks.  On the basis of these 

results, the effect of lethality is better understood as a withdrawal of non-lethal mutants 

than as a production of lethal ones.  

 

This “sink effect” of the lethal regions is also responsible for the changes in the error 

catastrophe regime. As lethal mutants can only be produced by error-prone replication 

of other non-lethal mutants, the amount produced depends on the mutation rate. 

Moreover, as the lethal regions concentrate mainly far from the master sequence in the 

lethality scheme used in this paper, a greater mutation rate will increase accessibility to 

these regions. Immediately beyond the error threshold, the population delocalizes over 

a limited region of the sequence space. Increasing the mutation rate extends 

delocalization to the far lethal regions so that the mean Hamming distance, which as 

we have shown can be interpreted as a measure of delocalization, grows linearly with 

the mutation rate (fig. 3).  
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As has been shown in previous papers, a uniformly distributed lethality decreases the 

error threshold (Bonnaz, 1999), which then depends on superiority, sequence length, 

and lethality degree. In section 2.5 this lethality scheme has been introduced in the 

simple model, obtaining very similar results: the error threshold depends on the 

effective superiority of the master sequence (eq. 30), so the threshold decreases as 

lethality increases.  

As has been shown in section 2.3, lethality introduces the possibility of extinction 

caused by an increasing mutation rate. Extinction is a demographic phenomenon, 

which can happen in both evolutionary regimes. When lethality is low, the error 

threshold is greater than the extinction threshold for both regimes. When the mutation 

rate increases, the population first reaches error catastrophe. If the mutation rate 

continues increasing, the population becomes extinct.  As equation (21) shows, the 

extinction threshold in the error catastrophe regime depends on the lethality introduced, 

the former increasing as the number of lethal positions is higher. The cause of 

extinction is the “sink effect” as a population becomes extinct when its growth rate is 

below zero. As equation (25) shows, this takes place when the fraction of lethal 

mutants in the population exceeds a given threshold value. 

 

Beyond a given lethality degree, that in this paper has been called critical lethality, the 

error threshold falls below the extinction threshold, so extinction takes place before the 

population enters error catastrophe. Beyond the extinction threshold, the master 

sequence does not self-replicate enough to compensate the lethal mutants it produces, 

so the quasispecies becomes extinct. The extinction condition in the quasispecies 

regime is equivalent to that obtained when all mutants are lethal (Belshaw et al., 2008), 

even though this is not strictly the case. Actually, in the lethality scheme used in this 

paper, the introduction of just five lethal positions meant that more than 95% of 

sequences with length 20 are lethal.  
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Extinction in the quasispecies and error catastrophe regimes has different 

characteristics. In the latter, a critical lethal mutant fraction exists. When it is exceeded, 

the population becomes extinct. When lethality is increased, this threshold is reached 

at lower mutation rates. Beyond the critical lethality, the extinction threshold remains 

constant, but the fraction of lethal mutants at the extinction threshold increases in the 

same way as lethality does. This fraction can be found by substituting the value of qex 

in the expression of the lethal mutant fraction:  

 

1

ex
m

Dq
A

ν⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (44) 

 yl = 1− qn  (45) 

 yl ,ex = 1− qex
n = 1−

D
Am

⎛

⎝⎜
⎞

⎠⎟

n
ν

 (46) 

 

Besides the sharply-peaked landscape, two others have been briefly studied, namely, a 

multiplicative fitness landscape and a multiple phenotype landscape. The results 

obtained in the multiplicative fitness landscape, in which there is no error threshold, 

show again that the existence of error catastrophe critically depends on the fitness 

landscape, as has been previously stated (Schuster and Stadler, 2008). However, 

extinction is probably a general phenomenon when lethal mutations exist. On the other 

hand, the multiple phenotype landscape shows that error and extinction thresholds 

depend on the robustness, lethality, and reproductive capacity of the phenotypes that a 

population can adopt.  

Obviously, the fitness landscapes studied in this paper are simplifications of any real 

situation, in which complex, rugged fitness landscapes prevail. However, even in these 

simple cases the results clearly show that extinction and error catastrophe are 
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essentially different phenomena, as has been previously discussed (Bull et al., 2005; 

Bull et al., 2007). Transition to error catastrophe is a genetic-evolutionary phenomenon, 

resulting from the displacement of the selection-mutation balance. Lethality heightens 

the effect of selection, so greater mutation rates are required for the population to enter 

error catastrophe. Extinction is, on the other hand, a demographic phenomenon which 

depends on the capacity of the population to self-maintain. If lethality exists, more 

lethal mutants are produced when the mutation rate is increased, so the mean 

productivity of the whole population decreases. These considerations are not affected 

by the complexity of the fitness landscapes, or by whether a particular landscape, such 

as the multiplicative landscape, displays error catastrophe regimes or not.  

Furthermore, the results obtained from this paper can be conceived as an 

approximation to local regions of a complex fitness landscape. Sharply-peaked and 

multiplicative landscapes must be seen as extreme idealizations of certain real fitness 

peaks in a rugged landscape. If one or more mutations have a much greater effect than 

the rest, the peak can be approximated to a sharply-peaked landscape and it will have 

two or three regimes, depending on the lethality degree. If any mutation has 

approximately the same effect on fitness, so the fitness decrease is smooth, it can be 

approximated to a multiplicative landscape, and will display neither error threshold nor 

error catastrophe. Throughout this paper, a deterministic methodology has been 

applied. However, real populations are finite and often small. In these cases, 

population size and small perturbations can have a great effect on the behaviour of the 

population. A stochastic approach to this problem is currently being developed. 
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Figure 1. Fraction of lethal mutants of the Hamming class i vs. Hamming class for 

different number of lethal positions in the sequence, n. Sequence length, ν = 20. 

Hamming class i is composed by all the sequences at a Hamming distance i from the 

master. 

 

Figure 2. Phase diagram for different single-peaked landscapes as a function of the 

number of lethal positions n, and the probability of correct replication per digit, q. The 

sequence length is ν = 20.  As can be seen in the figure, in every case three different 

regimes appear: quasispecies, error catastrophe and extinction (see text for details). a) 

Am = 10,  Ak = 2, D = 1. b) Am = 10, Ak = 5, D = 1. c) Am = 10, Ak = 5, D = 4. d) Am = 15, 

Ak = 3, D = 1. 

 

Figure 3. Average Hamming distance of the population vs. mutation rate (1-q) for 

single-peaked landscape (Am = 10,  Ak = 2, D = 1, ν = 20) and for different number of 

lethal positions, n. 

 

Figure 4 
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Extinction thresholds as a function of the number of lethal mutations for different values 

of s (the deleterious effect of mutations) for the multiplicative fitness landscape. There 

are only two evolutionary regimes: the quasispecies regime (over the extinction 

threshold), and extinction (below the threshold). As the deleterious effect of mutations 

increases, the extinction threshold increases for any number of lethal mutations. In all 

the cases, Am =10 and the sequence length is ν = 20. 

 

 

Figure 5 

Phase diagram for the multiple phenotype landscape considered under section 4 as a 

function of lethal mutant fraction (1-p), and the probability of correct replication per digit 

q. Four different regimes appear: the quasispecies regime, the first and the second 

error catastrophe regime, and the extinction regime. A1 = 10, A2 = 5, A3 = 3, D = 1, r1 = 

1, r2 =0.7, r3 = 0.4, p1 = p2 = p3= p. The sequence length is ν = 20. 

 

 

Figure 6 

Molar fraction of the four phenotypes of multiple phenotype landscape as a function of 

mutation rate (1-q). The arrows show the two error thresholds defined by equation 42. 

A1 = 10, A2 = 5, A3 = 3, D = 1, r1 = 1, r2 =0.7, r3 = 0.4, p1 = p2 = p3= 0.6. The sequence 

length is ν = 20. 
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Fig 2 
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Fig 3 
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Fig 4 
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Fig 5 
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Fig 6 

 

 

 




