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The to and fro motion of a bouncing ball on a flat surface is represented by a low-dimensional model. To describe the repeated reversals of the horizontal velocity of the ball, the elasticity of the ball has to be taken into account. We show that a simple fly-wheel model exhibits the observed hither and thither motion of elastic balls. The suggested model is capable of describing oblique impacts of spherical bodies, which can be important in many applications, including dynamical simulation of granular materials. We find that the behaviour of the bouncing fly-wheel is sensitive to the initial conditions, and the escape time plots are used to illustrate this observation.
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Fly-wheel model exhibits the hither and thither motion of a bouncing ball

Introduction

Collisions are very important in many fields of Nature and Science and have wide-spread applications in industry. In Nature, the impact of ice particles are thought to be related to the formation of Saturn's rings [START_REF] Bridges | Structure, stability and evolution of Saturn's rings[END_REF], and the singleparticle impacts can play a crucial role in understanding the behaviour of snow [START_REF] Schaer | Particle densities, velocities and size distributions in large avalanches from impact-sensor measurements[END_REF][START_REF] Bartelt | Avalanche physics ploughs ahead[END_REF] or sand [START_REF] Andreotti | The song of dunes as a wave-particle mode locking[END_REF] avalanches. In Science, the ergodic behaviour of impacting billiard systems is supposed to give ideas to describe the stochasticity of gas and to the Boltzmann hypothesis [START_REF] Dorfman | An introduction to chaos in nonequilibrium statistical mechanics[END_REF]. In many sports like tennis, golf or baseball it takes years of practice to achieve the desired bounce of the ball with the right speed, angle and spin [START_REF] Cross | The coefficient of restitution for collisions of happy balls, unhappy balls, and tennis balls[END_REF][START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF][START_REF] Cross | Experimental study of the gear effect in ball collisions[END_REF]. Applications of impacting bodies include the use of granular materials in chemical, pharmaceutical, agricultural, mining
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or mineral processing industry [START_REF] Dong | Measurement of impact behaviour between balls and walls in grinding mills[END_REF][START_REF] Dong | Experimental study of oblique impacts with initial spin[END_REF]. In computer simulations of granular materials [START_REF] Sondergaard | Measurement of solid speheres bouncing off flat plates[END_REF][START_REF] Schäfer | Force schemes in simulations of granular materials[END_REF][START_REF] Brilliantov | Model for collisions in granular gases[END_REF][START_REF] Labous | Measurements of collisional properties of spheres using high-speed video analysis[END_REF][START_REF] Louge | Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastic plate[END_REF][START_REF] Vu-Quoc | An accurate tangential forcedisplacement model for granular-flow simulations: Contacting spheres with plastic deformations, force-driven formulation[END_REF] it is desirable to have simple, but accurate models of the interaction forces and impact properties.

In order to construct such models many experimental investigations of impacts have been carried out. Probably the simplest of these experiments concern the oblique collision of balls or disks with a planar surface, with or without initial spin [START_REF] Cross | The coefficient of restitution for collisions of happy balls, unhappy balls, and tennis balls[END_REF][START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF][START_REF] Cross | Experimental study of the gear effect in ball collisions[END_REF][START_REF] Dong | Measurement of impact behaviour between balls and walls in grinding mills[END_REF][START_REF] Dong | Experimental study of oblique impacts with initial spin[END_REF][START_REF] Sondergaard | Measurement of solid speheres bouncing off flat plates[END_REF][START_REF] Schäfer | Force schemes in simulations of granular materials[END_REF][START_REF] Labous | Measurements of collisional properties of spheres using high-speed video analysis[END_REF][START_REF] Louge | Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastic plate[END_REF][START_REF] Maw | The rebound of elastic bodies in oblique impact[END_REF][START_REF] Maw | The role of elastic tangential compliance in oblique impact[END_REF]. Parallel with the experimental studies, many models have been formulated to describe oblique impacts. The early attempts considered the impacting ball to be rigid. In Brody's model [START_REF] Brody | That's how the ball bounces[END_REF] the ball either slides along the surface throughout the duration of the impact, or it stops sliding due to the friction force and rolls without slip thereafter. However, such rigid body models are not capable of describing the observed changes in the direction of the tangential force acting on the contact surface [START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF][START_REF] Cross | Experimental study of the gear effect in ball collisions[END_REF] or reversals of the contact point velocity [START_REF] Dong | Measurement of impact behaviour between balls and walls in grinding mills[END_REF] during a single impact of a ball, observed most notably in case of solid rubber balls referred to as "superballs" [START_REF] Johnson | The bounce of 'superball[END_REF][START_REF] Stronge | Impact Mechanics[END_REF][START_REF] Garwin | Kinematics of an ultraelastic rough ball[END_REF]. In Brody's model once rolling starts, no mechanism can re-initiate sliding during the single collision. To avoid this problem, several models have been developed, based either on the assumption of a no-slip contact point and an elastic tangential force [START_REF] Garwin | Kinematics of an ultraelastic rough ball[END_REF], or on a prescribed number of reversals in the slip direction of the rigid ball [START_REF] Keller | Impact with friction[END_REF][START_REF] Stronge | Rigid body collisions with friction[END_REF].

It became clear that the elastic deformations must be taken into account for a proper modelling of the tangential forces. In principle, the deformable surface of the impacting ball acts like a "tangential spring" during the collision with the surface [START_REF] Schäfer | Force schemes in simulations of granular materials[END_REF][START_REF] Maw | The rebound of elastic bodies in oblique impact[END_REF][START_REF] Maw | The role of elastic tangential compliance in oblique impact[END_REF][START_REF] Maw | The oblique impact of elastic spheres[END_REF]. The elastic deformations of balls compressed to each other in the presence of a tangential force and a torsional couple were first described by Mindlin [START_REF] Mindlin | Compliance of elastic bodies in contact[END_REF], Mindlin and Deresiewicz [START_REF] Mindlin | Elastic spheres in contact under varying oblique forces[END_REF], and Walton [START_REF] Walton | The oblique compression of two elastic spheres[END_REF]. They have found that the deformations and the force distribution on the contact surface depend on the complete quasi-static loading history. They have revealed that the contact surface is divided into annuli that are either in the state of slip or no-slip, the slip regions being on the outer annulus of the contact surface. Based on these essentially static considerations, Maw et al. have constructed a model [START_REF] Maw | The oblique impact of elastic spheres[END_REF] of collision where the stick and slip regions coexist at each time instant during the impact. In this model, the contact surface consists of the same slip and no-slip annuli as in Mindlin's static model, but they change with time. This makes it necessary to find by an iteration in each time-step which of the annuli are in slip or in no-slip, which makes the solution a cumbersome process. However, the predictions of the model coincide remarkably well with experimental observations [START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF][START_REF] Dong | Experimental study of oblique impacts with initial spin[END_REF][START_REF] Schäfer | Force schemes in simulations of granular materials[END_REF][START_REF] Louge | Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastic plate[END_REF][START_REF] Maw | The rebound of elastic bodies in oblique impact[END_REF][START_REF] Maw | The role of elastic tangential compliance in oblique impact[END_REF].

It is the interplay of the repeated stick and slip [START_REF] Schäfer | Force schemes in simulations of granular materials[END_REF][START_REF] Maw | The oblique impact of elastic spheres[END_REF] and the effects of the elastic deformations [START_REF] Johnson | The bounce of 'superball[END_REF][START_REF] Maw | The oblique impact of elastic spheres[END_REF] that causes the complexity of the oblique impact of a ball on a flat surface. As a consequence of this, with some practising, one can throw a ball in such a way, that it "comes back" after the collision with the surface. The ball has to spin "backwards", as shown in Fig. 1, to achieve this reversal. In fact, it is possible to throw a solid rubber ball (e.g. superball) so that in the first few bounces on a flat horizontal surface it always rebounces, that is, the velocity of its centre of mass and its angular velocity changes direction in
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each collisions [START_REF] Dong | Experimental study of oblique impacts with initial spin[END_REF][START_REF] Maw | The role of elastic tangential compliance in oblique impact[END_REF][START_REF] Johnson | The bounce of 'superball[END_REF][START_REF] Stronge | Rigid body collisions with friction[END_REF]. In this paper we address this hither and thither motion of an elastic ball, and construct a very simple, low-dimensional model that can exhibit a very similar behaviour.

v ω Figure 1: Collision of the ball with the ground with back-spin. The horizontal velocity of the lowest point of the ball is larger than v, that of the centre of mass, due to the direction of the angular velocity ω. The friction slows the lowest point until it stops, then rolling would set in for a rigid ball.

The only force that can explain why the ball changes its horizontal velocity at the collision is the friction force. To change the momentum of the ball, the friction force must act for a finite, nonzero period of time. This collision time will be denoted by τ . During this time the friction force F (t) exerts a time-dependent torque on the ball, and hence changes its angular momentum. Imagine that the ball collides with the ground while spinning "backwards" as shown in Fig. 1, so that its lowest point moves faster than its centre of mass. To achieve the to and fro motion, the ball has to change the direction of both its velocity and angular velocity during the collision. However, in order to move and rotate in the opposite direction, the contact surface (or contact point, in case of a rigid ball) has to stop for an instant, which means that the sliding motion during the collision ceases. For a rigid ball, in the absence of other effects, the friction force between the ball and the surface disappears, and from then on the ball would never slide again, its rotation and translation would synchronise. The rigid ball cannot change the directions of both its velocity and angular velocity. Hence in order to explain the back and forth motion of the ball, it cannot be considered rigid, deformations has to be incorporated in the model. We construct a low dimensional model that can give account of the role of deformations, and can exhibit the repeated rebounces.

In Section 2 we introduce the fly-wheel model that is capable of modelling deformations by adding a new degree of freedom to the rigid ball, characterising the internal torsional deformations. Then in Section 3 we analyse the forces acting during the impact, following the theory of Hertz [START_REF] Hertz | Über die Berührung fester elastische Körper (On the contact of elastic solids)[END_REF], and compare the behaviour of the fly-wheel model with previous experimental findings. In Section 4 the equations of motion are cast into a dimensionless form, then Section 5

A c c e p t e d m a n u s c r i p t

contains numerical simulations of the motion of the fly-wheel model exhibiting the hither and thither motion. Then in Section 6 we summarise our results.

The fly-wheel model of the bouncing ball

The fly-wheel model incorporates the global effects of the internal elastic torsion of the ball in the simplest possible way. To account for the difference in the deformation of the outer part slowed down by friction and that of the inner part, we construct a simple fly-wheel model (Fig. 2). It consists of two parts, for simplicity shown as disk-like objects, that are allowed to rotate around a common axis, while they are connected by elastic torsional springs. The outer cylinder with radius R o mimics the surface layer of the ball, while the inner one with radius R i models the inner parts of the ball. During a collision, similar to the one depicted in Fig. 1, the outer part might stop due to friction, but the inner part behaves as a fly-wheel storing energy. Through the torsional springs it can exert an internal torque M on the outer cylinder, which can start moving the outer part again. We show that the internal elastic rotations can repeatedly reverse the horizontal velocity of the fly-wheel with the help of the friction force. The position of the centre of mass of the fly-wheel, that is, the common axis of the two disks is described by coordinates x(t) and y(t). We assume that the
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movement takes place in the x, y plane, and the axis is perpendicular to this plane. The vertical coordinate y is positive upwards, and x is the horizontal axis. The origin is chosen such that y = 0 when the outer disk just reaches the surface at the beginning and at the end of the collisions. The rotation of the outer disk is ϕ o (t), that of the inner is ϕ i (t). The internal torque in the torsional spring is taken to be

M (t) = k(ϕ o (t) -ϕ i (t)),
where k is the spring constant. Now we describe the motion of the fly-wheel model from the end of one impact when free flight starts, to the next such instant. We introduce the notion () f for quantities just after a collision when free flight starts, and () c for quantities just before the next collision occurs.

We assume that the internal relative rotations are damped between two collisions. Before the next collision the angles and the angular velocities of the two disks become the same: ϕ oc = ϕ ic and φoc = φic , where the dot indicates derivation with respect to time. During the flight, however, the total angular momentum is preserved, which means that the common angular velocity of the disks must be φoc

= φic = Θ o φof + Θ i φif Θ o + Θ i (1) 
before the following collision. Here Θ o and Θ i are the moments of inertia of the outer and inner disks, respectively. Assuming strong dissipation of the internal rotations during the free flight, we can take

ϕ oc = ϕ ic = Θ o ϕ of + Θ i ϕ if Θ o + Θ i + φoc t fl , (2) 
where t fl = 2 ẏf /g is the duration of the free flight. Between two collisions the centre of mass of the fly-wheel moves under the action of the gravitational force.

The position and velocity components of the fly-wheel right after a flight phase can be computed from the same data given at the beginning of the flight:

x c = x f + 2 ẋf ẏf g , y c = y f = 0, ẋc = ẋf , (3) ẏc 
= -ẏf , ϕ oc = ϕ ic = Θ o ϕ of + Θ i ϕ if Θ o + Θ i + 2 ẏf φoc g , φoc = φic = Θ o φof + Θ i φif Θ o + Θ i ,
where g = 9.81 m/s 2 is the gravitational acceleration. The collision takes place during a short time τ . During this time, the forces and torques acting on the inner and outer cylinder are shown in Fig. 3. Note that during the impacts the gravitational force is generally much smaller than the impact force, hence it is neglected [START_REF] Keller | Impact with friction[END_REF]. It is also assumed for simplicity
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that the contact surface is very small, point-like, and hence no couple occurs there. This assumption, strictly true only for low impact speed, simplifies the analysis, a treatment of the effects of a couple resulting from an extended contact surface can be found in Ref. [START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF]. The horizontal acceleration of the fly-wheel is ẍ = F/m, where m is the total mass of the system, and F = F (t) is the frictional force. The force A acting between the inner and outer parts via their common axis is also shown, but, being an internal force, it does not appear in the equations of motion. The inner cylinder's rotation is governed by the moment M imposed by the torsional springs: Θ i φi = M . For the outer disk, we have

Θ o φo = -M + F R o .
The moment in the springs depends on the relative rotation of the disks:

M = k(ϕ o -ϕ i ),
where k is the spring constant.

Introducing φ = ϕ oϕ i as the angle difference between the outer and inner parts leads to the following system of equations:

ẍ = F (t)/m, φ ≡ φo -φi = - k Θ o + k Θ i φ + F (t)R o Θ o , φo = 1 Θ o [F (t)R o -kφ], φi = k Θ i φ. (4) 
Note that the equations contain a non-smooth term, the F (t) frictional force, which is different in case of sliding (slipping) and rolling (sticking).

In order to compute the friction force F (t), we must know whether the system is sliding or rolling. In fact, during one single impact, there might be transitions between sliding and rolling [START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF][START_REF] Dong | Experimental study of oblique impacts with initial spin[END_REF][START_REF] Schäfer | Force schemes in simulations of granular materials[END_REF][START_REF] Louge | Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastic plate[END_REF][START_REF] Maw | The rebound of elastic bodies in oblique impact[END_REF][START_REF] Maw | The role of elastic tangential compliance in oblique impact[END_REF]. When there is sliding, the friction force is F = -μN sgn( ẋ + R o φo ), where N is the vertical force between the ground and the outer disk, μ is the friction coefficient, and sgn(a) is the sign of its argument: it is 1 if a is positive, it is -1 for a < 0, and for a = 0 it is 0.

Rolling occurs when the contact point stops, ẋ + R o φo = 0. From the first derivative of this with respect to time, substituting ẍ, the friction force turns out to be F = -mR o φo = mR o kφ/(Θ o + mR 2 o ). In case of rolling the friction force is proportional to φ, and hence to the internal moment M . Contrary to rigid balls, because of moment M the friction force can be different from zero in case of rolling.

Summing up the equations valid during time τ of the bounce, we thus have two distinct cases. First, the equations for the case of sliding are: 

ẍ = - 1 m μN sgn( ẋ + R o φo ), φ = -k 1 Θ o + 1 Θ i φ - R o Θ o μN sgn( ẋ + R o φo ), φo = - k Θ o φ - R o Θ o μN sgn( ẋ + R o φo ),
F . φi = k Θ i φ. (5) 
The equations valid during rolling are:

ẍ = R o k Θ o + mR 2 o φ, φ = -k 1 Θ o + mR 2 o + 1 Θ i φ, φo = - k Θ o + mR 2 o φ, φi = k Θ i φ. (6) 
Note that in both cases the dynamics of ϕ i , the inner rotation, just follows φ, while in case of rolling all variables follow the dynamics of φ. The transition from sliding to rolling occurs when the velocity of the contact point becomes zero, ẋ + R o φo = 0, [START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF] the transition from rolling to sliding occurs when the force required to provide
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the horizontal acceleration reaches the maximum available friction force:

|F | = M mR o Θ o + mR 2 o ≤ μN. (8) 
Here we assume that the coefficient of sliding and static frictions are the same.

For simplicity, the fly-wheel model consists of disks, but the model would essentially be unaltered for a ball as well, only the moments of inertia would need to be chosen accordingly. In order to solve Eqs. ( 5) and ( 6), we need to know how N , the vertical force between the ground and the outer cylinder depends on time. We also need to know the duration τ of the collision. To find these, we assume that the collision is elastic, and use the results of Hertz's theory [START_REF] Hertz | Über die Berührung fester elastische Körper (On the contact of elastic solids)[END_REF][START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF][START_REF] Landau | Theory of elasticity[END_REF]. This is detailed in the next section.

Collision

Probably the simplest theory to describe the normal component of the collision of two elastic bodies is that of Hertz [START_REF] Hertz | Über die Berührung fester elastische Körper (On the contact of elastic solids)[END_REF]. His theory is limited to cases when the elastic oscillations are negligible, and the impact velocity is smaller than the velocity of sound (low frequency vibrations are absent) [START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF][START_REF] Landau | Theory of elasticity[END_REF][START_REF] Hunter | Energy absorbed by elastic waves during impact[END_REF]. Also, we assume that the deformations during the collision remain elastic [START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF][START_REF] Landau | Theory of elasticity[END_REF], and the effect of external forces (like gravity) can be neglected compared to the impact force [START_REF] Keller | Impact with friction[END_REF]. The collision time proposed by this theory has been confirmed in experiments [START_REF] Bokor | The measurement of initial impact velocity and contact time[END_REF], and it seems to be in agreement with measurements well beyond the validity of the assumptions. Following Hertz's theory of collision, assume that the centres of two elastic balls of radius R and R are at a distance R + Rh(t) from each other during their collision. Here h(t) is the effect of the deformation, and is related to the force N (t) acting between the two balls as [START_REF] Hertz | Über die Berührung fester elastische Körper (On the contact of elastic solids)[END_REF][START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF][START_REF] Landau | Theory of elasticity[END_REF] 

h(t) = N (t) 2/3 D 2/3 (1/R + 1/R ) 1/3 , (9) 
where

D = 3 4 [(1 -σ 2 )/E + (1 -σ 2 )/E ],
E and E are Young's moduli, and σ and σ are Poisson's ratios of the materials of the two balls. Modelling the collision of the ball with a rigid plane as R → ∞, E → ∞, and identifying R with R = R o leads to

h(t) = N (t) 2/3 D 2/3 R -1/3 o with D = 3(1 -σ 2 ) 4E . ( 10 
)
If the mass of the ball is m, and we introduce

κ = 4 √ R o 5D , (11) 
the conservation of energy for the elastic collision can be written as [START_REF] Hertz | Über die Berührung fester elastische Körper (On the contact of elastic solids)[END_REF] 

m ḣ2 + κh 5/2 = m ẏ2 c , (12) 
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where ẏc is the velocity of the ball before the collision. With ḣ = 0 we obtain the maximum deformation

h max = m ẏ2 c κ 2/5 , (13) 
and integrating [START_REF] Schäfer | Force schemes in simulations of granular materials[END_REF] between 0 and h max gives τ/2, the half of the collision time:

τ 2 = hmax 0 dh ẏ2 c -κ m h 5/2 . ( 14 
)
This leads to [START_REF] Hertz | Über die Berührung fester elastische Körper (On the contact of elastic solids)[END_REF][START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF][START_REF] Landau | Theory of elasticity[END_REF]]

τ = 2 √ π Γ(7/5) Γ(9/10) m 2 -ẏc κ 2 1/5 (15) 
as the duration of the impact, where Γ() is the Gamma function.

The deformation h(t) time t after the start of the collision can also be computed by integrating [START_REF] Schäfer | Force schemes in simulations of granular materials[END_REF] between deformations 0 and h, resulting in

t = h 0 dh ẏ2 c -κ m h 5/2 = τ 2 √ π Γ 9 10 Γ 7 5 h(t) h max 2 F 1 2 5 , 1 2 , 7 5 , h(t) 
h max 5/2 , (16) 
where 2 F 1 () is the (Gaussian) hypergeometric function [START_REF] Luke | The special functions and their approximations[END_REF][START_REF] Bell | Special functions for scientists and engineers[END_REF]. The graph of this function is shown in Fig. 4 with solid line.

The dependence of the deformation on time, as given by ( 16), can be very closely modelled by a sine function. To make computations easier, instead of Eq. ( 16) we use the approximation

h(t) = h max sin πt τ . (17) 
This approximation, used already in Ref. [START_REF] Hunter | Energy absorbed by elastic waves during impact[END_REF], is illustrated in Fig. 4, with a very good agreement. We can thus use this expression to compute the vertical force between the outer disk and the ground during the collision with the aid of [START_REF] Dong | Experimental study of oblique impacts with initial spin[END_REF] as

N (t) = R o h(t) 3 D . ( 18 
)
As we assume completely elastic collisions, the vertical velocity after the impact is simply the opposite of that before the collision: ẏf =ẏc .

(

) 19 
We also assume that the tangential force component does not affect the normal component, therefore we use the Hertz model for the normal component of oblique impacts. 16). The time is measured in units of the total time τ of the collision, the deformation is measured relative to the maximum deformation h max . The approximation according to Eq. ( 17) is also shown with dotted line.

The fly-wheel model was tested with parameters set to mimic the bouncing "superball" used in experiments by Cross [START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF]. In that paper, among other types of balls, a superball of radius R o = 2.3 cm and mass m = 46.4 g has been used, and its bouncing properties have been measured. We estimate the friction coefficient to be μ = 0.8 (typical value for rubber on e.g. concrete [36]). The Poisson ratio for rubber is very close to σ = 0.5 [START_REF] Rinde | Poisson's ratio for rigid plastic foams[END_REF], and the elastic modulus is approximated with E = 2 MPa [START_REF] Hill | Large elastic compression of finite rectangular blocks of rubber[END_REF]. As an estimate, we take Θ o = (Θ o + Θ i )/5 = 1 5 • 2 5 mR 2 o , which gives Θ o = 19.64 g•cm 2 and Θ i = 78.55 g•cm 2 with the mass and radius given above. Fixing the internal disk, a force F acting on the ball's surface causes a rotation φ in the fly-wheel model, hence k = F R o /φ holds. Assuming that the rotation is the consequence of shear deflection in case of the superball, we find that φ = F/2GR 2 o , where F/2R 2 o is the approximated shear stress from the force F . This implies that the spring constant is k = 2R 3 o G, where the shear modulus is G = E/3 for rubber with σ = 0.5. This simple estimate gives k = 2 3 R 3 0 E = 16.2 Nm. With these parameter values, Fig. 5 shows the normal and tangential forces during an impact computed from our fly-wheel model. The initial conditions (impact velocity of v = 2.69 m/s at an angle 36 • with the surface, without spin) approximate those in the experiment by Cross [START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF]. The obtained forces are very close to those measured in Ref. [START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF], even with our crude estimation of the parameters. Similar curves have been obtained for other types of balls as well [START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF]. As a further test of our model, we show in Fig. 6 how the tangential velocity of the contact point changes in the impact. In Fig. 6 the tangential velocity of the contact point before the impact is described by the dimensionless β c = -( ẋc +R o φoc )/μ ẏc , the tangential velocity after the impact by β f = -( ẋf + R o φof )/μ ẏc . The curve, obtained for impacts without initial spin ( φoc = 0) follows closely the experimental results of Ref. [START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF], and is similar to those obtained for different types of balls or colliding disks [START_REF] Cross | Grip-slip behavior of a bouncing ball[END_REF][START_REF] Dong | Experimental study of oblique impacts with initial spin[END_REF][START_REF] Schäfer | Force schemes in simulations of granular materials[END_REF][START_REF] Louge | Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastic plate[END_REF][START_REF] Maw | The rebound of elastic bodies in oblique impact[END_REF][START_REF] Maw | The role of elastic tangential compliance in oblique impact[END_REF][START_REF] Johnson | The bounce of 'superball[END_REF].

We note that Stronge et al. have developed a similar low-dimensional model for oblique impacts [START_REF] Stronge | Oblique impact with friction and tangential compliance[END_REF]. In their model, a massless "particle", connected by horizontal and vertical springs to the rigid bouncing body, makes the connection with the surface. This particle with the springs models the compliance of the impacting region. Due to the zero mass of the contacting particle, in their model they need to specify whether there is initial sliding or rolling, as the massless particle can stop immediately. This is expected to be similar to the behaviour of our fly-wheel model for Θ o = 0, that is, when the inertia of the outer disk is zero. They have also found the reversal of the tangential force in their model. The dimensionless tangential velocity β f of the contact point after the impact as a function of that before the impact (β c ). The parameters used for the simulation are the same as those used for Fig. 5, but the velocity before the impact was always 4 m/s. For small incident angles (measured between the direction of the incoming velocity and the surface normal, β c 7), the ball starts to roll during the impact, for large angles (β c 7) it slides throughout the contact.

Dimensionless equations

The governing equations derived so far can be cast into a non-dimensional form. Let 

= Θ o /Θ i , ξ = 2k/R o mg, ζ = Θ o /mR 2 o and α = kD/R 3 o .
Omitting the tildes from the new dimensionless variables for brevity, we can rewrite Eq. ( 3) describing the free flight as 2/5 α 2/5

x c = x f + ξ ẋf ẏf , y c = y f = 0, ẋc = ẋf , (20) ẏc 
= -ẏf , ϕ oc = ϕ ic = νϕ of + ϕ if ν + 1 + ξ ẏf φoc , φoc = φic = ν φof + φif ν + 1 , φ c = ϕ oc -ϕ ic , φc = φoc -φic ,
ζ 3/5 (-ẏc ) -1/5 , (22) 
while the maximum deformation (13) becomes

h max = 5 4 α 2/5 ζ -3/5 ẏ4/5 c . (23) 
The dimensionless vertical force [START_REF] Maw | The role of elastic tangential compliance in oblique impact[END_REF] during the collision, using [START_REF] Maw | The rebound of elastic bodies in oblique impact[END_REF], can be computed as

N (t) = 1 α h max ζ sin πt τ 3/2 , (24) 
where time t is measured from the start of the collision. This force is used to compute the course of the collision. When the friction force F exceeds μN , that is, when 

|φ| > (1 + ζ)μN, (25) 
However, when the velocity of the lowest point, in contact with the ground, becomes zero, that is,

ζ ẋ + φo = 0, (27) 
rolling starts, and the dimensionless form of the equations of motion (6) become

ẍ = 1 1 + ζ φ, φ = - ζ 1 + ζ + ν φ, φo = - ζ 1 + ζ φ, φi = νφ. (28) 
After the collision, the vertical velocity changes sign:

ẏf = -ẏc . (29) 

A c c e p t e d m a n u s c r i p t

The dimensionless parameters α, ζ, ξ, ν and μ characterise the system. However, if we are to model a bouncing ball, not all of these parameters are independent. Because the total moment of inertia of a ball is Θ o + Θ i = 2 5 mR 2 0 , we find the relation

ζ = 2 5 • ν 1 + ν (30) 
between the dimensionless parameters. (For a disk-like fly-wheel with Θ o +Θ i = 

which implies ζ = 0.08, according to [START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF]. These values correspond to the parameters used in the previous section to describe the bounce of the superball, except that we use k = 4.0 Nm for the spring constant.

Simulation results

Now we have all the equations to compute the movement of the bouncing flywheel. We use Eqs. [START_REF] Johnson | The bounce of 'superball[END_REF] to to find the state of the system before the collision. Then Eq. ( 24), together with [START_REF] Keller | Impact with friction[END_REF], gives the vertical force N (t) as a function of time during the collision, and Eq. ( 22) gives the duration τ of the impact. Knowing these, we can solve numerically the dynamical equations ( 26) or ( 28), depending on whether the contact between the outer disk and the ground is sliding or rolling, respectively. The new vertical velocity after the impact comes from [START_REF] Hertz | Über die Berührung fester elastische Körper (On the contact of elastic solids)[END_REF]. To follow the motion numerically, the 4th order Runge-Kutta method with a fixed time-step of τ/10 5 is applied during the impacts of length τ . This resolution proves to be sufficient, further refinement does not change the trajectories significantly. The initial values for the coordinates x 0 and y 0 of the ball, its initial velocity components v x0 , v y0 , and the initial spin ω 0 ≡ φo (0) = φi (0) of the fly-wheel need to be set (we assume that at the release of the ball the inner and outer parts spin together). We use an initial dimensionless release height of y 0 = 543.48 (corresponding to 1 m) and initial horizontal position x 0 = 0. We assume that at release the ball has only horizontal velocity, v y0 = 0; this is not an important condition, to achieve different values of the vertical velocity we could release the ball from a different height.

In Fig. 7 an example trajectory is shown, where the fly-wheel performs the hither and thither motion. The fly-wheel was released with a considerable backspin, and the ball was bouncing back and forth for a long time.

In order to get a global picture of the fly-wheel's behaviour, the dependence on the initial conditions is surveyed in Fig. 8. Here, a colour coding is used to indicate how many times the fly-wheel, released with the corresponding initial conditions, changes its horizontal velocity in the impacts before settling, that is, before bouncing away in the same direction. The lighter blue colours indicate many rebounces, the lighter red areas correspond to a small number of rebounces. We see that the initial conditions leading to a large number of rebounces accumulate along a straight line. As we approach this line, the number of rebounces increases rapidly. The equation of the line, for this parameter setting, is v x0 = 5ω 0 . In Fig. 8 the parity of the number of reversals changes when we cross the line of high number of rebounces. This means that the line separates regions where the direction of the final bouncing away is different, and at this line the fly-wheel is "hesitating" which way to go after the hither and thither motion. In this respect the line separates the initial conditions leading to qualitatively different outcomes, and the process is very similar to scattering processes [START_REF] Tél | Chaotic dynamics: An introduction based on classical mechanics[END_REF][START_REF] Bleher | Routes to chaotic scattering[END_REF][START_REF] Ott | Chaotic scattering: An introduction[END_REF][START_REF] Jung | Scattering one step from chaos[END_REF].

To test the effect of the ratio ν of the moment of inertia of the inner to that of the outer part, we show in Fig. 9 how the number of reversals depends on ν and the initial spin ω 0 . Note that, according to [START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF], if the value of ν is varied, the value of ζ changes as well. The extremal value ν = 0 (and accordingly, ζ = 0) denotes the case when the outer part has no moment of inertia, and hence the fly-wheel consists only of the internal disk with a massless outer part (very strong fly-wheel effect). In this range we find high number of rebounces with a small initial spin. For large ν, that is, when the moment of inertia of the outer disk is large, the energy stored in the internal part can be insufficient to turn back the rotation of the outer disk for small initial spin, the necessary backspin to see the hither and thither motion increases. [START_REF] Landau | Theory of elasticity[END_REF], further initial conditions are x 0 = 0, ẏ(0) = 0, y 0 = 543.48, and 500 × 500 initial conditions have been followed for a).

Summary

"Angle of incidence equals angle of reflection" is a common concept for bouncing balls. However, throwing a real ball with backspin, it can reverse its horizontal velocity several times before it bounces off in one direction. Even if considered in two dimensions, besides translation the ball might possess a spinning motion. This implies that the point of contact may move at a speed different from that of the centre of gravity, and it leads to a friction force acting between the ball and the surface that can turn it back during the impact of finite (non-zero) duration. This effect alone is not enough, however, to explain the repeated reversals in the horizontal velocity, the elasticity of the ball has to be taken into account as well.

A simple model, the fly-wheel, takes into account both of these important effects. The stick and slip intervals during impacts provide the necessary friction force, while the internal rotation of the fly-wheel models the tangential elastic deformations throughout the collisions. We have shown that this simple model is capable of providing realistic impact and friction forces during collisions, and the relationship between incident and reflection velocities is close to that experimentally observed. This model, because of its simplicity, might prove to be useful for simulations of granular materials or other similar applications.

The fly-wheel model can exhibit the hither and thither motion of bouncing balls. This motion, illustrated in Fig. 7 is similar to that observed in wedge billiards [START_REF] Lehtihet | Numerical study of a billiard in a gravitational field[END_REF][START_REF] Tél | Chaotic dynamics: An introduction based on classical mechanics[END_REF]. In that case, an ideal, point-like ball is bouncing between two intersecting inclined planes, where the impacts are assumed to follow the simple reflection rule: angle of incidence equals angle of reflection. The wedge billiard exhibits a very complex motion, the ball can bounce between the two planes indefinitely without escape, and its motion is permanently chaotic [START_REF] Lehtihet | Numerical study of a billiard in a gravitational field[END_REF][START_REF] Tél | Chaotic dynamics: An introduction based on classical mechanics[END_REF]. However, in our case the complicated motion is observed for finite time, after that the ball "escapes" in either direction without further reversals. In this respect, our model is similar to a scattering process [START_REF] Bleher | Routes to chaotic scattering[END_REF][START_REF] Ott | Chaotic scattering: An introduction[END_REF]. Note, however, that despite the complexity emerging from the hither and thither motion, the A c c e p t e d m a n u s c r i p t behaviour does not become chaotic. In regard of this, the fly-wheel model is very similar to the infinite sequence of scattering disks investigated by Jung et al. [START_REF] Jung | Scattering one step from chaos[END_REF], where the existence of infinite periodic orbits does not imply chaotic scattering.

The presented fly-wheel model, although simplifies the motion of real balls, grasps the essential properties of bouncing balls. Our model could be enhanced, for example, by identifying the exact relation that determines the ratio ν of the outer to the inner moment of inertia. It is expected to depend on the elastic properties of the ball, but our model could be fine-tuned by introducing ν as a new, time-dependent variable. For example, one can speculate that this ratio might depend on the velocity and the spin of the impact, or it might even vary throughout one impact as a consequence of the varying normal force. Also, it is possible that the model could be enhanced by introducing more than two disks. However, the goal here was to find the simplest possible model that can perform the hither and thither motion. 

Figure 2 :

 2 Figure2: Model of the fly-wheel. The two disks, separated in the figure by an annular gap for better visibility, can rotate with respect to each other around their common axis located in their centre, and they are attached to each other by torsional springs. The radius of the outer disk is R o , that of the inner is R i . The corresponding moments of inertia with respect to the axis are denoted by Θ o and Θ i . The positive direction of the rotations ϕ i and ϕ o is also indicated.

Figure 3 :

 3 Figure3: Free-body diagram during collision of the ball with the ground. The internal force A, maintaining the common motion of the disks, acts at the axis, and the internal moment M acts due to the torsional springs between the two disks. Two time-dependent forces act between the ground and the outer disk: the compressive force N and the friction force F .

Figure 4 :

 4 Figure 4:The deformation h as a function of time during one collision is shown with solid line, as described by Eq. (16). The time is measured in units of the total time τ of the collision, the deformation is measured relative to the maximum deformation h max . The approximation according to Eq. (17) is also shown with dotted line.

Figure 5 :

 5 Figure5: Normal force N (red line) and tangential force F (blue line) during an impact, as obtained from the fly-wheel model. The parameter values and the initial conditions are listed in the text. After an initial sliding phase (up to around 0.001 s) the tangential force is determined by the moment exerted by the internal rotation of the fly-wheel, which finally initiates sliding in the opposite direction after around 0.003 s. The discontinuity in the tangential force at around 0.001 s is the result of the jump between the sliding and rolling regimes.

Figure 6 :

 6 Figure6: The dimensionless tangential velocity β f of the contact point after the impact as a function of that before the impact (β c ). The parameters used for the simulation are the same as those used for Fig.5, but the velocity before the impact was always 4 m/s. For small incident angles (measured between the direction of the incoming velocity and the surface normal, β c 7), the ball starts to roll during the impact, for large angles (β c 7) it slides throughout the contact.

  us measure all distances in units of Θ o /R o m by introducing the dimensionless coordinates x = (R o m/Θ o )x, ỹ = (R o m/Θ o )y, and distances h = (R o m/Θ o )h. Also, we introduce dimensionless time by t = k/Θ o t, forces by F = F R o /k and Ñ = N R o /k, and parameters by ν

A c c e p t e d m a n u s c r i p t ( 21 )

 21 which gives the values () c of the variables right before the collision as a function of their values () f before the flight. The dimensionless duration of the impact is then computed from (15) as

  sliding occurs, and the dimensionless form of the equations of motion (5) become ẍ = -μN sgn(ζ ẋ + φo ), φ = -(1 + ν)φ -μN sgn(ζ ẋ + φo ), φo = -μN sgn(ζ ẋ + φo )φ, φi = νφ.

1 2 mR 2 0

 2 we would have ζ = 1 2 ν/(1 + ν).) This way, four independent parameters remain. In what follows, we set these parameters to the values μ = 0.8, α = 0.09246, ξ = 764.144, ν = 0.25,

Figure 7 :

 7 Figure 7: An example for the hither and thither motion of the fly-wheel. The fly-wheel changed the direction of its horizontal motion in 21 impacts. The parameter values were set according to (31), the initial conditions were those listed in the text, and v x0 = 1.0, ω 0 = 0.2.

Figure 8 :

 8 Figure 8: Dependence of the behaviour on the initial conditions. The colour coding, shown in b), indicates how many times the fly-wheel, released with the corresponding initial conditions ẋ(0) = v x0 and φo (0) = φi (0) = ω 0 , changes its horizontal velocity in the impacts before hopping off in one direction. The parameter values are as in[START_REF] Landau | Theory of elasticity[END_REF], further initial conditions are x 0 = 0, ẏ(0) = 0, y 0 = 543.48, and 500 × 500 initial conditions have been followed for a).

Figure 9 :

 9 Figure 9: Dependence of the behaviour on the initial spin ω 0 and on the parameter ν. The colour coding, shown in b), indicates how many times the fly-wheel, released with the corresponding initial condition φo (0) = φi (0) = ω 0 and parameter value ν rebounces before hopping off in one direction. The parameter values are those of (31) (except for ν and ζ), further initial conditions are x 0 = 0, ẋ(0) = 0, y 0 = 543.48, ẏ(0) = 0, and 500 × 500 initial conditions have been followed.
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