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. We start from the Fourier sine transform. The numerical result is given and discussed for the velocity u, the power of the wall shear stresses L, the dissipation Φ and the boundary layer thickness δ. These new results are important for nature and technology.

Introduction

In recent years, advancements in technological applications have brought a wide range of rheological complex fluids that are characterized by diverse significant deviations from the simple Newtonian behaviour. The applications of non-Newtonian fluids include extrusion of polymer fluids, exotic lubricants, colloidal and suspension solutions, food stuffs, synthetic propellants, molten plastics and many others. The departure from Newtonian behaviour manifests itself in a variety of ways [START_REF] Rajagopal | Mechanics of non-Newtonian fluids[END_REF]: non-Newtonian viscosity (shear thinning or shear thickening), stress relaxation, normal stress differences etc. Due to the diversity of fluids in nature many models have been proposed to describe their behaviour. Among them, the models of rate type as well as those of differential type have received much attention.

The first viscoelastic rate type model, which is still used widely, is due to Maxwell [START_REF] Maxwell | On the dynamical theory of gases[END_REF]. While Maxwell did not develop his model for polymeric liquids, but instead for air, the methodology that he used has been generalized by Rajagopal and Srinivasa [START_REF] Rajagopal | A thermodynamical frame-work for rate type models[END_REF] to produce a plethora of rate type models. However, Maxwell recognized that the body has a means for storing energy and a means for dissipating energy, the storing of energy characterizing the fluid elastic response and the dissipation of energy characterizing its viscoelastic nature.

The motion of a viscous fluid caused by the impulsive motion of a plane wall is termed as Stokes or Rayleigh´s problem [START_REF] Schlichting | Boundary Layer Theory[END_REF]. Stokes [5] solved the problem for a viscous fluid past an infinite plate. Soundalgekar [START_REF] Soundalgekar | Stokes problem for elastico-viscous fluid[END_REF] extended it to a fluid of second grade using a perturbation technique. Teipel [START_REF] Teipel | The impulsive motion of a flat plate in a visco-elastic fluid[END_REF] showed that for such a fluid a strict similarity solution does not exist and provided a series solution. Puri [START_REF] Puri | Impulsive motion of a flat plate in a Rivlin-Ericksen fluid[END_REF] and Bandelli et al. [START_REF] Bandelli | On some unsteady motions of fluids of second grade[END_REF] studied the problem and found solutions which do not satisfy the initial condition. This is not surprising due to the incompatibility of the prescribed data. However, their solutions are physically interesting and correct from mathematical point of view. A new exact solution for the same problem has been later established in [START_REF] Fetecau | On a class of exact solutions of the equations of motion of a second grade fluid[END_REF]. This solution, obtained by means of the Fourier sine transform, satisfy both the governing equation and all imposed initial and boundary conditions. Its extension to rate type fluids has been realized in [START_REF] Fetecau | A new exact solution for the flow of a Maxwell fluid past an infinite plate[END_REF] and [START_REF] Fetecau | The first problem of Stokes for an Oldroyd-B fluid[END_REF]. The velocity field and the adequate shear stress obtained in [START_REF] Fetecau | A new exact solution for the flow of a Maxwell fluid past an infinite plate[END_REF] have been recently used by Zierep and Fetecau [13] to develop a complete energetic study for the Rayleigh-Stokes problem of a Maxwell fluid. ____ Corresponding authors, E-mail address: * rainerbohning@gmx.de, ** cfetecau@yahoo.de

A c c e p t e d m a n u s c r i p t 2

Our purpose in this paper is to print out some new and interesting aspects regarding the behaviour of Maxwell fluids. More exactly, it comes as a complement to our previous work [START_REF] Zierep | Energetic balance for the Rayleigh-Stokes problem of a Maxwell fluid[END_REF] in which the approximate expressions as well as the diagrams of the three important physical entities L, Φ and δ ( the power of the shear stress at the wall, dissipation and the boundary layer thickness) have been evaluated for small values of the relaxation time, namely for 1 t / λ << . Here, these entities and their graphical illustrations have been evaluated for arbitrary values of t / λ . The differences are characteristic and very important for applications.

Statement of the problem and solution for the velocity u

We continue our publication [START_REF] Zierep | Energetic balance for the Rayleigh-Stokes problem of a Maxwell fluid[END_REF] in respect to the numerical results of the analytical solutions. We start with the Differential equation [13, (6)
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-velocity, y, t -variables of length and time, ν -kinematic viscosity, λrelaxation time for elasticity.

The initial -boundary conditions for the Rayleigh -Stokes problem are [13, (10
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We get the numerical results for this Maxwell solution by suitable forms of integration. 

Solution of the power of the wall shear stress L(t,λ)

Of great practical interest is the wall shear stress ) , 0 ( θ τ w and the power of the wall shear

stress U θ τ L w l ) , 0 ( = [ 13 
, ( 14), ( 15)]
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Important are the two limits:

∞ → = θ λ t (Newtonian case) t πν U μ τ w - = , 0 → = θ λ t (solid body) νλ U μ τ w - = .
Fig. 2 shows the behaviour of ) (θ L . Of interest are again the limits
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These limits agree completely with the numerical dates (Fig. 2).

Solution of the dissipation Φ(t,λ) and the boundary layer thickness δ(t,λ)

The calculation of Φ leads to a complicate way. First we need ) , ( t y τ and y

t y u ∂ ∂ ) , ( [13, (8)]. 
Then we have to split the integrals in a suitable way to get the numerical results. Fig. 3 gives the dissipation as function of t with the parameter λ. The behaviour is similar to the decay of a potential vortex under the influence of viscosity.

The boundary layer thickness [13, (9)] can be calculated from

∫ ∞ = 0 ) , ( ) , 0 ( 1 dy t y u t u δ
. We use here the velocity u(y, t) from chapter 2. Fig. 4 shows a typical example. Generally we make the following remark. The last three figures 2, 3 and 4 differ from the corresponding figures 1, 2 and 3 of the preceding publication [START_REF] Zierep | Energetic balance for the Rayleigh-Stokes problem of a Maxwell fluid[END_REF]. The reason for that is the 

General discussion of the results

Today the energy balance for the movement of non-Newtonian fluids plays an important role.

We solved the Rayleigh-Stokes problem for Maxwell media. Starting from the analytical Fourier sine solution we have for the velocity u(y, t), the power of the wall shear stress L(t, λ) [13, ( 14), (15)], the dissipation ) λ , t ( Φ and the boundary layer thickness δ(t, λ) [13, (9)] a more or less difficult numerical problem to solve our Fourier sine analytical solution. This expensive method leads to the results given in Figs. 1234 

Fig. 1 A c c e p t e d m a n u s c r i p t 3 some

 13 Fig. 1 shows a typical result. U u is given as function of t ν y η 2 = with λ t θ = as parameter.
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 4 . In[START_REF] Zierep | Energetic balance for the Rayleigh-Stokes problem of a Maxwell fluid[END_REF] the figures 1, 2 and 3 for L, Φ and δ have been calculated under the assumption 1 << t λ while in the above publication we calculate L, Φ and δ for arbitrary values of t λ . The differences are characteristic and important for applications.

  discussed above. The behaviour is interesting and leads immediately to the energy balance.

  Fig.1. U u as function of

Fig. 2 .

 2 Fig. 2. Power of wall shear stress L(t,λ) Glycerin: ν = 0.0011746 m 2 /s, μ = 1.48 s Pa , U = 0.5 m/s, l = 0.5 m.
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 63 Fig. 3. Dissipation Φ(t) Glycerin: ν = 0.0011746 m 2 /s, μ = 1.48 s Pa , U = 0.5 m/s, l = 0.5 m.

Fig. 4 .

 4 Fig.4. Boundary layer thickness δ(t,λ) [m],Glycerin: ν = 0.0011746 m 2 /s.