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Generalised modal realisation as a practical and efficient tool for FWL implementation
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Finite word length (FWL) effects have been a critical issue in digital filter implementation for almost four
decades. Although some optimisations may be attempted to get an optimal realisation with regards to a
particular effect, for instance the parametric sensitivity or the round-off noise gain, the purpose of this article is to
propose an effective one, i.e. taking into account all the aspects. Based on the specialised implicit form, a new
effective and sparse structure, named q-modal realisation, is proposed. This realisation meets simultaneously
accuracy (low sensitivity, round-off noise gain and overflow risk), few and flexible computational efforts with a
good readability (thanks to sparsity) and simplicity (no tricky optimisation is required to obtain it) as well. Two
numerical examples are included to illustrate the q-modal realisation’s interest.

Keywords: coefficient sensitivity; dynamic scaling; FWL implementation; implicit framework; modal realisation;
pole sensitivity; round-off noise gain

1. Introduction

It is well known that there exists an infinite set of

realisations to represent a given filter. These realisa-

tions are equivalent in infinite precision since they yield

the same input-output relationship. However, when

digital filters are implemented, they are implemented

with finite precision due to the finite word length

(FWL) of the representation of numbers within com-

puting devices, and the FWL effects lead to a deteri-

oration of realisations’ numerical properties. These

effects can be normally classified into two categories:

the round-off noise resulting from the rounding of

variables before and after each arithmetic calculation;

and the parameters modification resulting from the

quantisation of coefficients. Hence, the so-called

‘equivalent’ realisations are no longer equivalent in

finite precision, and one realisation may be better

suited for implementation than another.

Generally speaking, the FWL effects depend natu-

rally on the chosen word length and arithmetic format

(floating-point, fixed-point, etc.). They, however, also

depend strongly upon the type of realisation. For

example, �-operator, introduced by Middleton and

Goodwin (1990), normally has much better numerical

properties than the usual delay operator q for fast

sampling. Optimal filter implementation problem con-

sists in finding a realisation with which the digital

deterioration imposed by the FWL effects is minimised.

Diverse structures and different digital operators have

been investigated in the literature with this aim since the

late 1970s (Mullis and Roberts 1976; Rao 1986; Gevers

and Li 1993; Madievski, Anderson, and Gevers 1995;

Li, Gevers, and Sun 2000; Yan and Teo 2002). In

Chevrel (2002), rational operators suitable for discreti-

sation of both LTI and LPV systems were introduced

taking potentially into account the frequency band-

width of each sub-system. Moreover, the authors

proposed a direct-form II transposed structure in �-

operator (�DFIIt) in Li and Zhao (2004) and Hao and

Li (2007). This form not only yields good performance

against round-off noise, but also has sparse structure.

On the other hand, most of the significant results

have expressed the filter in the state-space form.

Although most realisations can be transformed into

the state-space form, this form is not completely

general and has several limitations. For instance,

many realisation forms require the computation of

intermediate variables that cannot be represented

within the state-space form. The framework of the

specialised implicit form (SIF), not subject to these

restrictions, was given by Hilaire, Chevrel, and

Whidborne (2007a). It provides a generalised descrip-

tion of any realisation in a form allowing a straight-

forward analysis of the FWL effects.

In this article, motivated by the use of the multivar-

iable �-operator in Li and Zhao (2004) and based on a
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modal representation, a new structure, named �-modal

realisation, is constructed within the framework of the

SIF for implementation of the filters/controllers whose

poles are distinct. Associated with a filter/controller of

order n, this sparse and scaled realisation contains few

inexactly-implemented1 parameters, and is resilient to

numerical errors. The present form achieves a good

trade-off among sensitivity, round-off noises and com-

putation efforts. Moreover, no optimisation process is

required to obtain such a realisation.

This article is briefly outlined as follows. After

recalling the SIF and the related analysis criteria in

Section 2 and Section 3 as preliminaries, a new

dynamic-range scaling, named the relaxed L2-scaling

is presented in Section 4. Then in Section 5, the

particular �-modal realisation is proposed, while the

optimisation on parameters under this structure with

regard to different criteria is deduced in Section 6.

Numerical illustrations are given in Section 7.

2. A unifying framework

Many useful realisations, such as �-based realisations,

require intermediate computational variables that

cannot be expressed in the state-space form. The SIF

proposed in Hilaire et al. (2007a) provides an explicit

description of the parameters and variables involved

during implementation. The SIF representation is

given by

J 0 0

�K In 0

�L 0 Ip

0
B@

1
CA

Tðkþ 1Þ
Xðkþ 1Þ
YðkÞ

0
B@

1
CA¼

0 M N

0 P Q

0 R S

0
B@

1
CA

TðkÞ
XðkÞ
UðkÞ

0
B@

1
CA,

ð1Þ

in which

. J2Rl�l, K2Rn�l, L2Rp�l, M2Rl�n, N2Rl�m,

P2Rn�n, Q2Rn�m, R2Rp�n and S2Rp�m;

. U(k) is the vector of the m current inputs, Y(k) is

the p current outputs; T(kþ 1) is the vector for

the l intermediate variables used in the calcula-

tions of step k, while X(kþ 1) is the vector of n

new state variables stored till the next sampling

time; X(k) and T(k) form the generalised

variables;

. J is a lower triangular matrix with 1s in the

diagonal;

. The computations associated with the realisa-

tion (1) are executed in row order

(i) JTðkþ 1Þ  MXðkÞ þNUðkÞ,
(ii) Xðkþ 1Þ  KTðkþ 1Þ þ PXðkÞ þQUðkÞ, ð2Þ
(iii) YðkÞ  LTðkþ 1Þ þ RXðkÞ þ SUðkÞ:

The related transfer function is defined by

H : z�CZðzIn � AZÞ�1BZ þDZ, ð3Þ

with

AZ¼4 KJ�1Mþ P, BZ¼4 KJ�1NþQ, ð4Þ

CZ¼4 LJ�1Mþ R, DZ¼4 LJ�1Nþ S: ð5Þ

Definition 1 (Hilaire et al. 2007a): A realisation R is

defined by the specific set of matrices J, K, L, M, N, P,

Q, R and S in (1) as

R¼4 ðJ,K,L,M,N,P,Q,R,S Þ: ð6Þ

The coefficients can also be regrouped into one

matrix Z as

Z¼4
�J M N
----------------

K P Q
----------------

L R S

0
BBB@

1
CCCA,

--
--
--
--
--
--
--
-

--
--
--
--
--
--
--
-

ð7Þ

andR can be defined byR ¼4 (Z, l,m, n, p) where l,m, n

and p are the dimensions of the underlying matrices.

See Hilaire et al. (2007a) and Hilaire, Chevrel, and

Whidborne (2010) for more details on how to trans-

form classical structures (cascade/parallel decomposi-

tion, state-space realisation, �-realisation, lattice, . . .)

into the SIF.

Equivalent structured realisations can be defined

through block diagonal similarity transform as

Z1 ¼
Y
U�1

Ip

0
@

1
AZ0

W
U

Im

0
@

1
A, ð8Þ

with Y, U and W invertible matrices.

3. Criterion analysis

3.1 Input-output sensitivity

In order to evaluate how much the digital implemen-

tation modifies filters’ characteristics, the input-output

(I/O) sensitivity measure is introduced. Consider a

state-space system, denoted by (A,B,C,D). Measure of

the transfer function sensitivity through its L2-norm is

defined as (Gevers and Li 1993)

ML2
¼4 @H

@A

����
����
2

2

þ @H

@B

����
����
2

2

þ @H

@C

����
����
2

2

þ @H

@D

����
����
2

2

: ð9Þ

Considering that the coefficients quantised without

error make no contribution to the overall I/O
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sensitivity, a weighting matrix WZ associated with Z is

then introduced

ðWZÞi, j¼
4 0, if Zi, j 2 f0, �1g;

1, otherwise.

�
ð10Þ

Given a realisation R ¼4 (Z, l,m, n, p) with the

weighting matrix WZ, the I/O transfer function sensi-

tivity is defined in the single-input-single-output (SISO)

case by

MW
L2
¼4 @H

@Z
�WZ

����
����
2

2

, ð11Þ

where� is the Schur product.

Then, this L2-norm sensitivity can be computed by

the following lemmas.

Lemma 1 (Gevers and Li 1993): Consider a state-

space system G :¼ (�,�,�,�). Its L2-norm can be

computed by

kGk22 ¼ traceð��> þ�Wc�
>Þ

¼ traceð�>� þ�
>Wo�Þ, ð12Þ

where Wc and Wo are, respectively, the controllability

and observability Gramian. They are solutions to the

following Lyapunov equations:

Wc ¼ �Wc�
> þ��

>, Wo ¼ �
>Wo�þ�

>
�:

ð13Þ

Lemma 2 (Hilaire et al. 2007a): The sensitivity with

regard to each matrix in the SIF can be written as

@H

@Z
¼ H>1 H

>
2 , ð14Þ

with

H1 : z�CZðzIn � AZÞ�1M1 þM2,

H2 : z�N1ðzIn � AZÞ�1BZ þN2,

M1¼4 KJ�1 In 0
� �

, M2¼4 LJ�1 0 1
� �

,

N1¼4 M>J�> In 0
� �>

, N2¼4 N>J�> 0 1
� �>

:

8
>>>>><
>>>>>:

ð15Þ

3.2 Pole sensitivity measure

Some pole sensitivity measures are also commonly

used to inform about the robust stability of FWL

implementation. During quantisation process, the Z

matrix is perturbed to Zþ "�WZ, where " represents

digital perturbations. Hence, the poles of the imple-

mented realisation may be shifted outside the unit

circle even if the initial realisation is stable. Based on

this consideration, a stability measure is proposed

(Fialho and Georgiou 1994)

�0ðZ Þ ¼ inf
"
k"kmax

�
Zþ "�WZ instable

� �
: ð16Þ

Since this measure is numerically difficult to

evaluate, the following measure is most often used:

�ðZÞ ¼4 min
1�k�n

1� j�kj��WZ

��
F

��� @ j�kj
@Z
�WZ

���
F

, ð17Þ

where �k denotes the kth pole of the system and k�kF
stands for the Frobenius norm.

This measure can be evaluated by the following

lemma.

Lemma 3 (Hilaire et al. 2007a):

@ j�kj
@Z
¼M>1

@ j�kj
@A

M>2 , ð18Þ

where M1 and M2 are the matrices defined in Lemma 2.

Moreover @ j�kj
@A

can be easily computed from the under-

lying right eigenvectors of A.

3.3 Round-off noise gain

The round-off noise gain (RNG) is another criterion

for the analysis of a realisation. Considering the

quantisation noises after each multiplication, the

algorithm in (2) becomes

(i) JTðkþ 1Þ MXðkÞ þNUðkÞ þ �TðkÞ,
(ii) Xðkþ 1Þ KTðkþ 1Þ þ PXðkÞ þQUðkÞ þ �XðkÞ,
(iii) YðkÞ LTðkþ 1Þ þRXðkÞ þ SUðkÞ þ �YðkÞ,

where �T, �X and �Y are the noise sources corrupting

T, X and Y. These noises are usually modelled as

independent white sequences.

Denote � the vector formed by all the noises:

�(k)>¼ (�T (k)
>

�X(k)
>

�Y(k)
>). It is possible to aggre-

gate all of them as an additive noise �0(k) on the

output. This (coloured) noise results from the filtering

of �(k) via the transfer function H1 defined in (15)

(Figure 1; Hilaire, Ménard and Sentieys 2007b).

Definition 2 (Mullis and Roberts 1976): Suppose

that the round-off noises � have the same power �2
o .

+

U(k)

ξ(k) ξ„ (k) Y „ (k)

Y (k)
H

H
1

Figure 1. Equivalent noised model.
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The round-off noise gain measure is then defined by

the ratio of the power of global noise �0(k) and �2
o

G¼4 Ef�0ðkÞ>�0ðkÞg
�2
o

, ð19Þ

where E{�} is the mean operator.

Lemma 4:

G ¼ trace dZðM>1 WoM1 þM>2 M2Þ
� �

, ð20Þ

in which dZ is a diagonal matrix with (dZ)i,i denoting the

number of non-trivial parameters in the ith row of Z

(except 0, �1 and powers of 2), and Wo is the

observability Gramian of the state-space system

(AZ,BZ,CZ,DZ).

4. L2-scaling

The L2-dynamic-range scaling constraints were intro-

duced by Jackson (1970) and Hwang (1975). They

consist in scaling the state variables in a way to prevent

overflows or underflows. The L2-scaling also contrib-

utes to normalise the format of different state variables

and the aforementioned sensitivity criteria.

Definition 3: A SISO state-space system (A,B,C,D) is

said to be L2-scaled if the transfer functions from input

to each state have a unitary L2-norm (1� i� n)
��e>i ðzI� AÞ�1B

��
2
¼ 1, ð21Þ

in which ei is the vector with a 1 in the ith position and

0s elsewhere.

This definition can be extended to the SIF via

unitary scaling of state and intermediate variables, i.e.

(1� i� n, 1� j� l )

ke>i ðzI� AZÞ�1BZk2 ¼ 1,

ke>j J�1MðzI� AZÞ�1BZ þ J�1N
� �

k2 ¼ 1:
ð22Þ

According to Lemma 1, (22) can be expressed as

ðWcXÞi,i ¼ 1 81 � i � n,

ðWcTÞj, j ¼ 1 81 � j � l,
ð23Þ

where WcX and WcT are the controllability Gramians

with regard to the state and intermediate variables,

respectively

WcX ¼ AZWcXA
>
Z þ BZB

>
Z ,

WcT ¼ J�1MWcXM
>J�> þ J�1NN>J�>:

�
ð24Þ

Recently in Hilaire (2009), new dynamic-range-

scaling constraints have been proposed. We extend

these constraints here to the SIF.

It appears that, in fixed-point format, the classical

L2-scaling constraints may be uselessly too strict. It is

enough, for preventing overflows, to force all state and

intermediate variables to possess the same binary-point

position as the input.

Figure 2 illustrates the representation of a fixed-

point position, in which � is the total word length in bits

of the representation, while 	 denotes the fractional part

word length (it gives the binary-point position of the

representation). Unlike floating-point representation,

they are implicitly fixed for each variable and coeffi-

cient. In this section, � and 	 will be suffixed by the

variable/state/coefficient they refer to.

To represent a value x without overflows, a fixed-

point representation (�x, 	x) should satisfy

�x � 	x � 1 � blog2 jxjc þ 1, ð25Þ
where the bac operator rounds a to the nearest integer

lower or equal to a.

Proposition 1 (Overflows): Let Xi

max

and Tj

max

be the

maximum magnitude for the ith state and the jth

intermediate variable, respectively. Then, the best

binary-point positions f	Xi
g and f	Tj

g avoiding overflows

are given by

	Xi
¼ �Xi

� 2�
j
log2 Xi

max k
, ð26Þ

	Tj
¼ �Tj

� 2�
j
log2 Tj

max k
: ð27Þ

Proof: Applying (25) to the ith state gives �Xi
�

	Xi
� 2 � blog2jXiðkÞjc 8k. So 	Xi

satisfies 	Xi
�

�Xi
� 2� blog2 Xi

max

c, and has the greatest possible

value to increase the precision of the represented

value. œ

Fractional partInteger part

Figure 2. Fixed-point representation.
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Let Ei be a state or an intermediate variable, and Gi

the transfer function from the input to this variable.

Although it is impossible to evaluate the maximum

magnitude of Ei, some upper bounds can be calculated.

Denote Ei

up

the estimation of Ei by L1-norm,

Ei

up

¼ kGik1 U
max

, ð28Þ

or by L2-norm:

Ei

up

’ 
kGik2 U
max

, ð29Þ

where the parameter 
 can be interpreted as a

representation of the value of the standard deviation

of Ei, if the input is unit-variance white centred noise

(
� 1). Since the L2-norm estimation in (29) does not

give a strict bound, contrary to the L1-norm case, 
 can

be viewed as a safety parameter.

In general, the L1 and L2-estimation of Ei

up

approximatively lead to the same binary-point posi-

tion,within one or two bits. However, compared to the

L1-norm, the L2-one is much less conservative and

more tractable, hence (29) is practically used, with


¼ 1. A simulation-based estimation, (see e.g.

Belanovic and Rupp (2005) or Kim, Kum, and Sung

(1998)), can be adapted after implementation to verify

in situ the peak values and binary-point positions,

accordingly to the inputs. Finally, these upper bounds

are used to set the binary-point positions with

	Ei
¼ �Ei

� 2�
j
log2 Ei

up k
: ð30Þ

Generally, two treatments are possible to prevent

overflows:

. set the binary-point positions for each state and

intermediate variable according to (26), (27) and

(30), to make sure that the fixed-point represen-

tation can be dealt with their maximum peak

values;

. or choose binary-point positions for each state

and intermediate variable, and apply a scaling

on them for adapting the peak value of each

state or intermediate variable to the chosen

binary-point positions.

The classical L2-scaling corresponds to the second

option, by imposing Ei

max

¼ U
max

, i.e. kGik2¼ 1. However, it

has been shown in Hilaire (2009) that overflows can be

avoided by setting the same binary-point position for

the state, intermediate variables and inputs. This fact

results in the constraints 	Ei
¼ 	U for the scaling,

instead of Ei

max

¼ U
max

.

The following proposition exhibits these new

constraints.

Proposition 2 (Relaxed L2-scaling constraints): Assume

that it is possible to get a good estimation of the upper

bound of the generalised (state and intermediate) variables

through the L2-measure. In order to implement the input

and the generalised variables with the same binary-point

position, the L2-scaling constraints (23) are transformed

into (1� i� n, 1� j� l ):

22�Xi


2
� ðWcXÞi,i 5 4

22�Xi


2
,

22�Tj


2
� ðWcTÞj, j 5 4

22�Tj


2
,

8
>><
>>:

ð31Þ

where

�Xi
¼ �Xi

� �U �F2

	
U
max 


,

�Tj
¼ �Tj

� �U �F2

	
U
max 


,

8
><
>:

ð32Þ

and F2(x) is defined as the fractional value of log2(x):

F2(x) ¼
4
log2(x)�blog2(x)c.

Proof: 	U is given by 	U ¼ �U � 2�
j
log2 U

max k
, so

	U ¼ 	Xi
leads to

�U � log2 U
max

� �

¼ �Xi
� log2 
 e>i ðzIn � AÞ�1B

�� ��
2
U
max

 �� �
,

and

log2 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWcXÞi,i

q	 

þF2 U

max
 �� �

¼ �Xi
� �U:

Hence, 2�Xi � 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWcXÞi,i

p
5 2�Xiþ1. œ

Corollary 1: For micro-controller or DSP implemen-

tation, the word length of all variables are equal

(�Xi
¼ �Tj

¼ �U), and U
max

can be set to a power of 2.

Then, if 
¼ 1 (as for classical L2-scaling constraints),

the relaxed L2-scaling constraints become

1 � ðWcXÞi,i 5 4, 1 � ðWcTÞj, j 5 4: ð33Þ

Proposition 3 (a posteriori relaxed L2-scaling): Given

an SIF realisation. Relaxed L2-scaling constraints (31)

can be satisfied by applying the similarity transform (8)

with diagonal matrices U and W such that

U i,i ¼ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWcXÞi,i

q
2�F2

ffiffiffiffiffiffiffiffiffiffiffi
ðWcXÞi,i
p� �

��Xi , ð34Þ

W j, j ¼ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWcTÞj, j

q
2�F2

ffiffiffiffiffiffiffiffiffiffiffiffi
ðWcTÞj, j
p� �

��Tj : ð35Þ

Not specified, yet Y should be chosen to preserve

the structure of the realisation, for instance Y ¼ In
or Y ¼W�1.
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Proof: F2 acts as a modulo operator. For x2R,
x¼4 2F2ðxÞþ� is so that 2� � x5 2�þ1. The constraints

(31) are equal to

2�Xi � 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWcXÞi,i

q
5 2�Xiþ1,

2�Tj � 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWcTÞj, j

q
5 2�Tjþ1:

Moreover, U, W transform WcX and WcT into

U�1WcXU�> and W�1WcTW�>, respectively. Hence,

U i,i and W i,i should be


U�1i,i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWcXÞi,i

q
¼ 2F2

ffiffiffiffiffiffiffiffiffiffiffi
ðWcXÞi,i
p� �

þ�Xi ,


W�1j, j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWcTÞj, j

q
¼ 2F2

ffiffiffiffiffiffiffiffiffiffiffiffi
ðWcTÞj, j
p� �

þ�Tj :
œ

5. Special q-based modal realisation

In the parts to follow, the poles of the considered

transfer function are supposed to be distinct. This

assumption is not restrictive, as transfer functions with

multiple poles are often avoided due to their ill-

conditioning. Moreover, the present result of this

article can be equally extended to the case of multiple

poles by using the Jordan form and changing slightly

the development below.

Consider the transfer function H(z) and its related

modal realisation (�, B,C,D):

HðzÞ ¼ Dþ CðzI��Þ�1B ¼ Dþ
Xn

i¼1

cibi

1� �iz�1
, ð36Þ

with �i 6¼ �j for all i 6¼ j so that � can be chosen as a

diagonal matrix.

Rather to diagonalise the A-matrix, it is preferred

in the sequel to combine the complex-conjugate pole

pairs to form a real ‘block-diagonal’ section in which �

has two-by-two real matrices along its diagonal as

follows:

� ¼

�1 �1
�2 �2

�3 �3
�4 �4

. .
.

�n�1 �n�1
�n �n

0
BBBBBBBBB@

1
CCCCCCCCCA

, ð37Þ

where �i and �i are linked to the real and imaginary

parts of the ith pole, respectively. If the ith pole is real,

then �i¼ 0; if the ith and (iþ 1)th poles are complex-

conjugate, then �i¼ �iþ1 and �i¼��iþ1¼ Im(�i).

Remark 1: The modal representation is not unique

since B and C may be scaled in compensation ways to

produce the same transfer function, and the diagonal

elements of � may also be permuted. One invariant

however is that modal representation decouples the

dynamic modes �i and is closely related to the partial-

fraction expansion of H(z). Some linear algebra

libraries, like the LAPACK library (Anderson et al.

1999), can be used for the modal decomposition.

Such a modal form has intrinsically good features.

First, it has low pole sensitivity: perturbation on

coefficients of (37) directly affects the poles so that a

slight deviation will not lead to a dramatic change on

poles. While using other forms, it may not be the case.

For example, with the companion form, a tiny pertur-

bation on the coefficients of the characteristic equation

may imply a huge pole displacement. Second, it

performs quite well in terms of quantisation noises

because the whole system is decomposed and realised

by several parallel second- (or first-) order sections. As

known, these low-order sections are less sensitive to

quantisation noises (Oppenheim, Schafer, and Buck

1999). Besides, the sensitivity may be still reduced

under the relaxed L2-scaling constraints by simply

choosing �i potentially different from �iþ1, with an

appropriately scaled B matrix.

With the above modal form, the whole system is

‘decoupled’ in terms of parallel cells. Each individual

cell is realised by the real and imaginal part of the

underlying pair of eigenvalues. An alternative realisa-

tion of each cell of �, denoted by �i, resulting in the

same eigenvalue, is to take the form

�i ¼
0 1

!1i !2i

 �
, ð38Þ

where !1i¼ �iþ �iþ1, !2i¼��i�iþ1 and �i, �iþ1 are

complex-conjugate.

Mantey (1968) noted that cells of the form of (38)

require fewer multiplicative operations than those with

modal form. In fact, using modal form, each pair of

eigenvalues needs two addition multiplications for

computation of each output. However, for a given

specification, about half the number of bits is required

for the parameters of each cell with modal represen-

tation as for those of (38). This indicates that modal

decomposition outperforms the form of (38) in terms

of pole sensitivity.

Now we are in a position to propose a spare

realisation, named �-modal realisation. It will be clear

that the transformation to get this realisation preserves

the dynamic scaling, while improving the implementa-

tion. Let us first define the following sequence of first

order polynomial operators, named �-operators

�i ¼
q� 	i

Di

, 1 � i � n, ð39Þ
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{	 i} and {Di40} are two sets of constants to determine.

The particular choice 	 i¼ 0 and Di¼ 1 (resp., 	 i¼ 1)

leads to the shift operator (resp. the �-operator). The

SIF related to the �-operator has the following

structure:

I 0 0

�D I 0

0 0 I

0
B@

1
CA

Tðkþ 1Þ
Xðkþ 1Þ
YðkÞ

0
B@

1
CA ¼

0 A� B�

0 	 0

0 C� D�

0
B@

1
CA

TðkÞ
XðkÞ
UðkÞ

0
B@

1
CA,

ð40Þ

with

A� ¼ D
�1ð�� 	Þ, B� ¼ D

�1B, C� ¼ C, D� ¼ D,

ð41Þ

D ¼ diagðD1, . . . ,DnÞ, 	 ¼ diagð	1, . . . , 	nÞ: ð42Þ

Besides, the matrix Z in (7) in this case is

parameterised as:

Z¼4
�I A� B�
----------------

D 	 0
----------------

0 C� D�

0
BBB@

1
CCCA:

--
--
--
--
--
--
--
-

--
--
--
--
--
--
--
-

ð43Þ

Moreover, according to the number of complex

poles, the number of inexactly-implemented coeffi-

cients is between 3nþ 1 and 4nþ 1, plus 2n free

parameters {Di} and {	 i}.

Proposition 4 (�-modal realisation): The algorithm to

establish the �-modal realisation is given as follows:

(1) Start with a q-based modal realisation;

(2) Relaxed-L2-scale it according to Proposition 3;

(3) Build the equivalent �-realisation described in

(40), then choose {	 i} to minimise the FWL

effects;

(4) Deduce {Di} to realise the relaxed L2-scaling of

the intermediate variables.

Steps (3) and (4) are detailed later, and the results

are given in Proposition 6 and Equation (46),

respectively.

To make more precise the way to perform the

relaxed L2-scaling on both the state and intermediate

variables, let us reconsider the Gramian’s equation (24)

which is described for the �-modal realisation as

WcX ¼ �WcX�
> þ BB>,

WcT ¼ D
�2½ð�� 	ÞWcXð�� 	Þ> þ BB>�:

�
ð44Þ

It observes that WcX is independent of the choice of

{	 i} and {Di}. This fact indicates that the relaxed

L2-scaling of T(k) can be fulfilled by simply choosing

appropriate {	i} and {Di} sets. In order to explain the

way to get a scaled T(k), we denote eWcT as the solution

of WcT in (44) with D¼ In. Consequently, the condition

1� (WcT)i,i54 is equal to

1 � D
�2
i ð eWcTÞi,i 5 4: ð45Þ

Obviously any

Di 2
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð eWcTÞi,i

q
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð eWcTÞi,i

q� �

achieves the relaxed L2-scaling constraints. Hence,

giving the set of {	 i}, it is always possible to choose the

set of {Di} as powers of 2 according to the following

expression, while keeping the relaxed L2-scaling

as well.

Di ¼ 2

j ffiffiffiffiffiffiffiffiffiffiffi
ðeWcTÞi,i

q k
: ð46Þ

Remark 2: The same trick can be used to create a

�DFIIt realisation with which the state satisfies the

relaxed L2-scaling constraints. Instead of setting the

{Di} with (Li and Zhao 2004, Equation 25)

D1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wcð Þ1,1

q
, Dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wcð Þk,k

Wcð Þk�1,k�1

s
, k � 2, ð47Þ

the following expression is used:

D1 ¼ 2
ffiffiffiffiffiffiffiffiffiffi
ðWcÞ1,1
p� �

, Dk ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWcÞk,k

ðWcÞk�1,k�1

qj k

, k � 2: ð48Þ

The resulting realisation requires fewer operations,

since {Di} are now powers of 2. This however is not yet

enough to L2-scale the intermediate variables for the

�DFIIt realisation.

6. Optimisation of q-modal realisation

The parameters optimisation of the �-modal realisa-

tion with respect to different criteria is derived in this

section, and an analytical solution to the optimised

�-modal realisation is exhibited.

Consider a given state-space realisation R0 :¼
(A,B,C,D) of H(z). Let C�L2

be the set of relaxed-

L2-scaled �-modal realisations equivalent to R0, that is

the realisations described by (40) and satisfying (33).

In what follows, our objective is to find the best

realisation within this relaxed-L2-scaled �-based equiv-

alent class C�L2
.

Proposition 5: The solution (D	, 		) such as

ZðR0,D
	, 		Þ ¼ argmin

R2C�L2

J ðZÞ, ð49Þ
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where J is one of the criteria defined in Section 3, can be

obtained in a simple way through minimising Di under

the constraint (45).

It is noted that Proposition 5 is important since it

makes the minimisation problem much simpler than in

the general case. Its proof is detailed in the following

three sections.

Corollary 2: (D	, 		) can be obtained explicitly accord-

ing to Equations (46) and (54).

6.1 I/O sensitivity minimisation

With the proposed �-modal form, from the preceding

discussion, Di can be implemented exactly, hence the

modification of 	 i only relates to the sensitivity of the

matrices A�, B� in (40).

According to Lemma 2, the sensitivities with

respect to these two matrices can be written as follows:

@H

@A�

¼
�
CðzI��Þ�1D

�>�ðzI��Þ�1B
�>
, ð50Þ

@H

@B�

¼
�
CðzI��Þ�1D

�>
, ð51Þ

which can be viewed as transfer functions of the

following state-space systems, respectively:

�1 :¼
� BC

0 �

 �
,

0

D

 �
, In 0
� �

, 0

 �
, ð52Þ

�2 :¼ �,D,C, 0ð Þ: ð53Þ

Lemma 5: The minimisation of the L2-norm of @H
@A�

and
@H
@B�

is equivalent to the minimisation of Di.

Proof: Using Lemma 1,
�� @H
@B�

��2
2
¼ traceðD>WoDÞ. By

noting that the observability Gramian Wo is invariant

to the choice of Di, it is clear that the minimisation of�� @H
@B�

��2
2

is equivalent to the minimisation of Di.

The same result is obtained when considering mini-

mising
�� @H
@A�
k22. œ

Due to (45), it appears that the minimisation of

Di is linked to the minimisation of the diagonal terms

of eWcT.

Proposition 6 (Optimal {	 i}): The diagonal terms of
eWcT are minimised by the choice of 	i as follows:

	i ¼
�i þ

�i

�
WcX

�
iþ1,i�

WcX

�
i,i

, i is odd,

�i þ
�i

�
WcX

�
i,i�1�

WcX

�
i,i

, i is even.

8
>>>><
>>>>:

ð54Þ

Proof: See Appendix A. œ

Corollary 3: The choice of {	i} in (54) leads to the

lowest I/O sensitivity.

Remark 3: The �-modal realisation proposed here

retains the best combination of {Di} and {	i}. Once {	i}

are computed, {Di} are consequently determined to

meet the relaxed L2-scaling constraints.

6.2 Pole sensitivity minimisation

Proposition 7: With the �-modal realisation, the

minimisation of the pole sensitivity is equivalent to the

minimisation of Di.

Proof: Applying Lemma 3 to the �-modal realisation,

the pole sensitivity is exclusively related to the matrices

M and P with

@ j�kj
@M
¼ D

@ j�kj
@AZ

In,
@ j�kj
@P
¼ @ j�kj

@AZ

:

SinceAZ only depends on the relaxed scaled q-based

modal realisation, @ j�kj
@AZ

is invariant to the choice of Di. It

is easy to see that the minimisation of @ j�kj
@M

�� ��
F
and

@ j�kj
@P

�� ��
F
is equal to the minimisation of Di. œ

6.3 Round-off noise gain minimisation

Owing to its parallel structure and second-order/first-

order sub-sections, the modal realisation is less sensi-

tive to quantisation noises. According to (20), the

RNG of the �-modal realisation is

G ¼ trace
�
dZ D In 0

� �>
Wo DIn0

� �

þ 0 0 1
� �>

0 0 1
� ��

: ð55Þ

As Wo is the observability Gramian of (�, B,C,D),

it is constant with respect to Di. The minimisation of G

is hence equal to choosing Di as small as possible. This

converges to the same optimal conditions as previously

deduced for I/O sensitivity and pole sensitivity

minimisation.

So far the feature of �-modal realisation has been

derived and minimisations of different criteria con-

verge to the unique condition, whose solution can be

obtained through the analytical formula (54) without

requiring any tricky optimisation algorithm.

Remark 4: Once {Di} is fixed and implemented

exactly, the sensitivities and RNG do not depend

anymore on the choice of {	i}. It is also possible to

further operate {	i}, for instance, rounding them to the

nearest exactly-implemented numbers while keeping

the system under the relaxed L2-scaled constraints.
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7. Numerical examples

Two numerical examples (Li and Zhao 2004) are

presented in this section to illustrate the performance

of the proposed realisation, and the comparison with

some existing methods is also given.

In these examples, the optimal {	i} for the �-modal

realisation is rounded to the nearest exactly-implemen-

ted number. Here, only five bits are used to represent

{	 i}. Besides, the numerical parameterisations of the

�-modal realisation are exhibited in Appendix B.

Five different realisations are compared:

Z1: Cascade form with q-based second-order compan-

ion canonical sections;

Z2: Optimised �DFIIt2 (Li and Zhao 2004);

Z3: Equivalent state-space realisation of Z2 (Li and

Zhao 2004);

Z4: q-based balanced realisation;

Z5: �-modal realisation.

Numerical simulations are launched by using

the FWR Toolbox3 developed with MATLAB, and

the I/O transfer function sensitivity is chosen as the

criterion to optimise Z2. Note that, in Li and Zhao

(2004), the authors did not take into account the

L2-scaling constraints of intermediate variables, which

seems necessary when the �-operator is used.

Example 1: This is a fourth-order low-pass

Butterworth filter with narrow bandwidth, generated

by the MATLAB command butter(4, 0.05). The

�-modal realisation yields an I/O sensitivity of 7.1048.

The corresponding pole sensitivity and round-off noise

gain are 0.2221 and 6.8033, respectively. The set of 	 is

computed as

	 ¼ ð0:9375, 0:9375, 0:9375, 0:8125Þ
¼ ð15, 15, 15, 13Þ � 2�4:

In order to provide an illustrative case for showing

how Z5 can be implemented in real integer processor,

the pseudocode algorithm associated with the realisa-

tion Z5 is given by Algorithm 1 (it is assumed that this

realisation is performed on a 16-bit processor, and the

additions are 32-bit).

Example 2: The second example is a sixth-order pass-

band Butterworth filter which is obtained by the

MATLAB command butter(3, [0.75 0.90]). The

optimal I/O sensitivity measure obtained with the

proposed realisation is 17.299. The corresponding pole

sensitivity and round-off noise gain are 1.588 and

11.523, respectively. The set of 	 is computed as

	 ¼ ð�0:5625, �0:6875, �0:8125,
�0:9375, �0:5625, �0:875Þ
¼ ð�9, �11, �13, �15, �19, �14Þ � 2�4:

From Tables 1 and 2, it is observed that the cascade

form with companion canonical cellules (Z1) is the best

in terms of computational efforts ( just 2nþ 1 non-

trivial coefficients); it however behaves relatively poor

in terms of the I/O sensitivity and pole sensitivity.

Besides, to construct this realisation, we have to choose

a suitable configuration of poles and zeros among all

possibilities, and determine a best cascade order of sub-

sections. When the order of the given filter/controller is

high, this task may be exhausting. For instance, in

general, a system possessing N second-order sections

has N! configurations of poles and zeros and N!

possible cascade orders.

The �DFIIt (Z2) and its equivalent state-space

realisation (Z3) possess 3nþ 1 non-trivial coefficients.

In terms of sensitivity and noise gain, they perform

quite well. One disadvantage of these two realisations

is the requirement of optimisation algorithm. Indeed,

‘exhaustive research’ and ‘genetic algorithm’ were used

in Li and Zhao (2004) and Zhao and Li (2006),

respectively, for obtaining the optimal realisations. In

addition, no scaling is used for intermediate variables,

so overflows on intermediate variables may happen.

The proposed �-modal realisation holds 4nþ 1

non-trivial coefficients, and achieves a good trade-off

among different criteria. It is, in the authors’ own

experience, always better in terms of pole sensitivity,

and comparable in terms of parametric sensitivity. It

has especially the great advantage of not requiring a

cumbersome and uncertain optimisation (non-convex

problem, very large decision space for high-order filters

or controllers, convergence not guaranteed within a

Table 2. Performance comparison of five realisations of
Example 2.

Realisation MW
L2
ðZ Þ �(Z ) G(Z ) N.þ N.�

Z1 48.899 2.6938 5.4092 12 18
Z2 26.369 9.1963 16.405 18 25
Z3 29.955 13.487 12.375 17 25
Z4 26.815 6.4235 23.633 42 49
Z5 17.299 1.5880 11.523 24 34

Table 1. Performance comparison of five realisations of
Example 1.

Realisation MW
L2
ðZ Þ �(Z ) G(Z ) N.þ N.�

Z1 469.34 1.2326 11.277 8 12
Z2 7.1600 0.5848 5.0231 12 16
Z3 16.590 3.5100 4.6816 11 16
Z4 28.695 4.3014 12.454 20 25
Z5 7.1048 0.2221 6.8033 16 25
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reasonable time). Moreover, thanks to its parallel

structure, measurement of parametric sensitivity of the

�-modal form is nothing else than the sum of

parametric sensitivities of individual cells. This prop-

erty allows a more detailed analysis of resilience

depending on the considered frequency range, and

also the use of pre-programmed cells making

a posteriori modification easier. Furthermore, this

form is applicable to multivariable filters (e.g.

Kalman filters) or controllers, in contrast with Z1 or

�DFIIt realisation. Finally, it is worth noting that

compared with the other realisations, the �-modal

realisation can be executed faster due to its parallel

form by using several processing units simultaneously.

In other realisations, on the contrary, downstream

sections have to wait for the accomplishment of

upstream sections during computation.

8. Concluding remarks

This article deals with the FWL implementation

problem of digital LTI filters/controllers. Its principal

contribution consists in the proposition of a systematic

way to get a realisation well managing the compromise

between the different aspects. The proposed structure

is deduced based on a modal realisation and the use of

a �-operator adapted to each mode. This realisation

holds a sparse parameterisation and results in a low

computational effort (the number of coefficients is less

than 4nþ 1 for an nth-order filter/controller), small

pole and I/O parametric sensitivity, as well as a small

round-off noise gain. All these are obtained under the

relaxed L2-scaling constraints which allow to normalise

the intermediate computational variables, and to limit

the risk of overflow as well. Moreover, contrary to

other reported results asking some tricky non-linear

optimisation, the present method requires the mini-

misation of parameters whose optimum can be

attained analytically.

The present results are concerned with the open-

loop case, and the considered filters/controllers are

assumed to have no multiple poles. These facts may

limit the application of the proposed method. In order

to reduce this restriction, the generalisation of the

current results to the closed-loop control problem and

the diagonalisation of a system with multiple poles by

using the Jordan form are under research.

Notes

1. Exactly-implemented parameters mentioned here are
those that are not modified by the process of quantisa-
tion (those completely represented by a number of bits
lower that the word length used for implementation).

2. �DFIIt is evaluated by the methods proposed in Li and
Zhao (2004). It is under the strict L2-scaling constraints,
without L2-scaling on intermediate variables.

3. From a practical viewpoint, these measures are pro-
grammed in the toolbox developed by the authors and
freely available at http://fwrtoolbox.gforge.inria.fr.
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Appendix A

In this part, the proof of Proposition 6 is given. To this end,

we recall the expression of eWcT

eWcT ¼ ð�� 	ÞWcXð�� 	Þ> þ BB>:

Define F¼�� 	, then

F ¼

�1 � 	1 �1

�2 �2 � 	2

. .
.

�n�1 � 	n�1 �n�1

�n �n � 	n

0
BBBBBBB@

1
CCCCCCCA
:

The diagonal of eWcT can be described by ð eWcTÞi,i ¼
ðFi,	ÞWcXðFi,	Þ> þ b2i , where bi is the ith element of the matrix
B. If i is odd, then (Fi,	)¼ (0 � � � 0 fi,i, fi,iþ1 0 � � � 0). Hence,

ð eWcTÞi,i ¼ ðWcXÞi,ið�i � 	iÞ2 þ �2i ðWcXÞiþ1,iþ1
þ 2�iðWcXÞiþ1,ið�i � 	iÞ þ b2i ,

which can be written as a quadratic function of 	 i

ð eWcTÞi,i ¼ ðWcXÞi,i 	i � �i �
�iðWcXÞiþ1,i
ðWcXÞi,i

� �2
þ b2i

þ
�2
i ðWcXÞi,iðWcXÞiþ1,iþ1 � ðWcXÞ2iþ1,i
h i

ðWcXÞi,i
:

As WcX is both symmetrical and positive definite, the
third term of the above equation is positive. Hence, the
minimal value of diagonal of eWcT is

eWcT

���
min
¼

�2
i ðWcXÞi,iðWcXÞiþ1,iþ1 � ðWcXÞ2iþ1,i
h i

ðWcXÞi,i
þ b2i ,

and the corresponding 	 i is

	i ¼ �i þ
�i

�
WcX

�
iþ1,i�

WcX

�
i,i

:

Similarly, by following the same mechanism, the corre-
sponding optimal 	 i for i even is

	i ¼ �i þ
�i

�
WcX

�
i,i�1�

WcX

�
i,i

:

Appendix B

The �-modal (Z5) of Example 1 is (the non-exactly imple-
mented values are shown in bold and rounded to 5 digits)

Z5 ¼

�1 0 0 0 0:039247 0:36998 0 0 �1:5036
0 �1 0 0 �0:80414 �0:085302 0 0 �0:90686
0 0 �1 0 0 0 �0:28837 0:31715 �1:4118
0 0 0 �1 0 0 �0:06901 0:062747 �1:1104

---------------------------------------------------------------------------------------------------------------

0:25 0 0 0 0:9375 0 0 0 0

0 0:25 0 0 0 0:9375 0 0 0

0 0 0:25 0 0 0 0:9375 0 0

0 0 0 0:5 0 0 0 0:8125 0
---------------------------------------------------------------------------------------------------------------

0 0 0 0 0:36004 0:033563 �0:36108 �0:028345 3:1239e�05

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

:

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-
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The �-modal realisation of Example 2 is

Z5¼

�1 0 0 0 0 0 �0:095031 0:57471 0 0 0 0 �0:60202
0 �1 0 0 0 0 �0:57471 0:065489 0 0 0 0 �0:79499
0 0 �1 0 0 0 0 0 �0:13769 0:83082 0 0 1:3422

0 0 0 �1 0 0 0 0 �0:83078 0:24842 0 0 0:76651

0 0 0 0 �1 0 0 0 0 0 �0:11569 0:94998 1:1595

0 0 0 0 0 �1 0 0 0 0 �0:94992 1:5488 0:63535
----------------------------------------------------------------------------------------------------------------------------------

1 0 0 0 0 0 �0:5625 0 0 0 0 0 0

0 1 0 0 0 0 0 �0:6875 0 0 0 0 0

0 0 0:5 0 0 0 0 0 �0:8125 0 0 0 0

0 0 0 0:25 0 0 0 0 0 �0:9375 0 0 0

0 0 0 0 1 0 0 0 0 0 �0:5625 0 0

0 0 0 0 0 0:125 0 0 0 0 0 �0:875 0
----------------------------------------------------------------------------------------------------------------------------------

0 0 0 0 0 0 �0:29212 0:12808 0:21633 0:08549 �0:28447 0:7058 0:0085987

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

Algorithm 1 (16-bit pseudocode algorithm of Z5 (Example 1)):
Input: u: 16-bits integer
Output: y: 16-bits integer
Data: xn: array [1..5] of 16-bits integers
Data: T: array [1..5] of 16-bits integers
Data: Acc: 32-bits integer
begin

== Intermediate variables

Acc ðxnð1Þ 	 2572Þ þ ðxnð2Þ 	 24247Þ þ ðu 	 �24634Þ;
T1 Acc44 16;

Acc ðxnð1Þ 	 �26350Þ þ ðxnð2Þ 	 �2795Þ þ ðu 	 �7429Þ;
T2  Acc44 15;

Acc ðxnð3Þ 	 �18899Þ þ ðxnð4Þ 	 10392Þ þ ðu 	 �23131Þ;
T3 Acc44 15;

Acc ðxnð3Þ 	 �4523Þ þ ðxnð4Þ 	 2056Þ þ ðu 	 �18193Þ;
T4 Acc44 14;

== States

Acc T1 55 13þ ðxnð1Þ 	 30720Þ;
xnð1Þ Acc44 15;

Acc T2 55 13þ ðxnð2Þ 	 30720Þ;
xnð2Þ Acc44 15;

Acc T3 55 12þ ðxnð3Þ 	 30720Þ;
xnð3Þ Acc44 15;

Acc T4 55 13þ ðxnð4Þ 	 26624Þ;
xnð4Þ Acc44 15;

== Outputs

Acc ðxnð1Þ 	 23596Þ þ ðxnð2Þ 	 2200Þ þ ðxnð3Þ 	 �23664Þ;
Acc Accþ ðxnð4Þ 	 �929Þ þ u;

y Acc44 14;

��������������������������������������������������������

end
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