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Abstract

The usual methods for analyzing case�cohort studies rely on sometimes
not fully e�cient weighted estimators. Multiple imputation might be a good
alternative because it uses all the data available and approximates the maxi-
mum partial likelihood estimator. This method is based on the generation of
several plausible complete data sets, taking into account uncertainty about
missing values. When the imputation model is correctly de�ned, the multiple
imputation estimator is asymptotically unbiased and its variance is correctly
estimated. We show that a correct imputation model must be estimated from
the fully observed data (cases and controls), using the case status among the
explanatory variable. To validate the approach, we analyzed case�cohort
studies �rst with completely simulated data and then with case�cohort data
sampled from two real cohorts. The analyses of simulated data showed that,
when the imputation model was correct, the multiple imputation estimator
was unbiased and e�cient. The observed gain in precision ranged from 8
to 37% for phase-1 variables and from 5 to 19% for the phase 2 variable.
When the imputation model was misspeci�ed, the multiple imputation esti-
mator was still more e�cient than the weighted estimators but it was also
slightly biased. The analyses of case cohort data sampled from complete co-
horts showed that even when no strong predictor of the phase-2 variable was
available, the multiple imputation was unbiased, as precised as the weighted
estimator for the phase2 variable and slightly more precise than the weighted
estimators for the phase-1 variables. However the multiple imputation es-
timator was found to be biased when, because of interaction terms, some
coe�cients of the imputation model had to be estimated from small samples.
Multiple imputation is an e�cient technique for analyzing case-cohort data.
Practically, we suggest building the analysis model using only the case co-
hort data and weighted estimators. Multiple imputation can eventually be
used to reanalyze the data using the selected model in order to improve the
precision of the results.

Keywords: Case�cohort design; Multiple imputation

1 Introduction

Cohort studies, which facilitate causal interpretations, are popular but expen-
sive. Because precision is mainly limited by the number of cases, it is not essential
to collect complete information for all the controls. Thus, case�cohort studies and
nested case�control studies enable cost reduction with a minimal loss of e�ciency
[1]. Case�cohort studies were initially proposed by Prentice [2]. When using this
approach, the information collected for incompletely observed controls is ignored
and ine�cient estimators for the e�ect of phase-1 variables are obtained. Also,
the weighted estimators used to analyze case�cohort data are not fully e�cient
and this could a�ect the estimate of the e�ect of phase-2 variable(s). Alterna-
tively, Breslow et al. [3] suggested optimizing the sampling weights using all the
available data. But case�cohort studies can also be viewed as a particular ex-
ample of incomplete data, in which the observation process is controlled by the
study organizers. Paik and Tsai [4] proposed a simple imputation approach to
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model censored observations with missing covariates. In the framework of case�
cohort studies, it would imply the simple imputation of the expected value of the
phase-2 variable(s) for incomplete controls. However, that approach ignores the
uncertainty concerning imputation�model parameters and the values to impute
according to a given model.

Multiple imputation is a simple and e�cient method for analyzing incomplete
observations, while taking into account all the levels of uncertainty regarding miss-
ing values. For case�cohort data analysis, the multiple imputation estimator may
provide improved precision, compared to weighted estimators, because it integrally
uses the available information and approximates the partial likelihood estimator,
which can be more e�cient than the weighted estimators.

The objective of this study was to establish multiple imputation as an alter-
native to weighted analysis of case�cohort data. Below, we present the multiple
imputation analysis of case�cohort studies and validate this approach by compar-
ing its results to those obtained with weighted estimators. First, we used entirely
simulated data. Then, we simulated case�cohort surveys from two cohorts, the
Prospective Epidemiological Study of Myocardial Infarction (PRIME) study, in
which no strong surrogate of the chosen phase-2 variable was available, and the
National Wilms' Tumor Study (NWTS) data, for which a surrogate was avail-
able. For simplicity, we only consider time-constant covariates. Extension to
time-varying covariates is considered in the discussion.

2 Weighted analysis of case�cohort studies

Case�cohort surveys are examples of two-phase designs. First, the cohort is
randomly selected from a general population and the phase-1 information is col-
lected for all the subjects. A subcohort is randomly selected and the entire cohort
is followed so as to identify the date of occurrence of the event(s) of interest. Then,
the phase-2 information, more expensive, is collected for the subcohort subjects
and for all the cases, whether or not they belong to the subcohort. Thus, the
phase-2 information is not available for controls not belonging to the subcohort.
In cohort surveys, where data are available for the whole cohort, the e�ect of risks
factors on the occurrence of events is generally measured by �tting a proportional
hazards model. In case�cohort surveys this model is based on phase-1 and phase-
2 variables and the parameters must be estimated from the available incomplete
data. In simulations we will consider two phase-1 variables, Z1 and Z3, and one
phase-2 variable, Z2.

What is lost in terms of e�ciency, when using a case�cohort design rather
than a full cohort analysis, can be quanti�ed by the asymptotic relative e�ciency
(ARE). For a case�cohort design with simple random sampling it was shown to
be [5]:

ARE ≈
{

1 + 2
1− α
α

[
1 +

1− d
d

log(1− d)

]}−1
≈ 1− γ, (1)
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where α is the proportion of the cohort in the subcohort sample, d is the probability
of event occurrence and γ is the fraction of missing information. However, when a
phase-1 variable is strongly predictive of the phase-2 variable, strati�ed sampling
of the subcohort can improve e�ciency as compared to simple random selection
[6].

Weighted estimators of the log-relative risks maximize a weighted pseudo-
likelihood (L̃(β)):

L̃(β) =
∏
j

 exp{β′Zi}wij∑
kεC̃∪D

Yk(tj)exp{β′Zk}wkj

 (2)

where event j occurs at time tj , C̃ is the subcohort of size nsc, D is the set of
cases, Yk(tj) indicates whether subject k is at risk at time tj , β is the vector
of log relative risks, Zk the vector of covariates for subject k, wkj the weight of
subject k at time tj , ij the index of the subject whose event occurs at tj , and
the symbol ′ denotes transposition. Barlow [7] proposed weighting each complete
observation by the inverse of its probability of being included (1 for the cases).
Other authors have proposed variable weights, as a function of time, to slightly
improve e�ciency [6].

The variance of this estimator must take into account the increased uncertainty
associated with the randomized selection of the subcohort. This requirement can
be achieved by using the sandwich variance, which can be estimated as:

V ar(β̂) = Î−1 +
nsc(n− nsc)

n
CovDC (3)

where I is the Fisher information matrix, n and nsc are the respective sizes of
the cohort and subcohort, and CovDC is the empirical covariance matrix of dfbeta
residuals from subcohort members de�ned as [8]:

dfbetaji =
βj − βj(i)

s(i)

√
(Z ′Z)−1jj

(4)

with βj(i) the parameter j estimate obtained after deletion of subject i and s(i)
the standard error of this estimate.

Strati�ed sampling of the subcohort considers some information obtained dur-
ing phase-1, but the information provided by the phase-1 variables is generally
ignored in the analysis. Kulich and Lin [9] proposed a family of doubly weighted
estimators intended to more e�ciently account for the information provided by
the initial variables. Qi et al. [10] developed nonparametric methods to estimate
selection probabilities and nonparametric kernel-smoothing techniques to estimate
conditional expectation in fully augmented weighted estimating functions. Bres-
low et al. [3] suggested calibrating or estimating the weights using all the phase-1
information in order to improve precision: 1) with calibration, the weights are
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subjected to the constraint that the cohort totals of some auxiliary variables are
equal to their weighted sum among all phase-2 subjects. Practically, one builds
a prediction model for the phase-2 variable to perform a simple imputation of
the predicted values among the controls not belonging to the subcohort, �ts the
model of interest to the completed data set and uses the in�uence function from
the model of interest to calibrate. Eventually, the model of interest is �tted to
the calibrated case-cohort data; 2) with estimation, the weights are the reciprocals
of the inclusion probabilities, as estimated from a logistic model �tted to the full
cohort.

3 Incomplete observations and multiple imputation

Little and Rubin [11] distinguished three observation processes: data missing
completely at random (MCAR), when the probability of incomplete observation is
constant; data missing at random (MAR), when this probability depends only on
observed values; and data missing not at random (MNAR), when this probability
depends on unobserved values. The distinction between MAR and MNAR is of
utmost importance, because with the former, unbiased estimators of the parame-
ters of interest are available. Case�cohort data are MAR, because the probability
of being completely observed depends only on case status and, under strati�ed
sampling, on some phase-1 variables.

The multiple imputation method developed by Little and Rubin [11] provides
an approximation of the maximum likelihood estimator and thus enables the po-
tential selection bias to be corrected. This method relies on the generation of
several plausibly completed data sets (M ≥ 2), accounting for all the levels of un-
certainty concerning the missing values. A prediction model must be built, taking
into consideration the relationships between the incomplete variable and the other
variables, as observed in the complete part of the data. The missing data are not
replaced by their expectation but by a value drawn from the distribution posited
by the model. To take into account the uncertainty concerning the parameters of
the imputation model, several imputations are performed with parameters drawn
from the asymptotic distribution of their estimator. An estimate of the parameter
of interest, θ̂m, m = {1, . . . ,M}, and an estimate of the variance of the estimator,
V̂ (θ̂m), are obtained from each completed data set. If the imputation model is
correct, these estimators are not biased. The multiple imputation estimate, also
unbiased, is the mean of these M estimates:

θ̂IM =
1

M

M∑
m=1

θ̂m (5)

The multiplicity of imputations enables a correct estimation of the variance
of this single estimator. The variance is the sum of two components: the within-
imputations component (WIM ), estimated as the mean of the M asymptotic vari-
ances, ŴIM , and the between-imputations component (BIM ), estimated from the
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observed variance of the M estimates, B̂IM :

V̂ (θ̂IM ) = ŴIM + B̂IM

=
1

M

M∑
m=1

V̂ (θ̂m) + (1 +M−1)

∑M
m=1(θ̂m − θ̂IM )(θ̂m − θ̂IM )′

M − 1
(6)

where the factor 1 + M−1 is an adjustment for using a �nite number of imputa-
tions [12].

Rubin [13] showed that the relative e�ciency of multiple imputations with a
�nite number M , as compared to an in�nite number of imputations, is:

ARE ≈
√

1 +
γ

M
(7)

where γ is the fraction of missing information:

γ ≈ BIM
BIM +WIM

(8)

A nonexhaustive review of published case�cohort studies showed that, among
25 studies, the fraction of missing information ranged from 0.05 to 0.5, with a
median around 0.3. With as much as 40% information missing, M=5 imputations
provides an ARE=0.97, and, with 50% missing information, M=10 provides an
ARE=0.98. Thus, in most instances, there is not much to gain by using more
than 5 or 10 imputations to analyze case�cohort data.

Multiple imputation requests a correct model of the relationships between the
incomplete variable(s) and the variables that are linked to the former. When
the statistician doing the multiple imputation is independent of the statistician
conducting the analyses: ". . . it is important to include as predictors as many of
the variables that are likely to be used in subsequent analyses as possible. Leaving
out such variables, even when they are weak predictors, implies that it is known
with certainty that they have no relation with the missing values. The result is that
correct uncertainty is not re�ected [12]." In case�cohort studies, the imputation
model and the analysis are in the hands of the same statistician, thus only variables
useful for the analysis of interest have to be included.

We need to impute missing phase-2 variable values for the controls who do not
belong to the subcohort. This requires an imputation model taking into account
the di�erences between cases and controls: otherwise, the multiple imputation
estimator of the e�ect of the phase-2 variable would be biased. Under the rare
disease assumption, it can be shown that a simple generalized linear model using
all the case�cohort data and including the status indicator among the explanatory
variables has to be considered.

Let us assume that the distribution of Z2 belongs to the exponential family
and depends on a phase-1 variable, possibly multidimensional z̃2 through:

f(z2 | z̃2) = exp
(
θz2 − b(θ) + c(z2)

a(φ)

)
, (9)
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where φ is the dispersion parameter and the canonical parameter θ is a linear
function of unknown parameters:

θ = α0 + α′1z̃2. (10)

Under the rare disease assumption, the distribution of Z2 is approximately the
same for the whole population and among controls:

f(z2 | z̃2,∆ = 0) ' f(z2 | z̃2), (11)

where ∆ is the case indicator. Let π(z̃2, µ2, tc) be the probability of being a case
at the end of the observation time, for a subject with Z̃2 = z̃2, Z2 = µ2 = E[Z2 |
Z̃2 = z̃2] and censoring time TC = tc; let π(z̃2, z2, tc) be the probability of being a
case at the end of the observation time, for a subject with Z̃2 = z̃2, Z2 = z2 and
TC = tc. According to the proportional hazards model and using the rare disease
assumption:

π(z̃2, z2, tc) = π(z̃2, µ2, tc)exp[β(z2 − µ2)] (12)

We also assume that the distribution of the censoring time is independent of
Z2, so integrating over the censoring time:

π(z̃2, z2) = π(z̃2, µ2)exp[β(z2 − µ2)] (13)

and the distribution of Z2 conditionally on being a case and on Z̃2, can be obtained
as:

f(z2 | ∆ = 1, z̃2) =
P [∆ = 1 | z̃2, z2]
P [∆ = 1 | z̃2]

f(z2 | z̃2)

=
π(z̃2, µ2)exp[β(z2 − µ2)]∫

π(z̃2, µ2)exp[β(z − µ2)]f(z | z̃2)dz
f(z2 | z̃2)

=
exp(βz2)∫

exp(βz)f(z | z̃2)dz
f(z2 | z̃2) (14)

The denominator can be developed as:∫
exp(βz)f(z | z̃2)dz =

∫
exp

(
βz +

θz2 − b(θ) + c(z2)

a(φ)

)
dz

=

∫
exp

(
(θ + a(φ)β)z − b(θ + a(φ)β) + b(θ + a(φ)β)− b(θ) + c(z)

a(φ)

)
dz

= exp
[
b(θ + a(φ)β)− b(θ)

a(φ)

]
(15)

with θ given by (10). The results of (15) and (11) lead to:

f(z2 | ∆ = 1, z̃2) ' exp
(
a(φ)βz2 − b(θ + a(φ)β) + b(θ)

a(φ)

)
f(z2 | ∆ = 0, z̃2)

= exp
(

[θ + a(φ)β]z2 − b[θ + a(φ)β] + c(z2)

a(φ)

)
(16)
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Thus, under the rare disease assumption, the distributions of Z2, given ∆ = 0
or = 1, di�er by a shift of a(φ)β on the scale of the canonical link, i.e., a shift of
σ2β for a linear model, a shift of β on the logit scale for a logistic model, or a shift
of β on the log scale for a log-linear model, where β is the coe�cient associated
with Z2 in the proportional hazards model of interest.

The building of the prediction model, particularly the choice of the variable(s)
z̃2, is crucial to perform multiple imputation. Practically, in addition to the status
indicator and strati�cation variables, it is necessary to adjust for the confounding
variables included in the Cox model and for other predictive variables, which could
be available.

The analyses were performed with R software (version 2.9.0, The R Foundation
for Statistical Computing), using the mice (Multivariate Imputation by Chained
Equations) package http://web.inter.nl.net/users/S.van.Buuren/mi/hmtl/mice.htm),
which generates multiple imputations, and the survival package, which enables
case�cohort designs to be carried out and analyzed by means of weighted estima-
tors.

4 Validation of the method

To validate the method, �rst, we used entirely simulated data and compared
the estimates and their standard errors to the true values. Then, using the PRIME
cohort data, for which no strong surrogate for the chosen phase-2 variable was
available, and the NWTS cohort data, which had an available surrogate, we com-
pared the multiple imputation estimator to three weighted estimators: inverse
probability weights (the most popular one), calibrated weights and re-estimated
weights.

4.1 Simulations

4.1.1 Completely simulated data

Two phase-1 variables were simulated: a binary variable, Z1, and a Gaussian
variable, Z3, observed in the entire cohort. Also simulated was a phase-2 standard
Gaussian variable, Z2, which was independent of Z1, but had a correlation of 0.2
with Z3. The time to the event of interest had an exponential distribution, with
λ = exp(β1Z1 + β2Z2 + β3Z3). β1, β2 and β3 were �xed at the same value of 0 or
log(2). The censoring time followed a uniform distribution over the interval [0, τ ],
where τ was de�ned so that the probability of the event was approximately 0.01
(τ = 0.008). The cohort size was 25,000 subjects. We also simulated a phase-1
variable predictive of the variable Z2, Z̃2 = Z2 + ε with ε ∼ N(0, 1) independent
of Z2 (the correlation between Z2 and Z̃2 was

√
2/2 ' 0.7).

We wanted to estimate the e�ect of Z2 on the occurrence of the event, adjusting
for Z3 within the framework of strati�ed sampling of the subcohort. The cohort
was divided into 9 strata based on Z̃2 and Z3 tertiles, and the controls were chosen
by strati�ed sampling. Case�cohort sampling was simulated with 1,000 subjects
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in each subcohort (Table 1).
We built a linear prediction model for Z2 based on the stratum indicators

(phase-1 variables) and the status indicator. Z3 was not directly included in the
imputation model to predict Z2, because it was used to de�ne the strata, included
in the model, and weakly correlated with Z2.

The imputation model was:
Z2 = α0 + α1status+ α′2Istrata + e
where Istrata is the vector of stratum indicators. The mean multiple R2 was:

0.40.
Five plausible sets of complete data were generated for each cohort. Using

weighted analysis, the variance estimator II proposed by Borgan et al. [6] was
used. One thousand cohorts were simulated.

To assess the consequences of a misspeci�cation of the imputation model, we
compared the multiple imputation estimates, obtained when a predictive variable
was omitted or included, to weighted estimates. Two scenarios were considered.
In the �rst, the omitted variable was a confounder. Data were simulated according
to the previously used conditions. The cohort was strati�ed only according to Z̃2

tertiles, ignoring Z3. We used two imputation models, including the status and
strata indicators with or without Z3. The same two models were used in the simple
imputation stage of the calibrated weighted analysis. For the second scenario, the
omitted variable was not a confounder. Data were still simulated according to the
previous conditions. The subcohort was selected by simple random sampling so
that the imputation model included no strata indicator; Z̃2, which was related to
the phase-2 variable (correlation ρ = 0.7), was omitted or included in the model.

4.1.2 Results

In Table 2, for phase-1 (Z1 and Z3) and phase-2 (Z2) variables, all estimates
of the log relative risks were unbiased. Likewise, the multiple imputation variance
and Borgan's variance estimator II (BII) agreed with the observed dispersion of
estimates. For phase-1 variables, this observed dispersion was close to those of
the entire cohort and multiple imputation but larger with the weighted estimator.
For the estimated e�ect of the phase-2 variable, the observed standard errors were
obviously larger for case�cohort than full cohort analyses, but they were slightly
smaller with multiple imputation than with weighted estimators. For phase-1 vari-
ables, the relative increases of standard errors for the weighted analysis estimators
compared to those of multiple imputation, ranged from 8 to 37%, whereas they
were slightly smaller (5 or 19%) for phase-2 variables.

Table 3, gives the results obtained with the calibrated weighted estimator and
the multiple imputation estimator using a correct imputation model and a misspec-
i�ed imputation model omitting a confounder variable. All calibrated weighted
estimates were unbiased, for phase-1 and phase-2 variables, using a correct or a
misspeci�ed simple imputation model. All multiple imputation estimates were
unbiased when a correct imputation model was used. However, the misspeci�ed
model yielded biased multiple imputation estimates for the phase-2 variable and
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the omitted phase-1 variable. All multiple imputation estimates were more pre-
cise than calibrated weighted estimates, for phase-1 and phase-2 variables e�ects.
The relative increase of the standard error of the calibrated weighted estimate, as
compared to multiple imputation estimate, exceeded 10%.

Table 4 reports the results obtained with the weighted estimator, a correct im-
putation model and a misspeci�ed imputation model omitting a predictive variable
that was not a confounder. All the estimates of phase-1 variable e�ects were un-
biased. The precision of the two multiple imputation estimates, obtained with the
correct or the misspeci�ed models, were similar. The weighted estimate was less
precise than multiple imputation estimates, more speci�cally, the relative increase
of the standard error for the weighted estimator compared to multiple imputation
estimators was 20% for Z1 and over 46% for Z3.

For the phase-2 variable, the multiple imputation estimate with the correct
imputation model was unbiased, while the misspeci�ed imputation model and the
weighted analysis led to estimates slightly biased in opposite directions, respec-
tively, 2.3% and 1.9%. As expected, ignoring Z3 in the imputation model decreased
the precision of the multiple imputation estimator. The relative increase of the
standard error with the misspeci�ed model compared to that with the correct
model was 7.6%. The standard error of the weighted estimator was larger than
that of the multiple imputation estimator. The relative increase of the standard
error of the weighted estimator, compared to multiple imputation estimator, was
30% with the correct model and 21% with the misspeci�ed model.

4.2 PRIME data

4.2.1 Description of the data

The PRIME survey [14] was a multicenter cohort investigation studying risk
factors of ischemic heart disease (IHD) and other cardiovascular end points. Among
the 9,520 male subjects, 642 (6.7%) experienced a cardiovascular event. The me-
dian follow-up time was 10 years and for those who su�ered an event, the median
time to its occurrence was 5 years.

We chose to estimate the e�ect of �brinogen (phase-2 variable) on the occur-
rence of the event, adjusting for age, center, total cholesterol (CH), high-density
lipoprotein cholesterol (HDL), systolic blood pressure (SBP) and tobacco use.
Case�cohort data were simulated based on the entire PRIME cohort, and the re-
sults obtained with the di�erent estimators were compared to each other and to
the results obtained from the full cohort. The validation procedure used 1,000
simulated subcohorts of size 2,100.

4.2.2 Sampling of the subcohort

Fibrinogen is a protein whose circulating concentration increases during in-
�ammatory conditions. It also plays an important role in normal and pathological
blood coagulation, and elevated �brinogen levels are associated with a higher risk
of cardiovascular events. Because smoking is one of the main factors determining
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the �brinogen level [15], the cohort was strati�ed according to tobacco use, treated
as a phase-1 variable available for the entire cohort. The strata were created as
follows: stratum 1: non-smokers, stratum 2: ex-smokers, stratum 3: smokers [1�9]
g/day, stratum 4: smokers [10�19] g/day, stratum 5: smokers ≥ 20 g/day. Strat-
i�ed sampling was used to select subcohorts and the number of events in each
stratum is given in Table 5. The sampling probabilities were approximately 0.16,
0.20, 0.21, 0.25 and 0.46, respectively, for strata 1�5.

The linear model for �brinogen imputation used as explanatory variables the
status indicator and the variables included in the Cox model: tobacco, age, center,
CH, HDL and SBP (mean multiple R2: 0.07). Five imputations were performed
for each subcohort.

4.2.3 Results

The multiple imputation estimator was compared to the standard weighted
estimator [6], calibrated weights estimator [3] and re-estimated weights estima-
tor [3]. The mean of the 1,000 log relative risk estimates, corresponding to the
1,000 subcohorts, are given in Table 6. The median fraction of missing information
about the �brinogen e�ect was 0.22, so �ve imputations can be considered su�-
cient. For the phase-2 variable, the estimates were similar but, as expected, the
standard error was larger in the case�cohort analysis than the full cohort analysis.
Similar mean standard errors were obtained with multiple imputation and stan-
dard weighted estimation (Borgan's variance estimator II), they were very close
to those obtained with calibrated and re-estimated weights. For phase-1 vari-
ables, the multiple imputation estimates were more precise than those obtained
by weighted, calibrated and re-estimated weights analyses, and were nearly the
same as those obtained from the entire cohort.

4.3 NWTS data

The NWTS cohort [16] consisted of 3,915 patients with Wilms' tumor diag-
nosed during 1989�1994 and followed until the earliest sign of disease progression
or death for event-free survival. Baseline covariates included stage (I�IV), age
at diagnosis, tumor diameter and two binary histological evaluations (favorable
vs. unfavorable): the local hospital histology and central histology evaluated in
a centralized reference laboratory. The former was strongly predictive of the lat-
ter (speci�city 98%, sensitivity 74%) and both were available for all the patients.
However, like Breslow et al. [3], we simulated case�cohort studies using central his-
tology as the phase-2 variable. For the NWTS analysis, the Cox model included
central histology (phase-2 variable), age as a piecewise linear variable with change
point at 1 year, stage III/IV versus I/II, tumor diameter and the interactions local
histology*age and stage*diameter. Breslow et al. [3] de�ned 16 strata according to
event-free survival, stage (I/II or III/IV), favorable local histology (Yes or No) and
age < 1 year (Yes or No). They sampled controls from only three strata, de�ned
by favorable local histology, and "age < 1 year + stage I/II" (n = 120), "age ≥ 1 +
stage I/II" (n = 160) and "age ≥ 1 + stage III/IV" (n = 120), while including all
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the subjects in the 13 other strata. They predicted unfavorable central histology,
according to local histology, stage, age, tumor diameter and the interaction local
histology*stage.

These data present two speci�c features: �rst, a phase-1 variable, strongly
predictive of the phase-2 variable, is available and, second, an interaction exists
between the phase-2 variable and a phase-1 variable. Among these real data, in
the sampled strata (all with favorable local histology) only a few controls had
unfavorable central histology, especially in stratum 1 (n = 2) and stratum 4 (n
= 17) (Table 7). Thus, for some subcohorts, the speci�c imputation model for
these strata could not be estimated because of observed in�nite odds ratio. More-
over, even when the subcohorts included some controls with unfavorable central
histology in these strata, their number was necessarily small, and the estimator
of the imputation model parameters might not have been distributed as assumed
according to the asymptotic results.

Because of both particularities of these data, we considered two imputation
models. The �rst, based on the proportional hazards model of interest and local
histology, included the status indicator, local histology, stage, age, tumor diameter
and the interaction local histology*stage; the second was limited to the status in-
dicator and local histology. When the imputation model included the interaction
local histology*age, biased estimates and large standard errors were observed due
to the small number of unfavorable central histologies in some subgroups used for
the estimation of the interaction terms (Table 8). For the imputation model includ-
ing only the status indicator and the surrogate variable, the estimates were slightly
biased. The simple e�ect of central histology, which represented the expected dif-
ference at age 1 between children with favorable or unfavorable central histology,
di�ered slightly from the e�ect estimated for the full cohort (respectively, 4.11 vs
4.04); the same held true for the age e�ect after age 1 for the children with favor-
able central histology (respectively, 0.10 vs 0.11), and for the age e�ect after age
1 for the children with unfavorable histology (respectively, �3.63 vs �3.30). With
the second imputation model, including only local histology and status indicator,
we observed a small bias and good precision: although the multiple imputation
was slightly biased, in particular for the age*histology interaction, it was always
more precise than the standard weighted estimator and slightly more precise than
the calibrated and re-estimated weighted estimators.

5 Discussion

The aim of the weighted analysis and of multiple imputation is to reconstitute
the whole cohort. The former, weights the subjects in the case�cohort sample by
the inverse of the probability of being observed during phase-2, but the phase-1
data observed for the other subjects are generally ignored. Alternatively, Bres-
low et al. (2009), proposed two approaches using all the phase-1 information.
Multiple imputation uses all the available data supplementing them with plausi-
ble values agreeing with what is observed in the complete data.

A key aspect of multiple imputation is the construction of the prediction model.
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It is necessary to reproduce correctly the relationship between the outcome and
the incomplete variable, adjusting for the confounders included in the Cox model.
With case�cohort data, the problem is complicated by the censoring process. One
might think that it useful to include censoring time in the imputation model be-
cause, when the phase-2 variable is predictive of the event, its distribution among
controls might not be the same at the beginning and the end of follow-up. How-
ever, in section 3, we demonstrated that, for a phase-2 variable with an exponential
family distribution, a generalized linear model, including the case-status indicator
as an exploratory variable, provides an approximately unbiased multiple imputa-
tion estimate. The proof relies on several assumptions: �rst, the studied event
has to be rare; and second, the phase-2 variable has to be independent of the
censoring time. The �rst assumption is precisely what justi�es the use of a case�
cohort design, while the second is required by the proportional hazards model.
Thus, they do not represent new limitations. Our simulations showed that using
all the complete subjects, cases as well as controls, and with a correct imputation
model, including the case-status indicator, the multiple imputation estimator was
unbiased. We also performed some simulations that con�rmed no improvement
of the multiple imputation estimator by adding the censoring time to the impu-
tation model (data not shown). Confounding variables appearing in the analysis
model also have to be included in the imputation model, if they remain predictive
of the phase-2 variable, adjusting for the other predictors. On the other hand,
misspeci�cation of the imputation model can a�ect the phase-2 variable estimates
but also the estimate of the omitted phase-1 variable. Omitting variables that im-
prove the prediction can yield biased estimates and increase uncertainty about the
parameter. Including variables that do not improve the prediction increases the
uncertainty of the model coe�cients and thus the between-imputation variance.
Calibrated weighted estimates were found to be less sensitive to a misspeci�ca-
tion of the imputation model than multiple imputation estimates concerning bias.
However, multiple imputation estimates were more precise.

The completely simulated data showed that, when the imputation model was
correct, the multiple imputation approach provided unbiased and e�cient esti-
mators. Both the weighted and multiple imputation estimators were centered on
the true values. An important result of this simulation study was that multiple
imputation correctly estimated the variance of its estimators (just as BII correctly
estimated the variance of the standard weighted estimator). This �nding allowed
us to compare the variance estimators of case�cohort data simulated from cohort
surveys, for which the variance of the estimators cannot be compared to the true
value because it is unknown. As expected, the multiple imputation approach was
more precise than the usual weighted estimators for the parameters associated
with phase-1 variables. The former also was slightly more precise than the latter
for the phase-2 variable, despite the fact that it only used a categorized trans-
formation of the explanatory variables (the stratum indicators used for strati�ed
sampling). One explanation might be that multiple imputation approximates the
maximum partial likelihood estimate, which is more e�cient than weighted es-
timators. The simulations implying misspeci�ed imputation models revealed, as
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expected, that the omission of a confounding variable from the imputation model
had consequences in terms of bias and precision. We insist that is essential to in-
clude the strati�cation variable(s) and the variables included in the analysis model
in the imputation model. The consequences of omitting variable(s) related to the
phase-2 variable, but not to the event of interest, mainly concern precision. In
these simulations, the weighted estimators did not su�er from serious bias prob-
lems, not even the calibrated weighted estimator using a misspeci�ed model in
its imputation phase. However, they su�ered from appreciable losses of precision.
It should be underlined that most case�cohort surveys are generally performed
to answer several scienti�c goals dealing with di�erent diseases and exposures.
Thus, it can be di�cult to de�ne a strati�ed sampling e�cient for all the analyses
and to optimize the weighted estimators. By contrast, multiple imputation can
be adapted to each phase-2 variable and each sub-study to improve the precision
of the estimates of interest. When a misspeci�ed imputation model was used,
multiple imputation estimators for the phase-1 variable e�ects were not biased
and their precision was similar to that obtained with a correct imputation model.
For the phase-2 variable e�ect, slightly biased estimates were observed with the
misspeci�ed imputation model and weighted analyses. The e�ect of the misspeci-
�cation on the imputation model was more noticeable in terms of precision. The
loss of precision using a misspeci�ed model as compared to a correct model was
7.6%. This loss was greater for the weighted estimate than the multiple imputa-
tion estimate, and exceeded 21%. We did not include the Z3 variable, which was
weakly correlated to the phase-2 variable. Results were less satisfactory when the
correlation between the two variables was stronger, in particular concerning the
precision of the weighted estimators (data not shown).

The case�cohort data simulated from the PRIME cohort study showed that
multiple imputation can be used, even when no strong predictor of the phase-
2 variable is available. Using the variables of the analysis model plus the case
indicator in the imputation model, the multiple imputation estimator was more
precise than the weighted estimators, particularly the standard estimator, for the
e�ects of phase-1 variables. For the phase-2 variable, the multiple imputation
estimator had the same precision as the standard weighted estimators and it was
slightly less precise than calibrated and re-estimated weighted estimators.

The NWTS cohort data represent one of the worst possible situations for using
multiple imputation. Inclusion of an interaction term between the phase-2 variable
and the two age-e�ect components required an imputation model including similar
interactions between the indicator status and the age e�ects. The corresponding
coe�cients had to be estimated in separate strata, with very low numbers of pa-
tients presenting unfavorable central histology or even no such patient at all. As
a consequence, the maximum likelihood estimator of the imputation model could
be expected to be biased [17, chap. 8.4] and the multiple imputation estimator
re�ected this bias. Although local histology was strongly predictive of central
histology, imputation model 2, using only the former and the case indicator, also
yielded biased estimates of the Cox model parameters. The imputed values cor-
rectly re�ected the global proportion of patients with unfavorable central histology,
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but not always the proportional di�erence between cases and controls, as was the
case for the interaction terms age*local histology or stage*diameter.

It is reasonable to wonder how many imputations are needed. The number of
requested imputations increases with the proportion of missing information. How-
ever, in case�cohort studies, the proportion of missing information is considerably
smaller than the percentage of incompletely observed subjects, and a small num-
ber of imputations, 5�10, should su�ce. With the PRIME data and using a small
sampling rate (700/25,000), the results obtained with 5 imputations did not di�er
appreciably from those obtained with 10 (data not shown).

Herein, we presented simulations with only one phase-2 variable. However,
the approach can easily be extended to several phase-2 variables. If several co-
variates are incomplete, we suggest imputing them using a multivariate distribu-
tion, which takes into account the correlation structure between the covariates,
for instance with the mice package, which generates multivariate imputations via
Markov Chain Monte Carlo (MCMC) algorithm according to their joint distribu-
tion.

We focused on situations in which covariates were time-�xed. However, the
multiple imputation approach can be extended to time-varying covariates by, using
mixed models to account for the repeated measurement, and the within-subject
correlation structure [18].

When the phase-2 data allow consistent estimation of the imputation model,
multiple imputation is an e�cient technique to analyze the data from case�cohort
surveys. For phase-1 variables, multiple imputation has better e�ciency than
weighted estimators, a valuable improvement for prediction studies or when the
e�ect of some phase-1 variables is a focus of interest. A large number of impu-
tations is not required to obtain good quality estimates. Software that simply
implements this procedure is available: under R, the mice library; under Stata,
the Imputation by Chained Equations library, or under SAS, the PROC MI and
PROC MIANALYZE.

To gain time and determine whether multiple imputation provides estimates
similar to weighted analysis, we suggest building the analysis model using only the
case�cohort data and weighted estimators. Multiple imputation can eventually be
used to reanalyze the data with the selected �nal model to improve the precision
of the results.
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Table 1: Distribution of subcohort by stratum.
Correlation (Z2, Z̃2)=0.7

Stratum Subcohort size Cohort size1 Cases1

Tertile 1 Z̃2, tertile 1 Z3 80 3,241 7

Tertile 1 Z̃2, tertile 2 Z3 80 2,768 14

Tertile 2 Z̃2, tertile 1 Z3 80 2,765 10

Tertile 3 Z̃2, tertile 1 Z3 80 2,327 15

Tertile 1 Z̃2, tertile 3 Z3 100 2,323 27

Tertile 2 Z̃2, tertile 2 Z3 100 2,802 23

Tertile 2 Z̃2, tertile 3 Z3 150 2,766 55

Tertile 3 Z̃2, tertile 2 Z3 150 2,762 38

Tertile 3 Z̃2, tertile 3 Z3 180 3,244 117
Total 1,000 25,000 308
1Rounded mean of the 1,000 replications.

Table 2: Parameter estimates, strati�ed sampling of the subcohort (mean results
from 1,000 simulations).

Correlation (Z2, Z̃2)=0.7

Parameter Est ŜE SE PC Ratio

β1 = 0
Cohort 0.0143 0.1553 0.1568 95.0
IM 0.0144 0.1553 0.1568 95.0
BII 0.0151 0.1713 0.1763 95.3 1.10
β2 = 0
Cohort 0.0002 0.0618 0.0613 95.4
IM 0.0004 0.0667 0.0681 94.2
BII 0.0014 0.0703 0.0701 95.1 1.05
β3 = 0
Cohort 0.0022 0.0606 0.0624 93.9
IM 0.0021 0.0609 0.0627 93.4
BII 0.0015 0.0658 0.0682 94.4 1.08
β1 = 0.6931
Cohort 0.7133 0.1737 0.1744 95.2
IM 0.7016 0.1742 0.1747 95.1
BII 0.7177 0.2011 0.2011 95.7 1.15
β2 = 0.6931
Cohort 0.6940 0.0588 0.0589 95.0
IM 0.6890 0.0707 0.0718 94.6
BII 0.7040 0.0844 0.0835 95.8 1.19
β3 = 0.6931
Cohort 0.6955 0.0576 0.0621 92.7
IM 0.6831 0.0601 0.0656 91.9
BII 0.7069 0.0824 0.0894 94.1 1.37

Est, mean of the estimates; ŜE, mean of the standard error estimates; SE, standard error of the estimates; PC, % coverage;
Ratio, weighted; SE to multiple imputation estimator; BII, Borgan's variance estimator II
IM, imputation model: Z2i = α0 + α1Indcas_i + α2Strata+ ei.
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Table 3: Consequences of a misspeci�cation of the imputation model. Strati�ed
sampling of the subcohort. Results from 1,000 simulations.

Cohort IM1 IM2 Calibrated1 Calibrated2
β β β β β

Parameter (ŜE) (ŜE) (ŜE) (ŜE) (ŜE)

β1 = 0.6931 0,7133 0,7017 0,6947 0,7126 0,7123
(0,1737) (0,1742) (0,1743) (0,1901) (0,1933)

β2 = 0.6931 0,6940 0,6867 0,7554 0,6921 0,6902
(0,0588) (0,0718) (0,0694) (0,0853) (0,0865)

β3 = 0.6931 0,6955 0,6911 0,7543 0,6975 0,6970
(0,0576) (0,0596) (0,0573) (0,0702) (0,0772)

Mean of the 1,000 estimates (mean of the 1,000 standard error estimates)
IM1: Z2i = α0 + α1Indcas + α2Strata+ α3Z3 + ei (correct model)
IM2: Z2i = α0 + α1Indcas + α2Strata+ ei (misspeci�ed model)
Calibrated1: Z2i = α0 + α1Indcas + α2Strata+ α3Z3 + ei (correct model)
Calibrated2: Z2i = α0 + α1Indcas + α2Strata+ ei (misspeci�ed model).

Table 4: Simple random sampling of the subcohort. Parameter estimates with
correct and misspeci�ed imputation model. Mean results from 1,000 simulations

Correlation (Z2, Z̃2)=0.7

Parameter Est ŜE SE

β1 = 0.6931
Cohort 0.7133 0.1737 0.1744
IM1 0.7045 0.1741 0.1745
IM2 0.6969 0.1744 0.1742
Weighted 0.7120 0.2088 0.2032
β2 = 0.6931
Cohort 0.6940 0.0588 0.0589
IM1 0.6853 0.0697 0.0706
IM2 0.6770 0.0750 0.0764
Weighted 0.7066 0.0909 0.0928
β3 = 0.6931
Cohort 0.6955 0.0576 0.0621
IM1 0.6934 0.0592 0.0632
IM2 0.6911 0.0603 0.0642
Weighted 0.7113 0.0881 0.1011

Est, mean of the estimates; ŜE, mean of the standard error estimates; SE, standard error of the estimates;

IM1: Z2i = α0 + α1Indcas_i + α2Z̃2 + α3Z3 + ei (correct model)
IM2: Z2i = α0 + α1Indcas_i + α3Z3 + ei (misspeci�ed model).

Table 5: Distribution of cases by stratum.
Stratum Cases (%) Stratum size Subcohort size

1 Non-smokers 153 (5.3) 2,890 475
2 Ex-smokers 261 (6.4) 4,078 800
3 Smokers 1-9 g/day 51 (6.3) 816 175
4 Smokers 10-19 g/day 55 (7.8) 707 175
5 Smokers ≥ 20 g/day 122 (11.9) 1,029 475
Total 642 (6.7) 9,520 2,100
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Table 6: Estimates of the log relative risks.
Whole Multiple Weighted estimator
cohort1 imputation2 Standard 2 Calibrated2 Re-estimated2

β β β β β
Variable (SE) (SE3) (SE3) (SE3) (SE3)

Fibrinogen 0.1312 0.1381 0.1346 0.1338 0.1337
(0.0346) (0.0421) (0.0425) (0.0414) (0.0413)

Tobacco 0.0219 0.0218 0.0220 0.0214 0.0217
(0.0036) (0.0037) (0.0045) (0.0040) (0.0039)

Age 0.0573 0.0566 0.0573 0.0566 0.0570
(0.0138) (0.0138) (0.0160) (0.0162) (0.0160)

Center 0.2788 0.2764 0.2795 0.2749 0.2770
(0.0857) (0.0863) (0.1006) (0.1001) (0.0990)

CH 0.0078 0.0077 0.0078 0.0078 0.0078
(0.0010) (0.0010) (0.0012) (0.0012) (0.0012)

HDL -0.0526 -0.0528 -0.0528 -0.0529 -0.0529
(0.0070) (0.0070) (0.0080) (0.0084) (0.0082)

SBP 0.0104 0.0104 0.0105 0.0105 0.0105
(0.0016) (0.0016) (0.0020) (0.0019) (0.0019)

1 Unique estimates provided by the PRIME cohort.
2 Mean estimations of the 1,000 subcohorts.
3 Asymptotic standard error (SE) of the estimate.
FN, �brinogen; CH, cholesterol; HDL, high-density lipoprotein; SBP, systolic blood pressure.
Imputation model: FN = β0 + β1status+ β2tobacco+ β3age+ β4center + β5CH + β6HDL+ β7SBP + ε

Table 7: Distribution of central histology among cases and controls in the sampled
strata.

Controls Cases
Central histology Subcohort Central histology Subcohort

Stratum Favorable Unfavorable fraction Favorable Unfavorable fraction

1 450 2 0.27 53 4 1
2 1,569 51 0.10 216 16 1
4 897 17 0.13 188 20 1
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