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Mortar spectral element discretization
of the Stokes problem

in axisymmetric domains

Saloua Mani Aouadi', Christine Bernardi?, and Jamil Satouri!

Abstract

The Stokes problem in a tridimensional axisymmetric domain results into a
countable family of two-dimensional problems when using the Fourier coeffi-
cients with respect to the angular variable. Relying on this dimension reduction,
we propose and study a mortar spectral element discretization of the problem.
Numerical experiments confirm the efficiency of this method.

Résumé

L’utilisation des coefficients de Fourier par rapport a la variable angulaire permet
de réduire le probleme de Stokes dans un ouvert tridimensionnel axisymétrique a
une famille dénombrable de problemes bidimensionnels. Grace a cette réduction
de dimension, nous proposons une discrétisation de ce probleme par la méthode
d’éléments spectraux avec joints et nous en effectuons ’analyse numérique. Des
expériences numériques confirment l'intérét de cette méthode.
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1 Introduction

The Stokes system

At +grad p=Ff inQ,

diva =0 in Q, (1.1)

uU=4g on 052,
models the laminar flow of a viscous incompressible fluid in a domain €, when
subjected to a density of forces f and with boundary data g, the unknowns being
the velocity @ and the pressure p of the fluid. We are specifically interested in
the case where €2 is tri-dimensional and axisymmetric, i.e. invariant by rotation
around an axis. Note that this type of geometry appears in a large number of

realistic situations, for instance for the flow in a cylindrical pipe or around a
spherical obstacle.

The main idea for handling three-dimensional problems in such geometries
consists in using the Fourier coefficients of the data and the solution with re-
spect to the angular variable: Indeed, the three-dimensional problem is then
reduced to a countable family of uncoupled two-dimensional problems, one for
each Fourier coefficient, in the meridian domain. The drawback is that the vari-
ational formulation of each problem involves weighted Sobolev spaces, as fully
investigated in [2] in a general framework.

The discretization is then performed in two steps. First, we use Fourier
truncation, i.e. we only solve a finite number of two-dimensional problems and
recall the estimate of the corresponding error from [2, Thm IX.1.9]. Second, we
consider a discretization of each two-dimensional problem. Even if finite element
discretizations have already been studied in this context, see [4] for instance, we
have chosen here to use spectral type methods in order to preserve the accuracy
of Fourier truncation. More precisely, in order to handle the possible complexity
of the two-dimensional domain €2, we consider a mortar spectral element dis-
cretization of each problem. Indeed, handling such geometries is one of the first
applications of the mortar element method as introduced in [7]. We prove the
well-posedness of each discrete problem and also establish optimal error esti-
mates (see [11] for the first results in this direction). We present some numerical
experiments which confirm the interest of this discretization.

The outline of the paper is as follows:
e In Section 2, we recall from [2] the variational formulation of the two-
dimensional problems and also the error issued from Fourier truncation.
e In Section 3, we describe the discrete problems constructed from the mortar
spectral element method and we prove their well-posedness.
e Section 4 is devoted to the numerical analysis of these problems.
e Numerical experiments are presented in Section 5.



2 The two-dimensional problems

We first make precise some notation about the geometry of the axisymmet-
ric domain and introduce the weighted spaces which are needed on the two-
dimensional domain. Next we write the variational formulation of the two-
dimensional problems and recall their well-posedness. We conclude with an
estimate for the error due to Fourier truncation.

2.1 About the geometry

With a point in R3, we associate its Cartesian coordinates (x,y, z) and its cylin-
drical ones (r,0, z) with

x=rcosf, y=rsinb, reRy, 6¢€|—m .

We denote by R? the product Ry x R and consider a polygon € in R? with
boundary 02 made of a finite number of segments I';; 1 <1 < I. The endpoints
of these segments are known as corners of 2: We call ¢y, ¢, ...c, the corners of
the polygon which are on the axis 7 = 0, and ey, ey, ...e; the other corners of €.
Let I'g be the intersection of 02 with the axis r = 0 and I' = 9Q \ T'y.

Let € be the domain of R3 obtained by rotation of {2 around the axis r = 0.
The set € is then called meridian domain and we have

v

Q:{(T,G,z)ERS, (r,z) € QUT, —7r§9<7r}.

In Figure 1, we illustrate some examples of domains 2 which we treat in our
numerical experiments.

0%

Figure 1: Examples of domains {2 and QO



2.2 Weighted Sobolev spaces

We define the Hilbert spaces L#(€2), L2 (Q) and H*(f2), for any positive integer
m by:

L7, () = {v :  — C measurable;

1
ol 0 = (] 12 02 ¥ dr ) < e
Q

m k
Q) = {v € L Wllpi) = D 10105 w22 < +oo}.
k=0 =0
For a positive real number s, the space H(€2) is deduced in a standard way by
interpolation between the space Hl[S](Q) and HI[S]H(Q), where [s] stands for the
integral part of s. We also need the Hilbert space Vi}(Q2) = H{(Q2) N L%,(Q),
and we provide it with the norm

1
[wl|viq) = (||w||§{11(9) + ||w||%31(9))2.

Remark 2.1 In the monodimensional case of an edge A of , the spaces L%, (A),
H;(A) and V}(A) are defined in the same way as in the two-dimensional case by
using the measure dr = rdr if A is perpendicular to the axis (Oz) and dr = dz
if it is parallel to this axis. For more details see [2, Chap. II].

Indeed, with any scalar function o in L2(§U2)7 we associate its Fourier coeffi-
cients v*, k € Z, given by

o (r,2) = \/%7 /_ (0, 2)e7 . (2.1)

It is readily checked that each v* then belongs to L?().

Similarly, for each vector field ¥ in LQ(Q)?’7 we consider its cylindrical compo-
nenta ¥,, g and ¥, and the associated Fourier coefficient (vF, v, v¥) defined by
the analogue of (2.1) which now belong to L?(2)3. Tt is proved in [2, Thm I1.3.6]
that the Fourier transform: © — (vF,v%, v%);, maps H'(Q)? onto [Liez H%k)(Q)
with

VI(©Q) x V(@) x HE(Q) if k=0,
F = {000 € Q) x HE@) x V@) v+ ik € 12,()
(k) - .
if |k| =1,
V) x Q) x VI(©) i k] > 2.

More general results exist for the spaces H S(£U2)3, see [2, Chap. II], we do not
state them for simplicity.



2.3 Variational formulation of the problems

In order to take into account the boundary conditions, we introduce the spaces

HL(Q) = {v e H{Q); v=0on r},
Vie(Q) = VHQ) N H,(Q),  H,o(Q) = Hyy(Q) N Hi, ().

We also need the spaces

L%k)(Q) _ {{qGL%(Q); qu(r,z)Tdrdz:O} if k=0,

L3(Q) if |k| > 1.
We use a lifting of the boundary data g that we still denote by g for simplicity.
Then, it is readily checked that, if (2, p) is the solution of problem (1.1) with
data (f,g) in L*(Q)* x H'(2)?, the Fourier coefficients (u* = (uf, uf,u?),p")
are the solutions of the following variational problems, for all k € Z:

Find (u*,p*) in H {4, (Q) x L3, (), with u* — g* in H{;),(Q), such that
Vo € H%k)<><Q)7 Ak(uka ’U) + Bk(vvpk) = <fk7 'U>, (22>
vq € L%(Q% Bk(“’ka Q) = Oa

where the rather complex sesquilinear forms A(+,-) and Bg(-,-) are defined by
A (u, w) = ap(ur, wy) + ao(ug, we) + ao(u,, w.)

1 2 21 2
_|_/Q (j_zk(ur W, + ugWy) + %f(uem — u, Wy) + l;—guz @z) rdrdz,
with
ap(u,w) = /(&uﬁrw + 0.u0,w)(r, z) rdrdz,
Q

and
[
Bi(w,q) = — / q (&ET + (wy, + 1k wp) + 8Z@z> rdrdz.
Q

The Hermitian product (-, -) is given by
(f,v) :/f(r, z) - o(r,z) rdrdz.
Q

From now on, the space H %k)(Q) is equipped with the norm

1
||,U||Hb€)(Q) = Ap(v,v)?

(indeed, the quantity Ajy(v,v) is real and nonnegative) and the space L%k)(Q)
is equipped with the norm || - || 2(q). Then, appropriate properties of the forms
Ap(+,+) and Bg(-,-) on these spaces are derived in [2, Prop. I1X.1.3], which leads
to the following result.



Proposition 2.2 For any data f* in L¥(Q)* and g* in H ,(Q) satisfying more-
over in the case k = 0 the null flux condition

/F (9., + gon2)(r) r(r) dr = 0, (2.3)

problem (2.2) has a unique solution (u*, p*) in H%k)(Q) X L%k)(Q). Moreover,
this solution satisfies, for a constant ¢ only depending on (2,

HukHH(k) + ||Pk||L§(Q) < C(||fk||L§(Q)3 + Hgk”H%k)(Q))‘ (2.4)

Remark 2.3 The data f and g are said to be axisymmetric if all functions fr,
fo and f., g, go and g, are independent of #. In this case, only problem (2.2) for
k = 0 has a non-zero solution. Moreover it results into the set of two uncoupled
problems
Find ug in V}(Q), with ug — go in VL(2), such that
Vo € VL), a(upv) = {fy.v) (25)

and
Find (u,,u.,p) in V}}(Q) x H(Q) x L%O)(Q),
with u, — g, in VL(Q) and u, — g, in H{ (), such that
V (vr,v:) € Vi () x Hi, (),
a1 (up, vr) + ao (U, v:) + b (v, 025p) = (frovp) + (f2,02) . (2.6)
Vq € L(o) (€0), b(up,uz;q) =0,

where the sesquilinear forms a;(+,-) and b(-, -) are now defined by

ay(u, w) = ap(u,w) + / u(r, 2)w(r, z)r~ " drdz,
Q

1
b(w,q) = — / q (@wr + —w, + @Ez) rdrdz.
0 T

These problems seem much simpler and their discretization is considered sepa-
rately in the next section.

2.4 Fourier truncation

Of course, we intend to discretize only a finite number of problems (2.2). So, we
chose a positive integer K and, in analogy with the formula

a(r, 0, z) = —27r Zu ’ka, p(r,0,z) = _ﬂ Zp T, Z) et

keZ keZ



we define an approximation of the solution (@, p) of problem (1.1) by

1 .
VAT i<k
y 1 i
pr(r,0,2) = Nor Z pr(r,2) e (2.7)

k| <K

Indeed, the following result can be found in [2, Thm IX.1.9].

Proposition 2.4 For any s > 0, if the data (f,g) belong to H*1(Q)3 x
HH(Q)3, the following estimate holds between the solution (%, p) of problem
(1.1) and its approzimation (tk,px) defined in (2.7)

it — sl s s + 15 = Bicll oy < K (s + 13leenas ) (2:8)

Remark 2.5 When Fourier truncation is used, the Fourier coefficients of the
data f* and g*, |k| < K, are usually computed by a quadrature formula: With

0,, = 22;(”51, the approximate Fourier coefficients are given for |k| < K by

V2T
2K +1

F(r,2) = Z f(r, 0, ) e”H0m,

Im|<K

We do not take this modification into account in the next section, since the final
error estimates are exactly the same.



3 The discrete problems

We first recall the decomposition of the domain and the approximation spaces
that are required for the mortar spectral element method. Next, we write the
corresponding discrete problems, first in the case of axiysmmetric data, second
in the general case, and prove their well-posedness.

3.1 About the mortar element method

In view of the discretization, we consider a decomposition of ) into L open
rectangles €2y, 1 < ¢ < L, such that

_ L _
Q :ZL_Jng and QN,=9, 1<l<m<L. (3.1)

Note that the edges of the €, are either parallel or orthogonal to the axis (Oz).

For any two-dimensional domain O and nonnegative integer N, Py (O) stands
for the space of restrictions to @ of polynomials on R? with degree < N with
respect to each variable r and z. In view of the discretization, we define a
L-tuple of positive integers 6 = (Ny,..., Np). Indeed, the idea of the mortar
spectral element method is to approximate the discrete solutions in a subspace
of

Y5(Q) = {m € L2(Q); vslo, € Py, (), 1 < < L}.
Let also Y§(2) stand for the space of functions in Y4(€2) vanishing on I'.
To define this subspace, we introduce the skeleton S of the domain decompo-

L
sition, equal to éUPQg\@Q. It admits a partition without overlap into mortars

Mt
S=U

U with Nyl =2, T<p<p <MY

each 7;: being a whole edge of one of €2,, which is then denoted by ij Note that
the choice of this decomposition is not unique, however it is decided a priori for
all the discretizations we work with. Once it is fixed, we have another partition
of the skeleton into non-mortars:

_ M~
S=U Y  with 7,07, =0, 1<m<m' <M,
m=

where each ~,, is a whole edge of one of €, then denoted by €2 (if there exists
an index p such that v, and ’y:[ coincide, 2 is different of Q;f)

Next, with all vs in Ys(£2), we associate the mortar function ¢,, in L3(S)
defined by ¢y,|,+ = (vslgf)],4, 1 < p < M. With obvious definition of N, we

7



define our fundamental discrete space Xs by:
X(;(Q) = {U(s € Ys;

¥ € Py (), [ (il = 6u)(Pulr) dr =0, 1< m < M7} (32)

Ym

with dr = rdr if the non-mortar ~,. is parallel to the axis (Or) and dr = dz if
v, is parallel to the axis (Oz). We also need its subspaces defined as follows:
(i) X§ is the space of functions vs vanishing on I’

(ii) X is the space

X5(Q) = {vs € X5(Q); vo = vsl, € L2 (), 1 << LY, (3.3)

and XY is the intersection of X$ and X}.
Finally, we introduce the space

X5(0) x X35(Q) x X,5() if k= 0,
{0, 00,0:) € X5(92) X X5(9) x X5(9); v, + ik vy €X5(2)}
X () = .
if |k| =1,
X5(0) x X3(Q) x X3() if k| > 2,
(3.4)

and its intersection X3, (2) with Xg(€©)3. All these spaces are needed for the
approximation of the velocity.

The spaces for the approximation of the pressure are more simpler, they are
defined by

M;(Q2) = {m € L2(Q); vsla, € Pr,_a(S), 1 < £ < L},
Misgey () = Mis(Q) N L2 (Q). (3.5)

To conclude, we introduce quadrature formulas. Let (&, p;), 0 < j < N, de-
note the nodes and weights of the Gauss-Lobatto quadrature formula on [—1, 1]
for the measure d¢ and (;,w;), 1 < i < N + 1, their analogues for the measure
(1 + ¢)d¢, see [2, Section VI.1] for a more explicit definition. We denote by
(Q%)1<e<r, the rectangles such that 9Q, N Ty # @ and by () r,+1<e<r those
such that 0Q, N Ty = @. If Qy is equal to ]0, 7} [X] 24, 2 for 1 < ¢ < Ly and to
|71y [X] 2, 2y] for Lo +1 < ¢ < L, we use the following definitions:

(i) For 1 < ¢ < Ly and with N = Ny,

" 7“,2
g.fzaf(gmq), M:wif, 1<i< N+ 1,

1 (2



(ii) For Lo+ 1 < ¢ < L and still with N = Ny,

I / r_
gi(r)ﬁ _ (TZ Tf)fi + (Té + W)’ pz(r)f _ pirﬂ W7 0<i<Ny;
2 2 2
(ili) For 1 < /¢ < L and once more with N = N,
2y — 2 2+ 2 2 — 2 ,

We are thus in a position to define the discrete scalar product: For all functions
u and v such that uy = ulg, and v, = v|g, are continuous on Qy, 1 < ¢ < L,

Lo Ne+1 Np

(u,v); = ZZZW( faff)”f( f,Sf)wfpﬁ
(=1 i=1 j=0
+ Z ZZW "€ ) o .

{=Lo+1i=0 j=0

We denote by Z,” and Z, the Lagrange interpolation operators associated with the

nodes (¢}, &) for 1 < ¢ < Ly and with (5.’””,55) for Lo+ 1 < ¢ < L, respectively,
with Values in Py, (€2). Let also Zs stand for the global interpolation operator
with values in Ys(€2).

3.2 The discrete problems for axisymmetric data

As standard for spectral methods, the discrete problems are constructed by the
Galerkin method with numerical integration. The problem associated with (2.5)
reads

Find ug s in X3(Q2), with ugs — Zsge in Y§(2), such that
Yus € Xg(Q), aw(um;,vg) = (fg,@(;)(s (36)

where the bilinear form ay4(-,-) is defined by

aos(us, ws) = (Orug, 0,W5)s + (0yus, 05Ws )5,
ars(us, ws) = ags(us, ws) + (r~tugs, r~'ws)s.

From now on, we omit the study of this problem and we refer to [1] for its
detailed numerical analysis.



The problem associated with (2.6) reads

Find (5, U5, ps) in X5(2) x X5(82) x M0y (),
with u,.5s — Zsg, in Y§(Q2) and u, 5 — Zsg. in Y§(2), such that
V (rs,025) € X§() x X3(€),
ays (Urs, Vrs5) + aos (Uzs, Vs 5) + bs (Urs, Uz 55 Ds)
= (fr,0r8)s + (f2,026)s, (3.7)
Vg5 € M) (2),  bs (s, w25 5) = 0,
where the form bs(-,-) is defined by

b5(’lﬂ§, %) = —(C]& 87"@7",5 + T_l ET,(S + azwz,ﬁ)é-

In order to investigate the well-posedness of problem (3.7), we now establish
some properties of the sesquilinear forms which are involved in it. The continuity
of the forms ags(+,-) and ays(-, -) follow from the positivity and boundedness of
the Gauss—Lobatto formulas, see [6, Remark 13.3] and [2, Lemma VI.1.4]. This
also yields the ellipticity of aj5(+,-). However, a further and now well-known
argument is needed to prove the ellipticity of ags(-, ), we refer to [5, Chap IV,
Lemma 3.2] for the complete proof. All discrete spaces are equipped with the
broken norms that results from their definition, namely

L L
1 1
||UHH11D(Q) = (Z ”UH?VJ%(QZ))Qa ||"U||v11D(Q) = (Z ”U||%/11(Qé))2-
=1 =1

Lemma 3.1 Let Np denote the maximal number of corners of the 2, which are
inside one of the non-mortars v, , 1 < pu < M".

(i) The form ai5(-,-) is continuous on X}(Q) x X%(Q) and elliptic on X9(Q), with
norm and ellipticity constant independent of 6.

(i) If all the N, satisfy

Ny>Np+2,  1<(<I, (3.8)

the form ags(-,-) is continuous on Xs(Q2) x X5(Q) and elliptic on X§(2), with
norm and ellipticity constant independent of 6.

Next, we observe that, due to the definition of Ms(€2), the forms b(-,-) and
bs(-,-) coincide on X3(€Q2) x X;5(€2) x Mjy(€2), whence the continuity of bs(-, ).
However proving the second part of the next lemma is more difficult.

Lemma 3.2 The form bs(-,-) is continuous on X35(€2) x X5(Q2) x Ms(Q2), with
norm independent of 6. Moreover, for any qs € My, there holds the inf-sup

condition
bs (ws, gs)
sup

wseXY(Q)xXZ () HwéHvllD(Q)lelD(Q)

> Bs ||Q<5||L§(Q) ) (3-9)

10



where

__1 _ _
Bs = cNs 2 (log N5)™'  with N; = max{N,,1 < (< L}. (3.10)

Proof. For already explained reasons, we only establish the second part of the
lemma and prove it with bs(-, -) replaced by b(-,-). Let g5 belong to Msqy. We

take
1

g5 = qs + s with  gslo, = m

/ qe(r, z) rdrdz.
Q

1) On each Q, we remark that ¢, = s/, belongs to Py,_2(€2) and has a
null weighted integral on . Let P} (€) stand for the subspace of P} (£)
made of polynomials vahising on 9€2,. Thus, according to [2, Proposition X.2.5]
and [6, Sections 24 and 25], there exists w, in P% (Q) x P% (Q) such that

4 4
S ~ 12
b(wy, Ge) = |Gell 2o, and
H'Jhs\!vg(ge)qu(m) < ¢V Nelog Ny H(j@HL%(Qg) :
We take w;s such that wslq, = w,. It is readily checked that w;s belongs to
X9(©2)2. Moreover we have
1 o
b(ws, Gs) = ||§6Hi§(g) and  [|ws|lva @yxmr, ) < €N log Nol|dsll 2y (3-11)

2) Since @ is constant on each subdomain €2, and according to [2, Lemma XI.1.1]
(see also [2, Prop. X1.1.7]), there exists ws in X2(Q) x X%(2) such that

b(ws, Gs) = H%Hifm) and  [|ws|lvy, )xmi, @ < Tl 2 - (3.12)

3) We now use the Boland and Nicolaides argument [9] and take : ws = Ws+ A,
for a positive constant A. Since b(ws, gs) = 0, we have

bs(ws, q5) = H@SH%(Q) + A H%Hif(g) — A1l 2o 185 [l L2 (o
52772 ~ 12 A _ 2
> (1- N ) @572 0y + AL — 2—772) 135172 ()

=

for any 7 > 0. When taking n = 2 and A = 1* we deduce:

) 1 1
bs(ws, gs) > lnf{@, 5} ||Q6||i§(9) : (3.13)
By using (3.11) and (3.12), we obtain
lwsllz < ¢ Ni (log N) llas| 30)- (3.14)

Finally by combining (3.13) and (3.14) we obtain the inf-sup condition (3.9).

Even if condition (3.9) is not optimal, it is well-known that it cannot be
improved, see [2, Prop. X.2.5] or [6, Thm 25.5]. In any case, it is sufficient for
proving the next result.

11



Proposition 3.3 If condition (3.8) holds, for any data (f., f.) and (g, g.) con-
tinuous on Q and satisfying the null flur condition (2.3), problem (3.7) has a
unique solution (s, u.s5,ps5) in X5(2) x Xs5(2) x Moy (2). Moreover, in the
case of homogeneous boundary conditions g, = g, = 0, this solution satisfies, for
a constant ¢ only depending on ) and its decomposition (3.1),

wrsliva, @ + lwesllz, @) + B85 Ipsll ) < (1 Zsfrll 2 ) + ||I<5fz||L§(Q))- (3.15)

We prefer not to state the stability property in the general case since it is
more complex.

3.3 The discrete problems in the general case

There also, the discrete problems are constructed by the Galerkin method with
numerical integration. For all k& # 0, they read

Find (uf,p%) in X50)(Q) x Ms(Q), with u} — Zsg"* in Y°(Q)?, such that
V’U(s € Xg(k)(Q), .Ak,g(ulg, ’Ug) + Bkﬁ(vg,p’g) = (fk,ﬁg)g, (316)
Vgs € M;(Q), By, s(uf, gs) = 0,

where the sesquilinear forms Ay 5(-,-) and By (-, ) are now defined by

Ap.s(us, ws) = aos(Urs, W) + aos(Uos, Wos) + aos(Uszs, Wss)
—f- (1 —|— ICQ)(T’_IUTﬁ, 7"_1@7,75)5 —|— (1 —I— k?2)(7“_IUQ75, T_lwgﬁ)g
+ 24k (r’lu(m, r’lwm;)g — 2ik (r’lur,g, 7’*1@975)5 + k2 (r’lum, r’lwz#;)(;,

and
Bk,é(w57 Q5) = - (q57 87'@7",6 + Til (wr,é + ik wQ,J) + azwz,(g) 5.

Despite the complex aspect of the forms A s(+,-) and By s(-, ), proving the
well-posedness of the previous problem is simpler than for problem (3.7). Indeed,
the continuity and ellipticity of A s(-, -) immediately follows from the properties
of the Gauss-Lobatto formulas, see [6, Remark 13.3] and [2, Lemma VI.1.4],
due to the definition of the norm || - || H () introduced in Section 2 (see also [2,

Section X.1]). We hide here an obvious definition for the norm || - || ()

Lemma 3.4 The form Ays(-,-) is continuous on Xy (2) X X5 (2) and elliptic
on Xg(k)(ﬂ), with norm and ellipticity constant independent of §.

The continuity of the form By s(-,-) also follows from the properties of the
Gauss—Lobatto formulas. Moreover, since no global or matching condition ap-
pears in the definition of Mj;(2), the inf-sup condition is easily derived from
local ones. We refer to [2, Eq. X.2.32] for this.

12



Lemma 3.5 The form By s(-,-) is continuous on Xs)(2) x Ms(§2), with norm
independent of 6. Moreover, for all k # 0 and for any qs € Ms(Q2), there holds
the inf-sup condition

B s(ws, q
sup DA D) o gl (3.17)
wsEXY Q) |ws HH%MD(Q)
where o B
Bsry = c|k| ™" Ny 2 (log N5) ™, (3.18)

with N defined in (3.10).
All this leads to the well-posedness property.

Proposition 3.6 For all k # 0 and for any data f* and g* continuous on Q,
problem (3.16) has a unique solution (uf,pf) in Xsu () x Ms(Q2). Moreover,
in the case of homogeneous boundary conditions g¥ = 0, this solution satisfies,
for a constant ¢ only depending on 2 and its decomposition (3.1),

o)+ Bs) ||P§||L§(Q) <c ||I<ka||L§(Q)3- (3.19)

k
skl

13



4 Error estimates

We prove the a priori error estimates concerning first the solution of problem
(3.7), second the solution of problem (3.16). We conclude with an estimate on
the whole domain (2.

4.1 The case of axisymmetric data

For simplicity, we denote by Zs the product X3(Q2) x X5(€2) and by Z§ the product
X2(Q) x X%(Q), by || - ||z the norm on the product space Vi, () x H{, (). We
define the space Vs by :

Vs = {w5 € Zs; Vg5 € Mi5(Q), bs (ws, 45) = O}'

In the case of homogeneous boundary data g, = ¢g. = 0, to prove an estimate
between the solutions w of problem (2.6) and ws of problem (3.7), we first use
the Strang Lemma: With obvious notation for the bilinear form A,

=l < e (inf) flu—wsll 5+ inflp— asll iz
./4. 5 - A )
+ sup (vs, ws) s(vs, ws)
ngZa leS”Z
czs(r,z)rdrdz — (Isf, z
s Jo F( 5 (1, 2) (Zsf, z5)
zZ5€ELs ||z5||Z
.
+ p S B )O) )y
sup

vs€Zs 1951

Y

where ¢ is a positive constant independent of 4.

Even if the previous estimate seems rather complex, it can be noted that
the terms due to numerical integration, i.e. on the second and third lines, can
be evaluated separately on each €),. So bounding them relies on the exactness
properties of the quadrature formula and standard approximation and interpo-
lation results [2, Sections 5.2 and 6.3]. Similarly, due to the definition of Ms(£2),
the same arguments yield, for any s, > 0,

it -4l e <cZN ol (@1

So it remains to bound the approximation error inf |u — vs||, and the con-
v;E€V;s

sistency term in the fourth line of Strang’s inequality.

14



Proposition 4.1 Assume that the part w = (u,,u,) of the solution of problem
(2.6) with homogeneous boundary conditions is such that each wyq, belongs to
H N (Q)?, with s > 3 for 1 <0< Ly and s, > 3 otherwise. If condition (3.8)
holds, there exists a function vs in Vs such that:

s L 3
= vsll; < A SNl s - (42)
=1
where N+
N-
s = £ Zm 4.3
5 maX{N;L, Ny (4.3)

the mazimum being taken on all mortars v, 1 < u < M, and non-mortars
9 T H
Vs L <m < M~ such that fy:[ N7, has a positive measure.

Proof. Since it is very complex, we only give an abridged version and refer to
[11, Prop. 3.2.3] for details (see also [3] for similar arguments). The function v;
is built as the sum v} + v + v3.

1) Construction of v}: Since w is divergence-free in the sense

Oty 5 + rt Urs + Ou,5 =0 on (,

there exists a function 1 in HZ(§2) such that

w= Rot, (1) = (0., ~0,(r¢))

Setting ¢y = tlq,, the idea is to take v; such that vilo, = ROta(ﬁj\}f@Dg),
where each ﬁ*Nf is an appropriate projection operator from H?(€) onto Py, ()
preserving the nullity of the function and its normal derivative on the edges of
Qy, and also the values at the corners of the €,. Then, the function v} is still
divergence-free on each €2,.

2) Construction of 'U%: For 1 < pu < M, let an, 1 < p < P,, be the corners
of the €, which are inside ;7. With each of them, we associate a tensorized
polynomial 7, in IP’NJ(Q;F) which vanishes on Q2 \ v,f and moreover satisfies

np(ap) =1 and Nplay) =0, 1< p < P,uap/ # p.

Note that this requires condition (3.8). Thus, we set

D L @, (4.4)
b 0 inQ\QF.
The idea is to take, with obvious notation,
Mt Py
= > W=T;"¢)ap)m,,  vila, = Rota(zsla,)-
p=1 p=1

15



3) Construction of v3: Setting 2}%|q, = I3, + 25]q,, we define

~ %2 12 n o __ ~*,2 12
O = WN,;—z([zé ]%71)’ O = On (7T1\r,;—2([z<s ]%71)7

where [-] - stands for the jump through ~,, (with the right sign) and the operator
%E%, , Is an appropriate projection operator onto P N;sz(%ﬁ)- Next, on each ~,,,
we use a lifting operator R?7 of the trace and normal derivative and set

s

i = 3 Rot, 0 R (a, o)

m=1
The function vs = v} + v% + v} now belongs to Vs. Estimate (4.2) is proved in
[11, Prop. 3.2.3].

We say that the decomposition is conforming if the intersection of two dif-
ferent domains Q is either empty or a common vertex or a whole edge of both
of them. The result of Proposition 4.1 can be improved in this case, since the
step 2 of its proof, i.e. the construction of v%, can be omitted.

Corollary 4.2 Assume that the part w = (u,,u,) of the solution of problem
(2.6) with homogenous boundary conditions is such that each wyq, belongs to
H{ Q) with s > 3 for 1 < € < Loy and s, > & otherwise. In the case of a
conforming decomposition, there exists a function vs in Vs such that:

L
lu —vsl 5 < e >Nl

(=1

(4.5)

sp+1 .
H1e (QE)2

Unfortunately, the previous estimates do not extend to the case of nonhomo-
geneous boundary conditions, and we are led to use the formula (see [10, Chap.
II, Eq. (1.16)] for instance) in this case:

. _ < -1 - _ ‘
vglelgl(; |w — vl ; < 55 z;ggg lw — 25 5

Since f5 is not bounded independently of §, see (3.10), this leads to a lack of
optimality. We now treat the consistency error.

Proposition 4.3 For any function ¢ such that each plg,, 1 < ¢ < L, belongs
to H*(€y), with s; > 1 for 1 < € < Loy and s, > 0 otherwise, the following
estimate holds for all ws in X

L

‘ Z / (1) [ws](T) dT‘ <c (ZN[SZ(Iog Np)? |||

V€S Tm /=1

o) 105l @)

(4.6)
where g, is equal to 1 if one of the sides of Qy is a 7y, and intersects at least
two subdomains ¢+ ¢, and 0 otherwise.
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Proof. It follows from the definition (3.2) of the space X;(£2) that, for any
in PN;L_Q(%?L)a

| el ar = [ (o= vl i

Tm

whence, for an appropriate space T'(7,,),

!/_ SO(T)[wa](T) dT| < ||80 - '(/}HT(%;)’”[wé]HT('y;)‘

Next, it follows from [5, Chap. I, Thm 8.3] that the trace operator maps H7(€2,,)
1 1
onto Hz(v, ) or HZ(v,,) according as ~,, is parallel to the axis (Oz) or (Or).
1
Similarly, it maps H1(€) onto Hz(v;) or HZ(v;) if v is contained in an edge
of ©, and the product of the spaces H(y,) onto Hz~<(y) or HZ " (y;) with
norm < ce! (see [8]) if ~,, is contained in the union of edges of the €. The
desired estimate follows by taking T'(7,.) equal to this trace space, choosing 1)

equal to the image of ¢ by the orthogonal projection operator from L?(;.) or
L3(v;,) onto Py-_5(7,) and using standard duality arguments, finally taking

-1
e = (log(N,,))

From Propositions 4.1 and 4.3 combined with the previous arguments, we
easily derive the estimate for ||u — wug||z. Thus, the estimate on the pressure

follows from the inf-sup condition (3.9), combined with the previous result. All

this leads to the next statement. From now on, we assume for simplicity that
condition (3.8) holds.

Theorem 4.4 Let (u,p) be the solution of problem (2.6) such that each (u,p)|q,,
1 < 0 < L, belongs to H* "' (Q)? x H (), with s, > 1 for 1 < £ < Ly and
s¢ > 0 otherwise. If moreover the data f are such that each flg,, 1 < ¢ < L,
belongs to HY*(S%)?, with op > 3 for 1 < ¢ < Ly and o, > 1 otherwise, the
following error estimate holds between this solution and the solution (us,ps) of
problem (3.7):

(i) In the case of homogeneous boundary conditions,

|l — usllz + Bsllp — psllLz ()

L
3 n7—s
<c (Z(l + A) TN, (log Ny )% |l ey

(=1

L L
+ ZN[SIZ(lOg No)? 1P|l e ) + ZN[W 1 F 1 mroe )2 )

/=1 /=1

17



(i1) In the general case,

|l — usll 7 + Bsllp — psllL2 ()

L
_ 1l -5
=¢ <ﬁ5 Y (L) 2N (log No)? [|wll et g
=1

L L
+ > N (log Np)* |[pll oo,y + D N HfHH;W) ,
/=1 /=1

where Ay and g, are defined in Propositions 4.1 and 4.3, respectively.

These estimates are simpler and sometimes fully optimal when the decom-
position is conforming.

Corollary 4.5 If the assumptions of Theorem 4.4 hold and in the case of a con-
forming decomposition, the following error estimate holds between the solutions
(u,p) problem (2.6) and (us,ps) of problem (3.7):

(i) In the case of homogeneous boundary conditions,

|w — usl| 7 + Bsllp — psll 20

L
< e (0N (Hullgesr o + I

(=1

L
Hf“(m)) +) N ”f”Hi’%w)?)'
/=1

(ii) In the general case,

| — usll z + Bsllp — psllLz ()

L L
S c (ﬁélzNé_sz HU’HH‘fi'*'l(Qg)?—i_zzvé_sZ Hp‘
/=1 /=1

L
HQ) T ZNZ_JZ I fHHf@(QN) :
=1

To go further, we now give a more explicit estimate of the error, where the
singularities of the solution are taken into account. We first recall that, since all
the angles of {2 in the corners ¢; which belong to I'y are equal to F, these corners
do not give birth to any singular function. On the other hand, the angles w,, of
(2 in the corners ¢; are equal to 7 or 37” In a neighbourhood of this corner, the

solution admits the expansion, where the singular functions S.(,ZZ.) are defined in
[2, Section IX.1.b],

Up = Upreg + ﬁuSﬁg)i + ZauS,EQ, Uy = Uy peg + BUSSQZ + ZozuSg?i,

n>1 n>1

P = Dreg + /81)51()(,)6)1 + Zapsl(?fle)i'

n>1

18



Moreover, the support of the singular functions is the union of the 0, such that
¢; is a vertex of €, their definition involves the positive quantities n(w,,) (see [2,
Section IX.1.b] for an explicit definition of the function 1) and the approximation
properties of these functions are well-known (we refer to [11, Section 3.2.4] for
more details). We only consider the case of a conforming decomposition for
simplicity and we denote by Ns the minimum of the Ny, 1 < ¢ < L.

Corollary 4.6 If the data (f,g) belong to H;~'(Q)* x H;™(Q)?* with s > 2,
the following error estimate holds between the solutions (w,p) of problem (2.6)
and (ug, ps) of problem (3.7):

(i) In the case of homogeneous boundary conditions,

3 —s
I — wsll 5 + Bsllp = psllpze) < e(L+ As) T sup{N; ™", B} || £

@)

(ii) In the general case,

| — usll 7 + Bsllp — psllLz ()
< e(1+ XAs)2 sup{N;~*, 55 L ES (|| ]

B H(Q)? + Hg‘ Hls+1(Q)2).

where

EY =max{E, 1< (<L},

e}

if Qp does not contain any e;,
EY = N;2n(5)(log N.)z if Q contains e; with w,, = 7

Zon(3n _
Nei%( 2 )(log N,z if Q contains e; with we, = &,

and N, is the minimum of the Ny for the )y such that c; is a vertex of .

To make these last estimates fully complete, we recall [2, Section IX.1.b] that
n(%) ~2,73959 and n(3F) ~ 0, 54448.

4.2 The general case

Owing to Lemmas 3.4 and 3.5, the same arguments as in Section 4.1 lead to
similar estimates. However, for the sake of brevity, we prefer to state only
the final result. We recall from [2, Section IX.1.b] that the singular functions
exhibited above are the same for all values of k. We also introduce for any s > 0

the norm
iko

||’U||ka)(ﬂ) = [ve™ s @)

(note that the two definitions of || - || 1, (@) coincide) and by H{},(€2) the set of

functions v in L}(Q)? such that vl g, @) < +00.
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Theorem 4.7 If the data (f*, g*) belong to Hip Q)P x HilH(0)? with s > 3,

the following error estimate holds between the solutions (u®,p*) of problem (2. 2)
and (uf, p¥) of problem (3.16):
(i) In the case of homogeneous boundary conditions,

3 _
e = ],y s [ =Pl 20y < €04 20) 7 sup{NG ™, EF} (£ g
(ii) In the general case,

1" = w5y ) + BsewllP" = Pz

< e+ 2! sup{ N3 B BV vy + 19 s ) (47)

where the quantities \; and E5 are introduced in Proposition 4.1 and Corollary
4.6, respectively.

4.3 Back to the three-dimensional problem

Once the discrete coefficients (uf, p¥), |k| < K, are known, the basic idea is to
define the three-dimensional discrete solution

1 .
U s(r.0,2) = E Z ug(r, z) e,
|k|<K

Prs(r, 0, 2) Z pE(r, 2)e*®. (4.8)

|k|<K

Indeed, bounding the error between the solution (@, p) of problem (1.1) and
this solution relies on the triangle inequality (with obvious definition for the
| - ||H%,(Q)‘n0fm)

18 = sy s < N8 — Bl ye + 1 = By rys:

and its analogue for [|p — prsll 2(q). The first term in the right-hand side of
this inequality is evaluated in Proposition 2.4, while the second one obviously
satisfies

[ uK5||H1 Z Hu - u5||H%k>D(Q) :
k| <K

So the final result is easily derived from Thoerem 4.7.

Theorem 4.8 Assume that the discretization parameters K and ¢ satisfy

K < Nj. (4.9)
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If the data (f,§) belong to H*'(Q)? x H*'()? with s > 2, the following

error estimate holds between the solutions (@, p) of problem (1.1) and (Uk.s, P 5)
defined in (4.8):
(i) In the case of homogeneous boundary conditions,

|l — ﬁK,aHHl(Q)g + Bsx)| P — ﬁK,éHLz(Q)

3 —s —s\ || £
< ({14 20) SN} B+ K 1y (410
(i1) In the general case,

Hﬁ — ﬁK,éHHl(Q)iﬁ’ + ﬁ&(K)Hﬁ - ﬁK,lsHL?(Q)
< e((1 4 Ag)? sup{ N}, By E5 Y + K7°)
(I £1

s+ |9l

Hsfl(fl) H5+1(Q)3)7 (411)
where the quantities \s and E5 are introduced in Proposition 4.1 and Corollary
4.6, respectively.

Condition (4.9) is not at all restrictive and can be avoided when writing
more complex estimates. Moreover, if A\s is bounded independently of §, which is
most often the case, the part of estimate (4.10) concerning the velocity @ is fully
optimal, which is not the case for the mortar spectral element method in general
three-dimensional geometries and non-conforming domain decompositions, see

[5, Chap VIJ.
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axis-r-

5 Some numerical experiments

We present numerical tests which would confirm our theoretical predictions in
the axisymmetric and general cases. These tests are made on the two types of
domains presented in Figure 1, only the first one being convex. Each domain is
broken up into rectangles, which enables us to highlight the good convergence
properties of the mortar method.

5.1 The case of axisymmetric data

We consider the rectangle (2* in the left part of Figure 1, broken up into three
rectangles Qf, QF, and Qf as follows:

O* =)0, 1[x] = 1,1[;
=2 Ax] ~ L gl =100~ 1Lk 25 =l0,1[x]5, 10 (5.)

For the first series of tests, we take the axisymmetric data given by

fT(T,Z) :1> fz(T’,Z) :Oa
3
gr(ra Z) = T7/2Z27 gz(T‘, Z) = —57"5/223. (52)

Isovalues of u Isovalues of p Isovalues of u

1

1

0.8 0.8

0.6 0.6

axis-r-
axis-r-

04

04

0.2 0.2

0 L IT
-1 05 o 0.5

axis-z-

0 s,
-1 05 o 0.5 1
2 axis-z-

Figure 2: The discrete solution in Q° for the data in (5.2)

05 1

In Figure 2 we represent the isovalue curves of u, s, u, s and ps obtained with
N1 :N2:20 and N3:22

The lack of continuity through the interfaces of the three subdomains is not
visible on the figure.

We now consider the following singular functions:
3
UT(T, Z) = 707/22”27 UZ(T, Z) = —57“5/223, p(rv Z) = 7,1/27 (53)
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we compute the associated data and finally the discrete solution for these data.
The curves in the left part of Figure 3 present the quantities log;, [|[u — ws|| 12/

10 L2(Q)
(blue line), log ||[u — us||, (green line) and log, ||p —p(;HL%(Qa) (red line) as
functions of log,,(N).

A : Domain 0° B: Domain 0°
3 4
-4 -E
-S
5 g °
§ ° E
=) 2 -7
e =
El - |
Bt —+— L -8
—%— VI*Hlu
ol 1 9
—_—— L*p
-10 - N N = .o .’ .: 10 . . . ,
peo T rE o TE s he s 0.8 1 12 1.4 16
Log,,(N) Leog,.(N)

Figure 3: Error curves for the solutions in (5.3) and (5.6)

We now work with the domain Q in the right part of Figure 1, broken up
into 5 subdomains, namely

O =0, 1[x] — 1, 1]\ [1, 1[x[-2, 3],

1 1 1 1 1 11

QI{ _]ﬁal[x]_la_é[; Qg :]Ovi[x]_la_éh Qg :]Oﬂé[x]_éaﬁ[a
0 =10, (x5 16 0 =15, 105,10 (54)

05
axis-r- 0 1 axis-z- axis-r- 0 4 axis-z- axis-r- 0 -1 axis-z-
Figure 4: The discrete solution in Q° for the data in (5.5)
The (axisymmetric) data are now given by
fT(r7 Z) - —67”, fz(h Z) - 16Z7
gr(r,2) =13, g.(r,2) = —4r?*z. (5.5)
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Figure 4 present the layouts of u, s, u. s and ps obtained with all N, equal to 30.

We consider the following functions in the domain Qb
u,(r, 2) = 17?22, u,(r, 2) = —3/2r%223, p(r,z) = —r, (5.6)

and as previously compute the associated discrete solution. The curves in the
right part of Figure 3 present the quantities log [|u — s ;2 (qv)2 (blue line),
logyg [[u — usl|; (green line) and logyg [|p — psll2(qp) (ved line) as functions of
log,o(IV). It can be noted that, in both parts of this figure, the slope of the
curve for the pressure is weaker than for the velocity; this is due to the term (s
in the estimates stated in Theorem 4.4.

5.2 The general case

x1

0«3 N=30;K=8;k=0

B N=30;K=8;k=0 N=30;K=8;k=0

x10

- P

05

axis-r- 0 X .
-1 axis-z- axis-r- 0 - axis-z- axis-r- 0 axis-z-

Figure 5: The Fourier coefficients of order 0 of the discrete solution in Q¢ and data in (5.7)

u:: N=30 K=8 k=1 — u;: N=30 K=8 k=1 u;: N=30 K=8 k=1
1
08
. 08 . H
& 04 &
02

g 0 1 ’ g 0 1
axis-z- axis-z-

Figure 6: The Fourier coefficients of order 1 of the discrete solution in 2 and data in (5.7)

Again in the domain Q¢ defined in (5.1), we firstly work with the data:

(frr for f2)(r, 0, 2) = (r*?zc0s0,1°/%2 sin 0, r2* cos? 6)

(.ém g@a §z>(r7 97 Z) = (07 07 0) (57)
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The layouts of u{ 5, u2 5 and p§ obtained with K = 8 and all the Ny equal to 30
are presented of Figure 5. And the isovalue curves of u, s, ul; and pj for the
same values of the discretization parameters are presented in Figure 6.

To study the slope of the error, we consider the following solution:

lvtx(%f%z) :l'2y2, ﬁy(ﬁ,y,Z) :Oa /az(l'ay?'z) = _szyz
e,y 2) = (@ + )2 = )2 (5.8)

For the corresponding discrete solution, in the left part of Figure 7, we give the
curves of logyg || — @s|| j2(ga)s (Plue line), logy, [ — 'Ii(;HH}D(Qa)g (green line),
and logy [|P — Ps|| r2(e) (ved line) as functions of log;,(N).

Log \hermor)
Log m': ermor)

1.1 1.2 1.2 1.4 1.5 08 08 1 1.1 12 12 14
Log..(N Log..(N

Figure 7: Error curves for the solutions in (5.8) and (5.10)

Finally, we go back to the domain Q° defined in (5.4) and we consider the
data :

V) V)

(fow fy7 fz)(xvya Z) = (Z2 + x2 + y27 _nya —2233),
(Ga Gy G2) (2, y, 2) = (0, —zy(1 — 2%),0). (5.9)

We represent in Figure 8 the layouts of Im(u%), pgl) and ug) for the discrete

solution computed with K = 5 and all the N, equal to 34.
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MN=34;K=5 k=1 N=34;K=5 k=1

0s

axis-r- 0 1 axis-z- axis-r- 0 4 axis-z- axis-r- 0 1 axis-z-

Figure 8: Some Fourier coefficients of the discrete solution in 2° and data in (5.9)

Figure 9 illustrates the isovalues of pj and ug ; for the discrete solution com-
puted with K =5 and all the N, equal to 20.

Isovalues of p?: N=20,K=5 k=2 " 10'15 Izovalues of uE: M=20 K=5 k=2 % 10'"
1 oz rmme gy eeeeeeeee soessususaenns T 3 2
X : i &
3 : i 2
08 b - oo g R R RRRLLE S 1
- 1
C OB [t i CTRPPI howeeeofaih i 0 08 bttt R 0
% : : 3 i 5 2 =
LI I S e ........... ¥ AN : 18 04} s K|
: 1 : 2
0.2 b 5wl e 0 QO SRR e L L S -2
-3
0 M : M £ -4 0 Sl b Sl A ek 3
-1 -05 0 05 1 -1 -05 0 05 1
axis-z- axis-z-

Figure 9: Some Fourier coefficients of the discrete solution in ©° and data in (5.9)

To conclude, we consider the solution
g (1,y,2) = (2" +¢)°, dy(w,y,2) =0,
14
'lVLz(ZC,y,Z) = _E(x2+y2)4/3x7 ﬁ(xayaz) =Tz (51())

We compute the associated discrete solution (g s, pxs). In the right part of
Figure 7, we give the curves of the errors logy, || — @k s

logy, ||@ — ﬁKﬁ”H})(m)?’ (green line), and logy [P — Prsl 12(pey (red line) as func-
tions of log,(N).

All these results are in good coherence with the estimates proved in Section
4. They confirm the efficiency of our method for solving a three-dimensional
problem.
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