
HAL Id: hal-00563987
https://hal.science/hal-00563987

Submitted on 7 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time implicit high-order discontinuous galerkin method
with reduced evaluation cost

Florent Renac, Claude Marmignon, Frédéric Coquel

To cite this version:
Florent Renac, Claude Marmignon, Frédéric Coquel. Time implicit high-order discontinuous galerkin
method with reduced evaluation cost. SIAM Journal on Scientific Computing, 2012, 34 (1), pp.A370-
A394. �10.1137/100816845�. �hal-00563987�

https://hal.science/hal-00563987
https://hal.archives-ouvertes.fr

TIME IMPLICIT HIGH-ORDER DISCONTINUOUS GALERKIN

METHOD WITH REDUCED EVALUATION COST

FLORENT RENAC∗, CLAUDE MARMIGNON† , AND FRÉDÉRIC COQUEL‡

Abstract. An efficient and robust time integration procedure for a high-order discontinuous
Galerkin method is introduced for solving nonlinear second-order partial differential equations. The
time discretization is based on an explicit formulation for the hyperbolic term and an implicit for-
mulation for the parabolic term. The procedure uses an iterative algorithm with reduced evaluation
cost. The size of the linear system to be solved is greatly reduced thanks to partial uncoupling in
space between low-order and high-order degrees of freedom. Numerical examples are presented for
the nonlinear convection-diffusion equation in one and two dimensions including steady and unsteady
flow problems. The performance of the present method is investigated in terms of CPU time and
compared to a fully implicit method. A Von Neumann stability analysis is carried out in order to
determine the stability and damping properties of the method. Besides a fairly reduced CPU effort,
numerical results demonstrate better convergence properties of the present algorithm when compared
to the fully implicit method.

Key words. discontinuous Galerkin method, nonlinear convection-diffusion equation, implicit-
explicit time discretization, pseudo-time integration

AMS subject classifications. 65N30, 65N12

1. Introduction. Discontinuous Galerkin (DG) methods are high-order finite
element discretizations and were introduced in the early 1970s for the numerical sim-
ulation of the first-order hyperbolic neutron transport equation [34, 40]. The method
was later extended to nonlinear convection dominated flow problems with the use of
a Runge-Kutta method for the time integration [12, 14]. In recent years, there has
been a strong interest for these techniques in the field of computational fluid dynamics
which has led to the introduction of discretization schemes for parabolic and purely
elliptic equations. See for example [4, 5, 8, 9, 13, 19, 20, 24, 28, 37, 43] and references
cited therein. For more details, the reader is referred to the analysis of existing dis-
cretizations in an unified framework developed by Arnold et al. [3] and to the overview
of recent progress in DG methods for compressible flows [32]. The success of these
methods lies in their high-order of accuracy and flexibility thanks to their high degree
of locality. The stencil of most DG methods is compact and independent of the space
discretization order. This means that the evaluation of the residual in a discretization
element involves only this element and its immediate neighbours. The order of the
numerical scheme depends on the degree of the approximated piecewise polynomials
which can be easily increased. These properties make the DG method well suited
to algorithm parallelization, hp-refinement, hp-multigrid, unstructured meshes, the
application of boundary conditions, etc.

However, the association of DG methods to an explicit time discretization leads
to a strong restriction on the time step due to the so-called Courant-Friedrichs-Levy
(CFL) condition for stability of the numerical scheme [2, 10]. Numerical experiments
indicate that this condition becomes more restrictive as the space discretization order
increases [14]. Moreover, the discretization of parabolic terms requires an additional
stability constraint, the Von Neumann condition, which becomes more restrictive than

∗CFD and Aeroacoustics Department DSNA, ONERA, 92320 Chatillon Cedex, France
(florent.renac@onera.fr).

†CFD and Aeroacoustics Department DSNA, ONERA, 92320 Chatillon Cedex, France.
‡CMAP, Ecole Polytechnique, 91120 Palaiseau, France.

1

2 F. RENAC, C. MARMIGNON AND F. COQUEL

the CFL condition for flow regions with small cell Reynolds number as in boundary
layers. In high Reynolds number flows, the large variations in element size required
to resolve all the spatial scales make the use of explicit time integration techniques
prohibitive.

Implicit solvers are thus needed with this type of flows. However, the shortcom-
ing of these methods is the extremely high computational cost induced by the large
number of degrees of freedom (DOF) per element. The application of an implicit
time discretization technique to a nonlinear system of equations leads to an algebraic
system to be solved at each time step. The size of this system is equal to the total
number of unknowns of the discrete problem and may become very large for practical
applications (e.g. the resolution of RANS equations coupled with turbulent trans-
port equations on three-dimensional grids). Being able to solve these large systems
at a reasonable computational cost is therefore essential for the efficiency of the DG
methods and adapted solutions have been proposed.

For large size problems, the use of direct solution techniques remains too ex-
pensive and iterative methods must be employed. Several authors have applied
Newton GMRES and implicit Runge-Kutta methods to the resolution of compress-
ible Euler, Navier-Stokes and RANS equations in the context of DG discretizations
[6, 7, 22, 30, 39]. Various preconditioned iterative algorithms have been introduced
showing the potential benefits of taking advantage of either the block structure of the
Jacobian matrix or a factorization using reordering [18, 25, 38, 39]. In [29] a block di-
agonal preconditioner for linear problems based upon a domain decomposition method
with static condensation is seen to achieve an optimal convergence where the conver-
gence rate of the implicit iterative solver is independent of the number of DOF. Static
condensation was also successfully applied to a direct solver in [42]. Multigrid ap-
proaches where convergence acceleration is achieved through the use of coarse levels
constructed by reducing the polynomial degree (p-multigrid) or using coarser grids
with fewer elements (h-multigrid) have also been proposed [18, 25, 36]. Yasue et al.

[44] used a pointwise relaxation implicit scheme associated to the resolution of a sim-
plified implicit system. The results showed a reduction of the number of iterations
and CPU time needed for convergence of the algorithm for compressible Euler and
Navier-Stokes equations in three-dimensions. The method was however limited to
second-order space discretization schemes. Doleǰs̀ı et al. developed a semi-implicit
method where the linear terms in the discrete equations are treated implicitly and
the nonlinear terms are treated with an explicit extrapolation [21, 22]. We note that
all these techniques consider the resolution of a large size nonlinear problem for the
total number of unknowns.

The purpose of this article is to introduce a robust and fast time integration
method adapted to an implicit formulation of a DG discretization of nonlinear vis-
cous terms of partial differential equations (PDE) while convective terms are treated
explicitly. We use the BR2 scheme from Bassi and Rebay [5] which guaranties an
optimal order of convergence of the L2-norm of the error between the numerical ap-
proximation and the underlying analytical solution [3]. The stencil of this method
is also compact which allows the use of a sparse implicit matrix and hence reduces
memory requirement and operation count. We use an admissible change of variable
which follows from the classical notion of entropy solutions in the context of first-order
and second-order PDE. Entropy solutions have been found to play a fundamental role
in the mathematical analysis of PDE [1, 35], the analysis of complex physical systems
[11, 17], and the numerical approximation of PDE [27]. We also refer to the text-books

IMPLICIT DG METHOD WITH REDUCED EVALUATION COSTS 3

by Dafermos [15] or Godlewski and Raviart [26]. For the resolution of the discrete
problem at each time step, we propose to use a simplified implicit system based on
a reduced communication between elements which share a common interface. This
assumption follows from the natural hierarchy of the basis of the discrete function
space. The numerical solution is the sum of modes associated to different polynomi-
als spanning the basis. The communication between adjacent elements is assumed
to be dominated by the coupling between DOF associated to the lowest order modes
only. This condition is essential to simplify the implicit problem and reduce its size.
After solving the implicit problem for the low-order DOF, a local reconstruction is
used for evaluating the higher order DOF. By local, we mean a reconstruction based
on the stencil of the DG discretization. This property is essential to keep the locality
of the DG method. The simplified algorithm is here introduced for the resolution of
steady problems with a time marching technique and using an iterative solver. An
application to an unsteady flow problem with a pseudo-time stepping method is also
presented.

The paper is organized as follows. Section 2 presents the numerical approach.
After introducing the nonlinear convection-diffusion equation and entropy solution in
§ 2.1, the DG discretization is formulated in § 2.2. Then, the time implicit discretiza-
tion and its simplification are introduced in § 2.3 and 2.4, and the computational cost
of the methods is analyzed in § 2.5. Section 3 is devoted to a Von Neumann analysis
of the numerical scheme. The overall performance of the method is assessed by sev-
eral numerical experiments in § 4. Results are obtained for a one-dimensional (1D)
problem (section 4.1) and two-dimensional (2D) steady and unsteady flow problems
(sections 4.2 and 4.3). Finally, the conclusions of this research are summarized in § 5.

2. Model problem and discretization.

2.1. Nonlinear convection-diffusion equation and entropy solution. The
discussion in this paper focuses on the discretization of nonlinear scalar convection-
diffusion equation with a DG method. Let Ω ⊂ R

d be a bounded domain where d is
the space dimension and consider the following problem

∇ · (c(x)u) −∇ · (B(x, u)∇u) = s(x) in Ω, (2.1a)

u = uD on ΓD, (2.1b)

∇u · n = gN on ΓN , (2.1c)

which describes the conservation of the scalar quantity u(x) convected in a velocity
field c(x) ∈ R

d and subject to diffusion. The nonlinear diffusivity tensor B(x, u)
is here assumed to be strictly positive definite and we will specify its special form
later on. The forcing function s(x) ∈ L2(Ω) represents production of the quantity
u. The boundary of the domain ∂Ω is partitioned into nonoverlapping boundaries
as ∂Ω = ΓD ∪ ΓN where ΓD and ΓN denote Dirichlet and Neumann boundaries and
we assume that uD ∈ L2(ΓD) and gN ∈ L2(ΓN). By n we denote the unit outward
normal vector to ∂Ω.

The aim of the present work is to derive a fast time marching method for the
numerical resolution of problem (2.1) with a DG space discretization. The quantity
u = u(x, t) is now assumed to be a function of space and time and a pseudo-time
derivative is added to equation (2.1a) thus leading to

ut + ∇ · (c(x)u) −∇ · (B(x, u)∇u) = s(x) in Ω × (0,∞) (2.2)

4 F. RENAC, C. MARMIGNON AND F. COQUEL

with boundary conditions (2.1b,c) and the initial condition u(x, 0) = u0(x) in Ω,
where u0 ∈ H1(Ω). We consider entropy solutions of this problem and assume that
the diffusivity tensor is of the form B(x, u) = Uuu(u)C(x) where for any given x ∈ R

d

C(x) ∈ R
d×d is a positive definite matrix and U(u) is a strictly convex scalar function.

The function U is said to be an entropy function for the problem (2.2) [27]. As pointed
out in the introduction, entropy solutions are motivated by physical problems where
conservative variables are consistent with entropy variables (see references cited in
the introduction). Introducing the change of variable v = Uu(u) such that Uuuuv = 1
leads to the following problem for v:

u(v)t + ∇ · (c(x)u(v)) −∇ · (C(x)∇v) = s(x) in Ω × (0,∞) (2.3)

with boundary and initial conditions

v = Uu(uD) on ΓD, (2.4a)

uv(v)∇v · n = gN on ΓN , (2.4b)

v(x, 0) = Uu(u0(x)) in Ω. (2.4c)

The nonlinearity in the second-order derivative of the diffusion term has been
shifted to the first-order derivatives in time and space.

2.2. Discontinuous Galerkin formulation. The DG method consists in defin-
ing a discretized weak formulation of the problem (2.3) subject to initial and boundary
conditions (2.4). Using classical notations (see for instance [3]), the domain Ω is par-

titioned into a shape-regular mesh Ωh =
⋃N

j=1 Ωj consisting of nonoverlapping and
nonempty elements Ωj of characteristic size h := min{diam Ωj , 1 ≤ j ≤ N} where
diam Ωj is the diameter of biggest ball included in Ωj . We define the set of interior
and boundary faces as

Ei = {e ∈ Eh : e ∩ ∂Ωh = ∅}, Eb = {e ∈ Eh : e ∈ ∂Ωh},

where Eh = Ei ∪Eb denotes the union of all open (d− 1)-dimensional faces in Ωh. The
set of boundary faces may be further divided into Eb = ED ∪ EN consisting of faces of
ΓD and ΓN , respectively.

We consider the broken space L2(Ωh) = {ϕ ∈ L2(Ω) : ϕ|Ωj
∈ L2(Ωj), 1 ≤

j ≤ N} and look for approximate solutions in the function space of discontinuous
polynomials

Vp
h = {ϕ ∈ L2(Ωh) : ϕ|Ωj

◦ Fj ∈ Qp(κ), 1 ≤ j ≤ N}, (2.5)

where Qp(κ) denotes the space of functions formed by tensor products of polynomials
of degree at most p on the master element κ = Id where I = [−1, 1]: Qp(κ) =
⊗d

i=0 Pp(I). Each physical element Ωj is the image of κ through the mapping Fj .
The numerical solution of equation (2.3) can be written as

vh(x, t) =

Np
∑

l=1

φl(x)V l
j (t) ∀x ∈ Ωj , 1 ≤ j ≤ N, ∀t ≥ 0, (2.6)

IMPLICIT DG METHOD WITH REDUCED EVALUATION COSTS 5

Fig. 2.1. Elements intérieur Ω+

j et extérieur Ω−
j et définitions des traces v±

h
sur une interface,

e, du vecteur normal unitaire sortant, n, et de la taille caractéirstique de l’élément, h.

where V l
j are the DOF in the element Ωj . The subset (φ1, . . . , φNp) constitutes a

hierarchical and orthogonal modal basis of Vp
h and Np = Πd

i=1(p+i)/i is its dimension.
In this work, we will use Legendre polynomials as basis in one dimension and the
Dubiner basis [23] in two dimensions.

The face-based formulation of the BR2 discretization [5] of equation (2.3) reads:
find vh in Vp

h such that for all φ in Vp
h we have

∫

Ωh

φu(vh)tdx + Lc(vh, φ) + Lv(vh, φ) + Ls(φ) = 0 (2.7)

with the initial condition

∫

Ωh

φvh(x, 0)dx =

∫

Ωh

φUu(u0(x))dx.

Hereafter, we will use the following operators {φ} = (φ+ + φ−)/2 and [[φ]] =
φ+ − φ− which denote the average and jump operators. Here, φ+ and φ− are the
traces of φ on an interface e taken from within the interior of the element Ω+

j and the

interior of the neighbouring element Ω−

j , respectively (see Figure 2.1).
The discretization of the hyperbolic term in (2.7) is nonlinear in its first argument

and reads

Lc(vh, φ) = −

∫

Ωh

u(vh)c · ∇φdx +
∑

e∈Ei

∫

e

[[φ]]f̂cdS +

∫

EN

φu(v+
h)c · ndS, (2.8)

where n denotes the unit outward normal vector to an element Ωj . We use a standard
upwind discretization flux as numerical convective flux:

f̂c = {u(vh)c} · n +
α

2
[[vh]],

where the numerical constant α is the biggest eigenvalue of the convective flux Jaco-
bian: α = max{|uv(v)c · n| : v = v±h }.

The bilinear and linear forms in (2.7) are defined by

Lv(vh, φ) =

∫

Ωh

C(∇hvh + Rh) · ∇φdx −
∑

e∈Ei

∫

e

[[φ]]{C(∇hvh + reh)} · ndS

−

∫

ED

φC(∇hv+
h + reh

+) · ndS −

∫

EN

φ(gN/uv(vh))CdS, (2.9)

and

6 F. RENAC, C. MARMIGNON AND F. COQUEL

Ls(φ) = −

∫

Ωh

φs(x)dx +

∫

ED

φuDc · ndS. (2.10)

The so-called global lifting operator Rh is defined as the sum of local lifting
operators reh: Rh =

∑

e∈Ei∪Eb
reh, where reh has support on elements adjacent to e

and is solution of the following problem: for all φ in Vp
h we have

∫

Ω+
j
∪Ω−

j

φrehdx =

−

∫

e

{φ}[[vh]]ndS if e ∈ Ei,

−

∫

e

{φ}(v+
h − Uu(uD))ndS if e ∈ ED,

0 if e ∈ EN .

2.3. Time discretization. The semi-discrete equation (2.7) is advanced in time
by means of an explicit treatment for the hyperbolic term (2.8) and an implicit treat-
ment for the parabolic term (2.9). A backward Euler scheme is used for the time
implicit integration. The temporal derivative in (2.7) may be approximated by

∫

Ωh

φku(vh)tdx ≃

∫

Ωh

φku(n)
vh

v
(n+1)
h − v

(n)
h

∆t
dx,

where by u
(n)
vh > 0 we denote either uv(v

(n)
h) with v

(n)
h = vh(x, n∆t) and ∆t the time

step or an approximation of it, say for instance u
(n)
vh = uv(vh(xj , n∆t)) where xj is

the centre of the element Ωj . The discrete problem for (2.3) reduces to the following
linear system at each time step

A(V(n+1) − V(n)) = −R(V(n)) (2.11)

with V(n) the vector of DOF, R(V(n)) = Lc(V
(n))+LvV

(n) +Ls the residual vector
defined by the sum of discrete forms (2.8) to (2.10). The so-called implicit matrix A

is defined by

A =
1

∆t
M(n) + Lv, (2.12)

where M(n) = diag(M1
(n), . . . ,MN

(n)) denotes the mass matrix whose entries for
each block are

(Mj
(n))kl =

∫

Ωj

φkφluv(v
(n)
h)dx, 1 ≤ j ≤ N, 1 ≤ k, l ≤ Np. (2.13)

Here, the matrix M(n) is either diagonal if u
(n)
vh = uv(vh(xj , t

(n))) or block diag-

onal if u
(n)
vh = uv(v

(n)
h).

IMPLICIT DG METHOD WITH REDUCED EVALUATION COSTS 7

x

vh

Ωj
+

+

+

=

+

+

=

Ωj
-

σ

(a)

x

vh

Ωj
+ Ωj

-

σ

(b)

Fig. 2.2. 1D example of the implicit procedure simplification: in (a) the elementwise numerical
solution vh ∈ V2

h
(continuous lines) is the sum of a constant mode (dotted lines), a linear mode

(dash-dotted lines) and a quadratic mode (dashed lines). The coupling between modes in elements
adjacent to a common interface e is illustrated by the grey zones; in (b) the coupling between every
mode in Ω+

j and linear and quadratic modes in Ω−
j is neglected.

2.4. Simplification of the implicit procedure. The matrix A is an unsym-
metric real matrix of size NDOF = N × Np since Lv is and we use a preconditioned
biconjugate gradient (BCG) method for solving the linear system (2.11) at each time
step. The inversion cost of A may become prohibitive in practical applications where
N is large and where accuracy is looked for (see § 2.5).

We aim at simplifying the linear system resolution by modifying the implicit
problem (2.11). This is done by reducing the coupling between modes in adjacent
elements. For the sake of clarity, the method is now introduced for a 1D example on
the segment Ωh = ∪N

j=1[(j − 1)h, jh] where h = 1/N . The application of this method
to multidimensional problems is straightforward. The numerical solution (2.6) is a
sum of modes as illustrated in Figure 2.2(a) for a numerical solution vh in V2

h. The
lowest order mode is the constant mode φ0(x)V 0

j (t) where V 0
j corresponds to the

mean value of the numerical solution in Ω+
j . Higher order modes correspond to the

linear mode φ1(x)V 1
j (t) and quadratic mode φ2(x)V 2

j (t).

Every mode in Ω+
j is linked to all modes in the adjacent element Ω−

j through
the numerical flux and the lifting operators. Here, we assume that the coupling
between low-order modes dominates and we choose to neglect coupling with higher
order modes in neighbouring elements. For that purpose, let 0 ≤ ps ≤ p be an integer
that separates low-order modes 0 ≤ q ≤ ps and high-order modes ps < q ≤ p. We
neglect the coupling between modes in Ω+

j and high-order modes in Ω−

j . This is
illustrated in Figure 2.2(b) for ps = 0.

The implicit matrix (2.12) has a tridiagonal block structure that may be written
in the compact form as A = (Aj−1|Aj |Aj+1), where Aj and Aj±1 are diagonal and
off-diagonal blocks of size Np × Np. Each block may be further decomposed into

Ai =

(

Ãi Bi

Ci Âi

)

, j − 1 ≤ i ≤ j + 1,

where Ãi ∈ R
Nps×Nps , Âi ∈ R

(Np−Nps)×(Np−Nps) and Nps
= Πd

i=1(ps + i)/i denotes
the number of low-order modes. Uncoupling of high-order modes ps < q ≤ p in

8 F. RENAC, C. MARMIGNON AND F. COQUEL

neighbouring elements amounts to replace the implicit matrix A by the following
matrix

A⋆ =

(

Ãj−1 0 Ãj Bj Ãj+1 0

Cj−1 0 Cj Âj Cj+1 0

)

.

The linear system (2.11) at a physical time step is then replaced by a two-stage
algorithm. First, an implicit problem for the low-order modes is solved by expliciting
terms accounting for higher order modes:

Ã∆Ṽ(n+1) = −R̃(V(n)) − B∆V̂(n), (2.14)

where Ã = (Ãj−1|Ãj |Ãj+1) is a square matrix of size N ×Nps
, ∆Ṽ(n+1) = Ṽ(n+1)−

Ṽ(n) and ∆V̂(n) = V̂(n) − V̂(n−1) where Ṽ and V̂ contain low-order and high-order
modes, respectively. By R̃(V(n)) we denote the residuals associated to low-order
modes and we set B = diag(B1, . . . ,BN).

Second, higher order modes are reconstructed from the low-order modes and
precedent time step solution. We note Â = (Âj−1|Âj |Âj+1) the square matrix of

size N × (Np −Nps
) and let Â = L̂ + D̂ + Û be its decomposition into strictly lower,

diagonal and strictly upper parts, respectively. The reconstruction of higher modes
reads as follows

(L̂ + D̂)∆V̂(n+1) = −R̂(V(n)) − C∆Ṽ(n+1) − Û∆V̂(n), (2.15)

where R̂(V(n)) corresponds to the vector of residuals associated to high-order modes
and C = diag(C1, . . . ,CN). Hence, the linear system to be solved reads

A∆V(n+1) = −R(V(n)) − B∆V(n), (2.16)

where the matrices A,B ∈ R
NDOF ×NDOF are defined by

A =

(

Ã 0

C L̂ + D̂

)

, B =

(

0 B

0 Û

)

. (2.17)

Note that A+B = A, one therefore recovers the full implicit problem (2.11) when
∆V(n+1) = ∆V(n). This guaranties the same accuracy of both numerical schemes at
convergence.

In the following, the full implicit method (2.11) will be referred to as the FULL
method, and the simplified implicit method (2.16) will be referred to as the SIMPps

method where ps denotes the integer that separates the low- and high-order modes.
We now compare the properties and performances of both methods in the next sec-
tions.

2.5. Computational cost. To quantify the relative cost in floating point op-
erations (flops) of both methods, we evaluate the asymptotic operation count of the
matrix inversion at each time step with both algorithms. We use a BCG method with
diagonal preconditioning. The matrix inversion depends on the problem dimension
and the representation of the sparse matrix. Here, we use a modified sparse row for-
mat for the 1D computations and a dense block format for the 2D computations [41].
The number of flops for basic sparse linear algebra operations are

IMPLICIT DG METHOD WITH REDUCED EVALUATION COSTS 9

Table 2.1

Asymptotic reduction factor (Np/Nps)2 in matrix inversion cost for large N by using the SIMP
method.

p 1 2 2 3 3 3 4 4 4 4
ps 0 0 1 0 1 2 0 1 2 3

(Np/Nps)2
1D 4 9 2.25 16 4 1.78 25 6.25 2.78 1.56
2D 9 36 4 100 11.1 2.78 225 25 6.25 2.25

• O(βN2
p N) for a matrix-vector product with β = 6 in 1D and β = 14 in 2D,

• O(NpN) for a diagonal preconditioning,
• O(2βN2

p N) for a diagonal preconditioned BCG step,
• O(N(Np − Nps

)2) for a triangular back-solve for the resolution of equation
(2.15).

The BCG method would converge in NpN steps in exact arithmetic. In our
experiments, we observed that the method required about αNpN steps with α ≤ 1 to
reach the required convergence level. The factor α is here assumed to be constant for
the sake of simplicity.

The FULL method requires the inversion of the full matrix of size N ×Np which
requires O(2αβN2

p N2) flops. The first stage of the SIMP method consists in the inver-
sion of a matrix of size N×Nps

which hence requires O(2αβN2
ps

N2) flops. The second
stage is the local reconstruction of the high-order modes. This procedure is elemen-
twise and uses operations on Np-by-Np matrices and Np-by-1 vectors. The leading
term of operation counts is O(2NNp(Np −Nps

)) and comes from the construction of
the right-hand side of equation (2.15) and its resolution.

We conclude that the computational cost of the SIMP method is less expensive
than the FULL method by a factor (Np/Nps

)2 for large N . This means that the saving
in flops becomes significant when the SIMP method is based on a uncoupling with a
reduced number of low-order modes, i.e. when ps is quite lower than p. Moreover,
we note that the relative part of high-order modes increases as the space dimension
d increases for large p and ps: Np/Nps

≃ (p/ps)
d thus meaning that the separation

between low- and high-order modes may be increased for multidimensional problems
for a same flop saving (see Table 2.1).

3. Von Neumann analysis.

3.1. Amplification matrix. A Von Neumann analysis is here performed in
order to derive practical stability constraints and to analyze dispersion and dissipation
errors of the numerical schemes. For the sake of simplicity, we consider the 1D linear
convection-diffusion equation

vt + cvx − νvxx = 0, in(0, 1] × (0,+∞) (3.1)

with ν > 0, c > 0, and periodic boundary condition v(0, t) = v(1, t), for all t ≥ 0.
Equation (3.1) admits Fourier modes of the form v(x, t) = ei(kx−ωt) as exact solutions
where k is the prescribed real wave number and ω is the corresponding complex
frequency satisfying the dispersion relation ω = kc − iνk2 with i2 = −1. The exact
amplification factor reads

G̃ =
v(x, t + ∆t)

v(x, t)
= |G̃|e−iΦ̃, (3.2)

10 F. RENAC, C. MARMIGNON AND F. COQUEL

where |G̃| and Φ̃ denote the amplitude and phase of G̃, respectively.
A similar decomposition is performed for the numerical solution vh. The domain

is first divided into regular elements of size h = 1/N . The exact amplification factor

(3.2) may be rewritten as G̃ = e−Dθ2

e−iσθ where σ = c∆t/h is the Courant Number,
D = ν∆t/h2 is the Von Neumann number and θ = kh is the reduced wavenumber.

Hence the exact amplitude and phase become |G̃| = e−Dθ2

and Φ̃ = σθ, respectively.
Then, the numerical solution is sought in V1

h. The vector of DOF in an element Ωj

is assumed to be a Fourier mode V
(n)
j = Ξ(n)eijθ with θ ∈ (−π, π]. The amplification

matrix for the FULL method is hence Ξ(n+1) = GfΞ
(n) with

Gf = I − 〈A〉−1〈R〉 (3.3)

where Gf is in C
Np×Np and 〈A〉 = Aj−1e

−iθ + Aj + Aj+1e
iθ represents the Fourier

transform of the implicit matrix A in the element Ωj .
The SIMP method (2.16) is a two-stage algorithm which may be written as

(Ξ(n+1),Ξ(n))⊤ = Gs(Ξ
(n),Ξ(n−1))⊤ where the exponent ⊤ denotes the transpose

operator and the amplification matrix Gs in C
2Np×2Np is defined by

Gs =

(

(I − 〈A〉−1(〈R〉 + 〈B〉) 〈A〉−1〈B〉
I 0

)

. (3.4)

We note that the amplification matrices are nonsingular and can be diagonalized
as G = QΛQ−1 with Λ = diag(λi) the diagonal matrix containing the eigenvalues
and Q the matrix of right eigenvectors. Hence equations (3.3) and (3.4) reduce to the
following form Π(n+1) = ΛΠ(n) with Π = Q−1Ξ and the stability properties of the
numerical scheme follow from an eigenvalue problem for G.

The condition for stability that any error should remain uniformly bounded for
n → ∞ at fixed time step ∆t can be written as

ρ(G) ≤ 1, ∀θ ∈ (−π, π], (3.5)

where ρ(G) denotes the spectral radius of the amplification matrix (see for example
[31]). Moreover, the eigenvalue analysis of amplification matrices will bring infor-
mation on the spectral analysis of numerical errors for each scheme. Introducing the
notation λ = |λ|eiΦ, the error in amplitude is called the dissipation error and is defined
by ǫD = |λ| − |G̃|. Likewise, the dispersion error is measured by ǫφ = |Φ/Φ̃|.

3.2. Spectral properties. The eigenspectra of amplification matrices for nu-
merical schemes of the FULL and SIMP0 methods are plotted in Figure 3.1 for p = 1
and ps = 0. We note that the SIMP0 method here reduces to a one-level scheme
since the matrices B and C in equation (2.17) are zero. However, we observed that
results obtained for p = 1 are similar to results obtained for higher polynomial de-
grees thus justifying this analysis. Results are obtained for a cell Reynolds number
Reh = ch/ν = 0.1 and three different values of the Courant number. According to
the condition (3.5), both methods are stable for σ = 10 and σ = 20 and are unstable
for σ = 30.

A computation of theoretical constraints on the Courant and Von-Neumann num-
bers for which the methods are stable is given in Table 3.1 as a function of the cell

IMPLICIT DG METHOD WITH REDUCED EVALUATION COSTS 11

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(a) FULL

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(b) SIMP0

Fig. 3.1. Amplification matrix eigenspectra in the complex plane for p = 1, Reh = 0.1 and
σ = 10 (thin lines), σ = 20 (normal lines) and σ = 30 (thick lines). The Von-Neumann number is
set at D = σ/Reh. The unit circle C(0, 1) in dashed grey denotes the stability domain.

Table 3.1

Stability limits for the FULL and SIMP0 methods with p = 1.

FULL Reh = 0.01 σ ≤ 200.0 D ≤ 2 × 104

Reh = 0.1 σ ≤ 20.0 D ≤ 2 × 102

Reh = 1 σ ≤ 2 D ≤ 2
Reh = 5 σ ≤ 0.4 D ≤ 8 × 10−2

Reh = 7 unstable unstable
SIMP0 Reh = 0.01 σ ≤ 200.0 D ≤ 2 × 104

Reh = 0.1 σ ≤ 20.0 D ≤ 2 × 102

Reh = 1 σ ≤ 2 D ≤ 2
Reh = 5 σ ≤ 0.4 D ≤ 8 × 10−2

Reh = 7 unstable unstable

Reynolds number. As expected the stability becomes restrictive for weakly viscous
flow regimes. Moreover, results of Figure 3.1 and Table 3.1 indicate that there is no
modification of the stability constraints due to the SIMP method.

Necessary conditions for stability of both FULL and SIMP0 methods for p = 1
are derived in Appendix A and read

σReh ≤ 2 and Reh ≤ 6. (3.6)

It is remarkable to note that every constraint in Table 3.1 is in agreement with
above results making equation (3.6) a more tractable condition for stability of the
numerical schemes. Setting Reh = 6 in the first condition, one recovers a classical
CFL condition σ ≤ 1/3. Rewriting equation (3.6) as a function of nondimensional
time steps leads to σ ≤ min{(2D)1/2, 6D} and justify that both methods are designed
for viscous flows since there is no limitation on the viscous time step. The stability
conditions (3.6) should also be compared to the case of pure advection ν = 0 for

12 F. RENAC, C. MARMIGNON AND F. COQUEL

which the numerical scheme is stable under the prohibitive condition σ ≤ O(h1/2)
[10]. Moreover, numerical experiments have shown that for polynomials of degree p a
Runge-Kutta method is necessary for an explicit time integration and that the CFL
condition behaves as σ(p) ≃ σ(0)/(2p + 1) [14]. The addition of viscosity therefore
stabilizes the numerical scheme with an implicit time integration and present numer-
ical experiments tend to show that there is no p-dependency of the stability condition
(see § 4).

However, both eigenspectra in Figure 3.1 present important differences. The
distributions of eigenvalues seem not to be affected by the simplification in the neigh-
bourhood of θ = 0 where the stability condition (3.5) is violated, but are strongly
modified for higher values of θ. Moreover, some eigenvalues for the SIMP method
have negative real parts and imaginary parts present lower amplitudes compared to
the FULL method. An in-depth analysis of the eigenspectra is given in Figure 3.2
where the dispersion and dissipation errors are plotted as a function of the reduced
wavenumber. We consider stable numerical schemes with σ = 10 and two different
cell Reynolds number values. The dispersion error ǫφ is a decreasing function of θ
and vanishes for short wavelengths, but it is strongly amplified in the limit of long
wavelengths for the SIMP scheme and for the eigenvalue presenting negative real part
in Figure 3.1. This latter effect is amplified as the Reynolds number is increased for
the SIMP method, while it is independent of Reh for the FULL method. The dissi-
pation error ǫD slightly increases with Reh for the SIMP method in the limit of long
wavelengths and does not tend to zero for short wavelengths. These characteristics
will alter the damping properties of the SIMP scheme and its efficacy in reducing the
error after a few iterations.

4. Numerical experiments. In this section we present three numerical experi-
ments in 1D and 2D to illustrate the performances of the simplification of the implicit
time discretization derived in § 2.4.

4.1. One-dimensional steady convection-diffusion equation. In this ex-
ample, we let Ω = [0, 1] and consider the following problem

∂u

∂x
−

∂2B(u)

∂x2
= s(x) in (0, 1) (4.1)

with homogeneous Dirichlet boundary conditions u(0) = u(1) = 0 and where B(u) =
ν(eu − 1) with ν > 0. The forcing function s is chosen so that the exact solution is
u(x) = exp (sin(2πx)/2π)−1. The problem (4.1) is solved by using the method intro-
duced in § 2. We first investigate the asymptotic accuracy of the DG discretization
on a sequence of successively finer meshes. The domain is discretized with an uniform
grid Ωh = ∪N

j=1[(j − 1)h, jh] with h = 1/N . Figure 4.1 displays the L2-norm of the
error eh ≡ u − uh as a function of grid spacing for polynomial degrees 1 ≤ p ≤ 4
and for the FULL and SIMP0 methods. Both schemes achieve optimal convergence
‖eh‖2 ∼ hp+1 as h tends to zero in agreement with the theoretical study of Arnold
et al. [3]. Likewise, error levels are identical between both methods indicating that
the implicit simplification does not alter the error of the numerical scheme at conver-
gence. We recall that setting ∆V(n+1) = ∆V(n) = 0 in the numerical schemes (2.11)
and (2.16) of the FULL and SIMP methods, the numerical error satisfies the same
condition R(V(n)) = 0. The errors at convergence are therefore identical.

Next, We study the rate of convergence to steady state of the numerical solution.
In Figures 4.2 and 4.3, the L2-norm of the error is plotted as a function of the time

IMPLICIT DG METHOD WITH REDUCED EVALUATION COSTS 13

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Θ

0.2

0.4

0.6

0.8

1.0

1.2

1.4
ΕF

(a) FULL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Θ

0.2

0.4

0.6

0.8

1.0

1.2

1.4
ΕF

(b) SIMP0

0.5 1.0 1.5 2.0 2.5 3.0
Θ

-1.0

-0.5

0.5

1.0
ΕD

(c) FULL

0.5 1.0 1.5 2.0 2.5 3.0
Θ

-1.0

-0.5

0.5

1.0
ΕD

(d) SIMP0

Fig. 3.2. Dispersion error (top) and dissipation error (bottom) for p = 1, σ = 10, Reh = 0.01
(continuous lines) and Reh = 0.1 (dashed lines).

h

||u
-u

h|
| 2

0.02 0.04 0.06 0.08 0.1
10-14

10-12

10-10

10-8

10-6

10-4

10-2

p=1 - SIMP0
p=2 - SIMP0
p=3 - SIMP0
p=4 - SIMP0
p=1 - FULL
p=2 - FULL
p=3 - FULL
p=4 - FULL

∼ h5

∼ h4

∼ h3

∼ h2

Fig. 4.1. 1D steady convection-diffusion problem: convergence of the FULL and SIMP DG
methods under mesh refinement. The thick lines indicate power laws ‖eh‖2 ∼ hp+1 for 1 ≤ p ≤ 4.

iteration (n) and of the CPU time. Figure 4.2 analyzes the effects of the polynomial
degree for a fixed Reynolds number Reh = 0.1 and a fixed grid, while mesh size effects
with a fixed polynomial degree p = 3 are illustrated in Figure 4.3. The parabolic term
of equation (4.1) has been linearized by using entropy solutions (see § 2.1) so the off-
diagonal blocks of the implicit matrix are constructed only once at the beginning of

14 F. RENAC, C. MARMIGNON AND F. COQUEL

iteration

||u
-u

h|
| 2

0 50 100 150
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

FULL (p=1, Re h=0.1)
FULL (p=2, Re h=0.1)
FULL (p=3, Re h=0.1)
FULL (p=4, Re h=0.1)

(a)

CPU Time [s]

||u
-u

h|
| 2

0 10 20 30 40
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

FULL (p=1, Re h=0.1)
FULL (p=2, Re h=0.1)
FULL (p=3, Re h=0.1)
FULL (p=4, Re h=0.1)

(b)

iteration

||u
-u

h|
| 2

0 100 200 300 400
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

SIMP0 (p=1, Reh=0.1)
SIMP0 (p=2, Reh=0.1)
SIMP0 (p=3, Reh=0.1)
SIMP0 (p=4, Reh=0.1)

(c)

CPU Time [s]

||u
-u

h|
| 2

0 1 2 3 4 5
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

SIMP0 (p=1, Reh=0.1)
SIMP0 (p=2, Reh=0.1)
SIMP0 (p=3, Reh=0.1)
SIMP0 (p=4, Reh=0.1)

(d)

Fig. 4.2. 1D steady convection-diffusion problem: evolutions of the L2-norm of the error eh as
a function of the number of iterations (left) and CPU time (right). Results are shown for numerical
parameters Reh = 0.1, σ = 20 and D = 200 and for the FULL method (top) and SIMP0 method
(bottom).

the computation. The diagonal blocks are evaluated at each time step to account
for the time dependant mass matrix (2.13). The CPU time is initialized after the
construction of off-diagonal blocks of the implicit matrix and evaluates the total time
for the numerical resolution of the equation. Results with the simplified method are
obtained for ps = 0 and are compared to results obtained with the FULL method. In
Figure 4.2, we take the highest time step allowed by the stability analysis in § 3. In
Figure 4.3, the nondimensional time steps σ and D are chosen so that the physical
time step remains constant for the sequence of meshes. These choices ensure that a
fair comparison between CPU time for all configurations can be made. We note that
the necessary conditions (3.6) were seen to hold for every polynomial degree during
the numerical experiments.

As illustrated in Figures 4.2(a) and 4.3(a), the rate of convergence of the FULL
method is independent of the polynomial degree and of the number of discretiza-
tion elements. This property is different from precedent observations where a block
diagonal preconditioner was needed to obtain an optimal rate of convergence (i.e. in-
dependent of the total number of unknowns of the problem) for a linear symmetric
elliptic problem solved with a conjugate gradient method [29]. The SIMP method
keeps the h-independency but is seen to be slightly dependent on p as shown in Fig-

IMPLICIT DG METHOD WITH REDUCED EVALUATION COSTS 15

iteration

||u
-u

h|
| 2

0 1000 2000 3000 4000 5000
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

FULL (p=3, Re h=0.1, N=100)
SIMP0 (p=3, Reh=0.1, N=100)
FULL (p=3, Re h=0.05, N=200)
SIMP0 (p=3, Reh=0.05, N=200)
FULL (p=3, Re h=0.025, N=400)
SIMP0 (p=3, Reh=0.025, N=400)
FULL (p=3, Re h=0.017, N=600)
SIMP0 (p=3, Reh=0.017, N=600)

(a)

CPU Time [s]

||u
-u

h|
| 2

0 100 200 300 400
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

FULL (p=3, Re h=0.1, N=100)
SIMP0 (p=3, Reh=0.1, N=100)
FULL (p=3, Re h=0.05, N=200)
SIMP0 (p=3, Reh=0.05, N=200)
FULL (p=3, Re h=0.025, N=400)
SIMP0 (p=3, Reh=0.025, N=400)
FULL (p=3, Re h=0.017, N=600)
SIMP0 (p=3, Reh=0.017, N=600)

(b)

Fig. 4.3. 1D steady convection-diffusion problem: evolutions of the L2-norm of the error as a
function of the number of iterations (left) and CPU time (right). Results are shown for the FULL
method (continuous lines) and for the SIMP0 method (dashed lines) while keeping the time step
constant ∆t = 2× 10−3 and a fixed polynomial degree p = 3 (see Table 4.1 for details on numerical
parameters).

ures 4.3(a) and 4.2(c), respectively. A comparison between Figures 4.2(a) and 4.2(c)
indicates that, for a fixed polynomial degree p, the convergence to steady state solu-
tion needs more iterations for the SIMP0 method than for the FULL method. This
lower rate of convergence per iteration may be attributed to the low damping prop-
erties of the SIMP0 method for a wide range of wavelength components of the error
highlighted in § 3.2 for p = 1. In contrast, the SIMP0 method needs less CPU time to
reach convergence (compare Figures 4.2(b,d)) and is less dependent on the size of the
problem as seen in Figures 4.2(d) and 4.3(b). As noted in § 2.5, the SIMP0 algorithm
requires fewer operations per time step than the FULL algorithm. The computation-
ally more expensive operation is the matrix inversion and is indeed independent of
the polynomial degree when ps = 0.

These opposite effects promote the efficiency of the SIMP method for high poly-
nomial degrees. In order to evaluate this efficiency, we define the speedup as the ratio
between the CPU time needed to reach convergence with the FULL method and the
CPU time for convergence with the SIMP method:

speedup =
CPU time(FULL)

CPU time(SIMP)
.

Table 4.1 indicates the speedups observed during numerical experiments for the
1D problem (4.1). Results for a fixed cell Reynolds number Reh = 0.1 come from
Figure 4.2 and results for a fixed polynomial degree p = 3 come from Figure 4.3. The
saving in CPU time increases with the polynomial degree which may be associated to
the increasing reduction in operation counts (see § 2.5 and Table 2.1). The speedup
also increases with the number of discretization elements N and we conclude that the
SIMP method results in significant cost savings for this application.

4.2. Two-dimensional steady convection-diffusion equation. In this sec-
ond example, we consider the following problem in the square domain Ω = [0, 1]2 with
homogeneous Dirichlet boundary conditions:

16 F. RENAC, C. MARMIGNON AND F. COQUEL

Table 4.1

1D steady convection-diffusion problem: speedups observed from experiments.

p ps N Reh σ D speedup
1 0 400 0.1 20 200 1.9
2 0 400 0.1 20 200 2.2
3 0 400 0.1 20 200 3.3
4 0 400 0.1 20 200 6.9
3 0 100 0.1 0.2 2.0 2.8
3 0 200 0.05 0.4 8.0 3.5
3 0 400 0.025 0.8 32.0 4.0
3 0 600 0.017 1.2 72.0 4.2

∇ · (cu) −∇ · (B(u)∇u) = s(x) in (0, 1)2, (4.2a)

u(x, y) = 0 on ∂Ω, (4.2b)

with B(u) = ν(eu − 1)I, ν > 0 and c = (1, 1)⊤. We choose s such that the exact
solution of (4.2) reads

u(x, y) = exp
(

xy
(

1 − e−
1−x

ν

)(

1 − e−
1−y

ν

)

)

− 1.

We use partitions of Ω built from an uniform grid of m-by-m squares split into
a total of N = 2m2 isosceles triangles. The evolution of the L2-norm of the error eh

is plotted as a function of iteration and CPU time in Figures 4.4 and 4.5 where the
effects of polynomial degree and mesh size are investigated, respectively. Table 4.2
summarizes the speedup values observed during these experiments. Results are similar
to those obtained with the 1D problem (see § 4.1). The convergence rate per iteration
of the FULL method is independent of N and p (Figures 4.4(a) and 4.5(a)), while it
slightly increases with p but is independent of N for the SIMP method (Figures 4.4(c)
and 4.5(a)). As seen on Figures 4.4(a,c), the SIMP method needs more iterations to
reach convergence than the FULL method. The application of the SIMP method
with ps = 0 for 1 ≤ p ≤ 3 results in significant CPU time savings (compare Figures
4.4(b,d) and see Table 4.2). However, the SIMP method is seen to be unstable for
p = 4 and ps = 0. Keeping modes up to ps = 1 and ps = 2 as low-order modes
is here necessary to reach a faster convergence than the FULL method (see results
in Table 4.2). We attribute this effect to the communication improvement between
DOF in adjacent elements as ps is increased. Neglecting the coupling between the
lowest order mode ps = 0 and higher order modes slows down the convergence of the
computation to steady state and may leads to an unstable numerical scheme. Keeping
more low-order modes with ps = 1 and ps = 2 results in a lower saving in operation
count of the SIMP algorithm. However, we note that the convergence properties are
also improved as illustrated in Figure 4.4(c) and result in an increasing speedup of
the SIMP method (see Table 4.2).

The overall efficiency of the SIMP method is therefore an increasing function of
the polynomial degree. Furthermore, we observe in Figure 4.5(b) and Table 4.2 that
the efficiency also increases with the number of elements, thereby confirming that the
method is well suited to large-scale problems.

IMPLICIT DG METHOD WITH REDUCED EVALUATION COSTS 17

iteration

||u
-u

h|
| 2

0 20 40 60
10-11

10-9

10-7

10-5

10-3

10-1

FULL (p=1, Re h=0.1)
FULL (p=2, Re h=0.1)
FULL (p=3, Re h=0.1)
FULL (p=4, Re h=0.1)

(a)

CPU time [s]

||u
-u

h|
| 2

0 500 1000 1500
10-11

10-9

10-7

10-5

10-3

10-1

FULL (p=1, Re h=0.1)
FULL (p=2, Re h=0.1)
FULL (p=3, Re h=0.1)
FULL (p=4, Re h=0.1)

(b)

iteration

||u
-u

h|
| 2

0 100 200 300 400
10-11

10-9

10-7

10-5

10-3

10-1

SIMP0 (p=1, Reh=0.1)
SIMP0 (p=2, Reh=0.1)
SIMP0 (p=3, Reh=0.1)
SIMP0 (p=4, Reh=0.1)
SIMP1 (p=4, Reh=0.1)
SIMP2 (p=4, Reh=0.1)

(c)

CPU time [s]

||u
-u

h|
| 2

0 100 200 300 400 500 600
10-11

10-9

10-7

10-5

10-3

10-1

SIMP0 (p=1, Reh=0.1)
SIMP0 (p=2, Reh=0.1)
SIMP0 (p=3, Reh=0.1)
SIMP0 (p=4, Reh=0.1)
SIMP1 (p=4, Reh=0.1)
SIMP2 (p=4, Reh=0.1)

(d)

Fig. 4.4. 2D steady convection-diffusion problem: evolutions of the L2-norm of the error as a
function of the number of iterations (left) and CPU time (right). Results are shown for numerical
parameters Reh = 0.1, σ = 10 and D = 100 and for the FULL method (top) and SIMP method
(bottom).

iteration

||u
-u

h|
| 2

0 100 200 300 400 500
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

FULL (p=3, Re h=0.6, N=200)
SIMP0 (p=3, Reh=0.6, N=200)
FULL (p=3, Re h=0.3, N=800)
SIMP0 (p=3, Reh=0.3, N=800)
FULL (p=3, Re h=0.2, N=1800)
SIMP0 (p=3, Reh=0.2, N=1800)
FULL (p=3, Re h=0.15, N=3200)
SIMP0 (p=3, Reh=0.15, N=3200)

(a)

CPU time [s]

||u
-u

h|
| 2

0 500 1000 1500
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

FULL (p=3, Re h=0.6, N=200)
SIMP0 (p=3, Reh=0.6, N=200)
FULL (p=3, Re h=0.3, N=800)
SIMP0 (p=3, Reh=0.3, N=800)
FULL (p=3, Re h=0.2, N=1800)
SIMP0 (p=3, Reh=0.2, N=1800)
FULL (p=3, Re h=0.15, N=3200)
SIMP0 (p=3, Reh=0.15, N=3200)

(b)

Fig. 4.5. 2D steady convection-diffusion problem: evolutions of the L2-norm of the error as
a function of the number of iterations (left) and CPU time (right). Results are shown for the
FULL method (continuous lines) and SIMP0 method (dashed lines) while keeping the time step
constant ∆t = 6× 10−3 and a fixed polynomial degree p = 3 (see Table 4.2 for details on numerical
parameters).

18 F. RENAC, C. MARMIGNON AND F. COQUEL

Table 4.2

2D steady convection-diffusion problem: speedups observed from experiments.

p ps N Reh σ D speedup
1 0 3200 0.1 10 100 1.1
2 0 3200 0.1 10 100 2.6
3 0 3200 0.1 10 100 4.0
4 1 3200 0.1 10 100 2.3
4 2 3200 0.1 10 100 4.8
3 0 200 0.6 0.1 0.2 2.0
3 0 800 0.3 0.2 0.7 3.0
3 0 1800 0.2 0.3 2.0 6.9
3 0 3200 0.15 0.4 2.7 9.4

4.3. Two-dimensional unsteady convection-diffusion equation.

4.3.1. Problem formulation. In this third example, we aim at solving an un-
steady problem with the SIMP method. Hence, we consider the following problem
with periodic boundary conditions in Ω = [0, 1]2:

ut + ∇ · (cu) −∇ · (B(u,x)∇u) = s(x, t) in Ω × (0, T], (4.3a)

u(x, y, 0) = u0(x) in Ω, (4.3b)

u(0, y, t) = u(1, y, t) ∀y ∈ [0, 1], t ∈ (0, T], (4.3c)

u(x, 0, t) = u(x, 1, t) ∀x ∈ [0, 1], t ∈ (0, T], (4.3d)

with axial advection c = (c, 0)⊤ and a nonlinear diffusion tensor of the form B(u,x) =
ν(eu − 1)C(x) with ν > 0 and C(x) = (3 + cos πy)/4I, r denotes the distance from
the centre of the square domain Ω. The initial condition is a Gaussian pulse u0(x) =

e−r2/R2

/4 with R = 1/7 and we choose s such that the exact solution of (4.3) reads

u(x, y, t) = exp
(

e
(x−

1
2
+cT)2+(y−

1
2
)2

R2 −4πνt
)

− 1.

4.3.2. Pseudo-time stepping method. Since we are interested with an un-
steady problem, we use the present method in conjunction with subiterations to ad-
vance equation (4.3a) in a time-accurate manner. We use entropy solutions v = Uu(u)
introduced in § 2.1 and add a pseudo-time derivative to equation (4.3a), one finally
obtains

vτ + u(v)t + ∇ · (cu(v)) −∇ · (C(x)∇v) = s(x, t), (4.4)

where τ denotes the pseudo-time. The space-time discretization introduced in § 2
leads to the following linear system

A∆V(n+1,m+1) = −R(V(n+1,m)) −
1

∆t

(

U(v
(n+1,m)
h) − U(v

(n)
h)

)

, (4.5)

where (n + 1,m) denotes the iterate on pseudo time step (m) between the physical
times steps (n) and (n + 1). At steady-state, we have V(n+1) = limm→∞ V(n+1,m).

IMPLICIT DG METHOD WITH REDUCED EVALUATION COSTS 19

Table 4.3

2D unsteady convection-diffusion problem: convergence of the FULL and SIMP methods under
time refinement and orders of accuracy. Computations were obtained with T = 2.5 and Reh = 0.1.

parameters FULL method SIMP method
p σ D ‖u − uh‖L2 order ps ‖u − uh‖L2 order
1 10.0 100.0 0.34570E − 02 − 0 0.34568E − 02 −
1 5.0 50.0 0.15807E − 02 1.13 0 0.15806E − 02 1.13
1 2.5 25.0 0.69140E − 03 1.19 0 0.69137E − 03 1.19
1 1.25 12.5 0.27143E − 03 1.35 0 0.27144E − 03 1.35
2 10.0 100.0 0.34570E − 02 − 0 0.34567E − 02 −
2 5.0 50.0 0.15807E − 02 1.13 0 0.15806E − 02 1.13
2 2.5 25.0 0.69142E − 03 1.19 0 0.69147E − 03 1.19
2 1.25 12.5 0.27147E − 03 1.35 0 0.27174E − 03 1.35
3 10.0 100.0 0.34570E − 02 − 0 0.34578E − 02 −
3 5.0 50.0 0.15807E − 02 1.13 0 0.15810E − 02 1.13
3 2.5 25.0 0.69142E − 03 1.19 0 0.69173E − 03 1.19
3 1.25 12.5 0.27147E − 03 1.35 0 0.27171E − 03 1.35

By U(v
(n+1,m)
h), we denote the vector whose components are the projections of

u(v
(n+1,m)
h) in the discrete space Vp

h. The implicit matrix A is now defined by

A =
1

∆τ
N +

1

∆t
M(n+1,m) + Lv, (4.6)

where N = diag(N1, . . . ,NN) denotes the diagonal mass matrix whose entries for
each block are (Nj)kl =

∫

Ωj
φkφldx. Throughout this study, we use ∆τ/∆t = 100

and stop the subiterations when the L2-norm of the right-hand side of equation (4.5)
is below than ǫ = 10−4.

4.3.3. Convergence acceleration. As a validation of the pseudo-time stepping
integration, we first investigate the asymptotic accuracy of the time discretization for
both methods under time step refinement. The accuracy under space refinement has
been validated in § 4.1. To isolate the temporal convergence behaviour as much as
possible, effects of spatial discretization errors are minimized by using a sufficiently
refined mesh. Table 4.3 presents the L2-norms of the error as a function of the
nondimensional time step σ and of the polynomial degree as well as the observed
order of accuracy. Results are shown for the FULL and SIMP methods. The observed
orders of accuracy are in good agreement with their theoretical values. We note that
the error is the same for both methods and this property was seen to hold for all
experiments presented throughout this study so that the SIMP method may be used
for the resolution of unsteady flow problems.

Table 4.4 presents the speedup as a function of the polynomial degree for a fixed
Courant number and four cell Reynolds number values. Since we are interested in
time-accurate solutions, the computations are carried out at a unit Courant number
σ = 1. Therefore, as the time-step is reduced, the spatial mesh is refined correspond-
ingly. We observe that the speedup is an increasing function of p and N in agreement
with previous results. However, results show moderate CPU time savings for low
polynomial degrees and coarse meshes. We note that the cell Reynolds number has
a strong impact on the efficiency of the method. The speedup indeed increases for

20 F. RENAC, C. MARMIGNON AND F. COQUEL

Table 4.4

2D unsteady convection-diffusion problem: speedups observed from computations with T = 2.5,
σ = 1, D = σ/Reh with different values of the cell Reynolds number.

Reh = 2 × 10−3 Reh = 10−2 Reh = 10−1 Reh = 1
p N ps speedup ps speedup ps speedup ps speedup
1 200 0 2.1 0 1.5 0 1.6 0 1.6
1 800 0 1.8 0 1.4 0 1.3 0 1.2
1 1800 0 1.7 0 1.2 0 1.3 0 1.1
1 3200 0 1.5 0 1.2 0 1.2 0 1.1
2 200 0 1.6 0 1.2 0 1.2 1 1.3
2 800 0 1.4 0 1.2 0 1.3 1 1.4
2 1800 0 1.6 0 1.3 0 1.2 1 1.3
2 3200 0 2.5 0 1.9 0 1.7 1 1.4
3 200 0 2.2 1 1.7 1 1.6 1 1.5
3 800 0 2.7 1 1.8 1 1.8 1 1.4
3 1800 0 5.2 1 3.7 1 2.8 1 1.9
3 3200 0 11.1 1 4.0 1 2.8 1 1.8
4 200 2 1.4 2 1.3 2 1.6 2 1.7
4 800 2 4.5 2 4.4 2 5.6 2 3.9
4 1800 2 7.1 2 7.4 2 7.3 2 9.4
4 3200 2 5.6 2 13.3 2 5.7 2 3.9

diffusion dominated problems Reh ≪ 1 and achieves very high values for high poly-
nomial degrees p ≥ 3. In contrast, the efficiency of the method decreases when the
convection becomes significant. In particular, for polynomial degrees p = 2 and p = 3
and Reh = 1 the method SIMP0 converges slower than the FULL method and we
need to use a SIMP1 method leading to lower speedup than those observed for lower
Reh values. We attribute this effect to the worsening of the damping properties of
the SIMP numerical scheme when increasing Reh as highlighted in Figure 3.2(d). We
expect that this effect is amplified as the polynomial degree is increased. Moreover,
the SIMP1 method achieves higher speedups than the SIMP0 method for p = 3 and
Reh = 0.1 or Reh = 0.01. We did not observe this effect in experiments on the steady
flow problems (see Tables 4.1 and 4.2) where the SIMP0 method was seen to be faster
for p = 3, Reh = 0.1 and σ = 10. These results indicate that the SIMP method needs
lower ps values for higher time steps.

5. Concluding remarks. An efficient and robust time integration procedure
has been successfully applied to nonlinear convection-diffusion equations. We have
used an explicit-implicit time discretization in which the convective term is treated
explicitly and the diffusive term implicitly. The method aims at simplifying the im-
plicit problem based on an uncoupling between DOF in the discretization element and
high-order DOF in adjacent elements. At each time step, this simplification allows
the decomposition of the numerical resolution of the underlying algebraic system into
two stages: first an implicit problem is solved for the low-order modes only, then
higher-order modes are locally reconstructed. This method keeps the locality of the
DG discretization and simplifies the task of solving the algebraic system. In terms
of CPU time, numerical experiments demonstrate an acceleration of convergence of
the numerical solution with an iterative algorithm. The method becomes significantly
faster for large number of elements and high polynomial degree. Likewise, this method

IMPLICIT DG METHOD WITH REDUCED EVALUATION COSTS 21

is well suited to steady and unsteady flow problems by using a pseudo-time stepping
method. Cell Reynolds number effects are assessed and indicate a better efficiency of
the method when applied to diffusion dominated flow problems.

These results suggest the use of this method in diffusion dominated flow regions
such as boundary layers. This would allow for a significant reduction in computational
cost in these regions, where the Von-Neumann condition becomes the most restrictive
on the time step. We note that a coupled use of FULL and SIMP methods in different
flow regions is easy to implement. The extension of the method to multidimensional
problems and to systems of conservation laws is straightforward but its efficiency must
yet be analyzed. In particular, it should be clarified to what extent the method can
be generalized to convection dominated flows. Moreover, even though the method has
been introduced in the context of a BR2 discretization it can be easily applied to other
viscous term discretizations [4, 13, 28, 37]. The method has already been successfully
applied to the BR1 discretization of a linear elliptic equation [16]. Finally, a theoretical
analysis of the coupling between DOF in adjacent elements must be carried out and
may help in the construction of convergence acceleration algorithms.

Appendix. In this appendix, we prove the necessary conditions (3.6) for stability
of the FULL and SIMP0 methods with polynomials of degree p = 1.

Let sp(Gf) = {λ1,f , λ2,f} be the spectrum of the amplification matrix (3.3) for
the FULL scheme. A general analysis of spectral radii of both amplification matrices
is a tedious task. Instead, a Taylor series of eigenvalues up to second-order in the
neighbourhood of θ = 0 gives

λ1,f = 1 + iσθ − Dθ2 + O(θ3),

λ2,f =
1 + 6σ

1 + 36D
−

3iσθ

1 + 36D
−

(σ + 3D(6σ − 1))θ2

(1 + 36D)2
+ O(θ3).

According to equation (3.5), the stability condition |λ1,f | ≤ 1 on the first eigen-
value imposes ∂2|λ1,f |/∂θ2|θ=0 = 2(σ2 − 2D) ≤ 0. A necessary condition for the
second eigenvalue reads |λ2,f |θ=0 = (1 + 6σ)/(1 + 36D) ≤ 1. Hence, a necessary
condition for stability of the FULL method may be written as

σReh ≤ 2 and Reh ≤ 6.

As pointed out in § 3.2, the SIMP0 method for p = 1 reduces to a one-level scheme.
A Taylor series of the amplification matrix (3.4) eigenvalues sp(Gs) = {λ1,s, λ2,s} in
the neighbourhood of θ = 0 reads

λ1,s = 1 + iσθ − Dθ2 + O(θ3),

λ2,s =
1 − 12D + 6σ

1 + 24D
−

3iσθ

1 + 24D
−

(3D(1 + 12D) − σ(1 + 6D))θ2

(1 + 24D)2
+ O(θ3),

and the stability conditions on both eigenvalues read 2(σ2 − 2D) ≤ 0 and (1− 12D +
6σ)/(1 + 24D) ≤ 1. Hence, one recovers the same necessary conditions (3.6) as those
derived for the FULL method.

REFERENCES

22 F. RENAC, C. MARMIGNON AND F. COQUEL

[1] H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z.,
183 (1983), pp. 311–341.

[2] J.-B. Apoung Kamga and B. Després, CFL condition and boundary conditions for DGM
approximation of convection-diffusion, SIAM J. Numer. Anal., 44 (2006), pp. 2245–2269.

[3] D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous
Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1749–1779.

[4] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the
numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131
(1997), pp. 267–279.

[5] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti and M. Savini, A High-order accurate dis-
continuous finite element method for inviscid and viscous turbomachinery flows, In pro-
ceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Ther-
modynamics, R. Decuypere, G. Dibelius (eds.), Antwerpen, Belgium, 1997.

[6] F. Bassi, A. Crivellini, S. Rebay and M. Savini, Discontinuous Galerkin solution of the
Reynolds-averaged Navier-Stokes and k − ω turbulence model equations, Comput. Fluids,
34 (2005), pp. 507–540.

[7] F. Bassi and S. Rebay, Numerical evaluation of two discontinuous Galerkin methods for the
compressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 40 (2002), pp. 197–
202.

[8] C. E. Baumann and J. T. Oden, A discontinuous hp finite element method for the Euler and
Navier-Stokes equations, Int. J. Numer. Methods Fluids, 31 (1999), pp. 79–95.

[9] M. Borrel and J. Ryan, A new discontinuous Galerkin method for the Navier-Stokes equa-
tions, Lecture Notes in Comp. Sci. and Eng., 76 (2011), pp. 373–381.

[10] G. Chavent and B. Cockburn, The local projection P0P1-discontinuous Galerkin finite ele-
ment method for scalar conservative laws, M2AN Math. Model. Anal. Numer., 23 (1989),
pp. 565–592.

[11] I. Choquet, P. Degond and B. Lucquin-Desreux, A hierarchy of diffusion models for par-
tially ionized plasmas, Discrete and Continuous Dynamical Systems - Series B, 8 (2007),
pp. 735–772.

[12] B. Cockburn and C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin
finite element method for scalar conservation laws II: general framework, Math. Comp.,
52 (1989), pp. 411–435.

[13] B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for time-dependent
convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), pp. 2440–2463.

[14] B. Cockburn and C. W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-
dominated problems, J. Sci. Computing, 16 (2001), pp. 173–261.

[15] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd ed., Springer,
2010.

[16] T. Dairay, Développement et évaluation d’une méthode implicite à coût réduit appliquée aux
schémas de type Galerkin discontinu, MSc Thesis, ONERA, 2010.

[17] P. Degond, S. Génieys and A. Jüngel, Symmetrization and entropy inequality for general
diffusion equations, C. R. Acad. Sci., 325 (1997), pp. 963–968.

[18] L. T. Diosady and D. L. Darmofal, Preconditioning methods for discontinuous Galerkin
solutions of the Navier-Stokes equations, J. Comput. Phys., 228 (2009), pp. 3917–3935.

[19] V. Dolejš̀ı, On the discontinuous Galerkin method for the numerical solution of the Navier-
Stokes equations, Int. J. Numer. Methods Fluids, 45 (2004), pp. 1083–1106.

[20] V. Dolejš̀ı, M. Feistauer and C. Schwab, On discontinuous Galerkin methods for nonlinear
convection-diffusion problems and compressible flow, Math. Bohem., 127 (2002), pp. 163–
179.

[21] V. Dolejš̀ı, Semi-implicit interior penalty discontinuous Galerkin methods for viscous com-
pressible flows, Commun. Comput. Phys., 4 (2008), pp. 231–274.

[22] V. Dolejš̀ı, M. Holḱ and J. Hozman, Efficient solution strategy for the semi-implicit dis-
continuous Galerkin discretization of the Navier-Stokes equations, J. Comput. Phys., In
Press, 2010.

[23] M. Dubiner, Spectral methods on triangles and other domains, SIAM J. Sci. Comput., 6 (1991),
pp. 345–390.

[24] A. Ern, A. F. Stephansen and P. Zunino, A Discontinuous Galerkin method with weighted
averages for advection–diffusion equations with locally small and anisotropic diffusivity,
IMA J. Numer. Anal., 29 (2009), pp. 235–256.

[25] K. J. Fidkowski, T. A. Oliver, J. Lu and D. L. Darmofal, p-Multigrid solution of high-
order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations,
J. Comput. Phys., 207 (2005), pp. 92–113.

IMPLICIT DG METHOD WITH REDUCED EVALUATION COSTS 23

[26] E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Con-
servation Laws, Springer, 1986.

[27] A. Harten, On the symmetric form of systems of conservation laws with entropy, J. Comput.
Phys., 49 (1983), pp. 151–164.

[28] R. Hartmann and P. Houston, Symmetric interior penalty DG methods for the compressible
Navier-Stokes equations. I: Method formulation, Int. J. Numer. Anal. Model., 3 (2006),
pp. 1–20.

[29] R. Hartmann, M. Lukacova-Medvidova and F. Prill, Efficient preconditioning for the
discontinuous Galerkin finite element method by low-order elements, Appl. Numer. Math.
59 (2009), pp. 1737–1753.

[30] R. Hartmann, J. Held, T. Leicht, and F. Prill, Discontinuous Galerkin methods for
computational aerodynamics - 3D adaptive flow simulation with the DLR PADGE code,
Aerospace Science and Technology, 14 (2010), pp. 512–519.

[31] C. Hirsch, Numerical computation of internal and external flows: fundamentals of computa-
tional fluid dynamics, John Wiley & Sons, 2007.

[32] N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven and K. Sorensen

(eds.), ADIGMA - A european initiative on the development of adaptive higher-order
variational methods for aerospace applications, Notes on Numerical Fluid Mechanics and
Multidisciplinary Design, 113 (2010), Springer Verlag.

[33] B. Landmann, M. Kessler, S. Wagner and E. Krämer, A parallel high-order discontinuous
Galerkin code for laminar and turbulent flows, Comp. Fluids, 37 (2008), pp. 427–438.

[34] P. Lesaint and P.-A. Raviart, On a finite element method for solving the neutron transport
equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations,
de Boor ed., Academic Press, New York, 1974, pp. 89–123.

[35] A. Majda and R. L. Pego, Stable viscosity matrices for systems of conservation laws, Journal
of Differential Equations, 56 (1985), pp. 229–262.

[36] C. R. Nastase and D. J. Mavriplis, High-order discontinuous Galerkin methods using an
hp-multigrid approach, J. Comput. Phys., 213 (2006), pp. 330–357.

[37] J. Peraire and P. O. Person, The compact discontinuous Galerkin (CDG) method for elliptic
problems, SIAM J. Sci. Comput., 30 (2008), pp. 1806–1824.

[38] P. O. Person and J. Peraire, Newton-GMRES preconditioning for discontinuous Galerkin
discretizations of the Navier-Stokes equations, SIAM J. Sci. Comput., 30 (2008), pp. 2709–
2733.

[39] P. Rasetarinera and M. Y. Hussaini, An efficient implicit discontinuous spectral Galerkin
method, J. Comput. Phys., 172 (2001), pp. 718–738.

[40] W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation,
Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, NM, 1973.

[41] Y. Saad, Iterative methods for sparse linear systems, Second ed., Society for Industrial and
Applied Mathematics Philadelphia, PA, USA, 2003.

[42] S. J. Sherwin, R. M. Kirby, J. Peiró, R. L. Taylor and O. C. Zienkiewicz, On 2D elliptic
discontinuous Galerkin methods, Int. J. Numer. Methods Fluids, 65 (2006), pp. 752–784.

[43] B. van Leer, M. Loy and M. van Raalte, A discontinuous Galerkin method for diffusion
based on recovery, in Proceedings of the 18th AIAA CFD Conference, Miami, FL, 2007,
AIAA-2007-4083.

[44] K. Yasue, M. Furudate, N. Ohnishi and K. Sawada, Implicit discontiunous Galerkin method
for RANS simulation utilizing pointwise relaxation algorithm, Commun. Comput. Phys.,
7 (2010), pp. 510–533.

