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We present a comprehensive study of the frequency shifts associated with the lattice potential
for a Sr lattice clock. By comparing two such clocks with a frequency stability reaching 5 × 10−17

after a one hour integration time, and varying the lattice depth up to U0 = 900Er with Er being
the recoil energy, we evaluate lattice related shifts with an unprecedented accuracy. We put the
first experimental upper bound on the recently predicted frequency shift due to the magnetic dipole
(M1) and electric quadrupole (E2) interactions. This upper bound is significantly smaller than the
theoretical upper limit. We also give a new upper limit on the effect of hyperpolarizability with an
improvement by more than one order of magnitude. Finally, we report the first observation of the
vector and tensor shifts in a lattice clock. Combining these measurements, we show that all known
lattice related perturbation will not affect the clock accuracy down to the 10−17 level, even for very
deep lattices, up to U0 = 150Er.

PACS numbers: 06.30.Ft, 42.62.Fi, 37.10.Jk, 42.50.Nn

Together with single trapped ion clocks, optical lat-
tice clocks represent the future of frequency metrol-
ogy. These two types of apparatus now outperform mi-
crowave standards thanks to their five orders of magni-
tude higher clock transition frequency and to a stringent
confinement-based control of atomic motion. In trapped
ion clocks, one takes advantage of the external charge
to confine atoms in the relatively weak electromagnetic
RF fields of a Paul trap [1]. In contrast, optical lattice
clocks [2] use neutral atoms and the trap based perturba-
tions are orders of magnitude larger. Ion clocks currently
exhibit the best accuracy at a level close to 10−17 in
fractional units [3, 4]. The best reported lattice clock ac-
curacy is presently slightly above 10−16 with large room
for improvement once one refines the control of the black-
body radiation shift and of lattice related effects [5, 6]. In
terms of frequency stability, lattice clocks are expected
to outperform their single ion counterpart thanks to the
larger number of atoms available in the experiment.

The effects of the trapping potential are one of the
main objects of study in lattice clocks. Indeed, at the
theoretical minimal lattice depth U0 ∼ 10Er (Er be-
ing the recoil energy associated with the absorption of
a lattice photon) required for effectively cancelling mo-
tional effects [7], the fractional energy shift of both clock
transition levels is on the order of 10−10. In all prac-
tical experiments to date, U0 is at least 5 to 10 times
larger. Though the associated linear shift of the clock
frequency is dramatically rejected by tuning the lattice
to the magic wavelength [8], residual higher order effects
have been predicted as potential limitations to the clock
accuracy [8–10]. In addition, polarization dependent ef-
fects (vector and tensor shift, see below) have also been
considered as possible serious issues for operating clocks
with a 3D lattice with fermionic isotopes [11–13], while

this configuration is seen as the ultimate way to sup-
press the frequency shift due to collisions between cold
atoms [12]. Finally, a better control of the lattice induced
effects would allow operating the clock at larger U0 than
the theoretical minimum. This would make the clock
operation easier, and more importantly, it would also al-
low for a better control of several systematic effects. For
instance, the shift due to cold collisions between atoms
is expected to critically depend on U0 via confinement
strength and site-to-site tunneling [13–16].

In this letter, we address these problems with a de-
tailed study of all known lattice related effects. We show
that they can be controlled at the 10−17 level for a trap
depth up to U0 = 150Er. Based on these measurements,
we also propose an optimal 3D lattice configuration for
the fermionic 87Sr isotope.

Three different lattice induced effects have been iden-
tified. The first one is related to the non-scalar feature
of the atom-lattice interaction, which results from the
atomic hyperfine structure [8, 11]. This structure induces
the minute dipole electric moment of the clock transi-
tion allowing its laser excitation with extremely small
linewidth. It also induces a small vector and tensor com-
ponent in the atomic polarizability. In addition to the
intensity dependence, this makes the light shift slightly
dependent on the lattice polarization and geometry. The
effect can be compensated for by tuning the lattice fre-
quency, but this would be sensitive to possible long term
variations of the laser’s polarization and alignment as
well as of the magnetic field direction. These effects have
never been observed in a Sr lattice clock so far. The
second effect, Hyperpolarizability, refers to a shift due
to two-photon transitions. It was already pointed out
in 2003 [8]. The frequency shift scales as U2

0 and there-
fore cannot be compensated for by a change of the lattice
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frequency. A first experimental study showed that this
effect was small enough to not alter Sr clock accuracy at
the 10−18 level for U0 = 10Er [9]. A better knowledge of
hyperpolarizability is still required to ensure full perfor-
mance at larger U0. Finally, a subtle effect of higher order
multipolar terms has recently been predicted [10]. Dipole
magnetic (M1) and quadrupole electric (E2) interactions
indeed lead to a shift of the internal atomic energy lev-
els that is linear in lattice laser intensity. However, their
spatial dependence in a lattice formed by the interference
of several traveling waves does not match the one of the
main dipole electric term. This in turn leads to a change
of the oscillation frequency in the lattice potential wells
and thereby of the spacing of the atomic motional states.
This effect is expected to differ for the two clock states.
The net M1/E2 frequency shift of the clock frequency

scales as U
1/2
0 and again cannot be compensated for by

tuning the lattice frequency. In Ref. [10] it is argued that
this effect could be as large as 10−16 for U0 = 50Er, a
level at which the accuracy budget reported in [5] would
have to be amended.
Here, we measure the vector and tensor term with per-

cent uncertainty. We improve the upper limit on the hy-
perpolarizability effect by more than one order of mag-
nitude, and finally perform the first experimental study
of the M1/E2 effect showing that it is controllable to
within 10−17 even for U0 as large as 700Er. These mea-
surements are performed by comparing two 87Sr clocks
(Sr1 and Sr2 in the following). Both clocks share the same
clock interrogation laser at 698nm [17, 18]. Fig. 1 shows a
single scan over the resonance of Sr1 with a Rabi interro-
gation of duration T = 250ms. The resulting Fourier lim-
ited linewidth of 3.2Hz corresponds to a quality factor of
Q = 1.3× 1014; one of the highest ever obtained [19, 20].
The Allan deviation of the clock comparison is displayed
in Fig. 1 and reaches a level of 7×10−17 after one hour of
averaging time. This record mid-term stability together
with the possibility to operate the clock at extremely
high U0, up to U0 = 900Er, are the key features of our
apparatus for the study of lattice related effects.
The lattice light at 813nm is supplied by an all semi-

conductor laser source. The setup consists of an extended
cavity diode laser (ECDL), whose frequency is locked to
a Fabry-Perot transfer cavity. The cavity itself is ref-
erenced to the 1S0 − 3P1 atomic transition at 689 nm.
The locked ECDL frequency exhibits long term fluctu-
ations in the MHz range limited by the fluctuations of
the cavity dispersion. Over a few hours, however, which
is the typical duration of a measurement, the frequency
is stable to within a few hundred kHz. The light from
the ECDL is sent to two separate semi-conductor based
amplifying systems providing up to 1.3W to each of the
lattice clocks. The high-power light is transmitted and
spatially filtered through an optical fiber and coupled
to a resonant cavity surrounding the atomic sample to
create a 1D lattice trap with depths up to 900Er. Semi-
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FIG. 1: Allan deviation for a comparison between the two Sr
clocks. After an integration time of one hour, the τ−1/2 trend
reaches 7 × 10−17, meaning that at least one of the clocks
reaches a stability of 5 × 10−17. Inset: single scan over the
atomic resonance in Sr1 using a Rabi interrogation of 250 ms
duration. The Fourier limited width is 3.2Hz, corresponding
to a quality factor of Q = 1.3× 1014. The contrast is close to
90%.

conductor amplifiers are known to produce non-negligible
incoherent light spanning over tens of nm around the car-
rier frequency, which is removed by an interference fil-
ter of spectral width ∼ 0.1 nm. We checked that the
non-filtered incoherent light had a negligible effect on
the clock frequency by changing the coherent/incoherent
light intensity ratio for various lattice depths.
We first consider the shifts resulting from the electric

dipole (E1) interaction. The clock frequency shift ∆νE1

can be split into scalar, vector and tensor contributions,
which for a given |F,mF 〉 state can be written [18, 21]

∆νE1 = (∆κs +∆κvmF ξ~ek · ~eB +∆κtβ)U0, (1)

where β = (3|~ε · ~eB|
2 − 1)[3m2

F − F (F + 1)], ~ek and ~eB
are unitary vectors along the lattice wavevector and the
quantization axis, respectivelty, ~ε is the complex polar-
ization vector of the lattice light, and ξ~ek = i~ε ∧ ~ε ∗ its
degree of circularity.
For each data point presented below, three to four se-

quences with different lattice depths are interleaved to
provide a determination of lattice related shifts. A fit of
the motional sidebands provides the oscillation frequency
in the trap as well as the longitudinal and transverse tem-
peratures. From these, we determine the average trap
depth U0 over the thermal distribution of the atoms in
the trap. For each value of U0, measurements with the
symmetrical mF = ±9/2 states are alternated. Their

degeneracy is lifted by applying a bias field ~B0.
The vector component in (1) is observed by measuring

the frequency difference Zs = ν(mF )− ν(−mF ) between
two opposite mF states, which is insensitive to the scalar
and tensor components. Its linear dependence on U0 re-
flects the vector shift and its extrapolation to U0 = 0
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FIG. 2: Linear component in U0 of the Zeeman splitting be-
tween the mF = 9/2 and mF = −9/2 lines for different ori-
entations of the quantization axis ~eB . This orientation is set

by adding a small magnetic field ~b parallel to the lattice, in
addition to the usual orthogonal bias field ~B0 (B0 = 360µT).

The scalar product ~ek · ~eB ≃ ~ek · ~b/B0 is deduced from the

Zeeman splitting Zs(U0 = 0) ∝
√

b2 +B2

0
. As expected from

(1), the dependence is linear and its slope gives |9∆κv |.

gives the first order Zeeman splitting. As expected from
(1), the vector shift vanishes for a linear lattice polariza-
tion, as well as for a bias field orthogonal to the lattice.
We perform an accurate determination of ∆κv by oper-
ating Sr2 with a circular lattice polarization (|ξ| = 1) for
various bias field orientations, using Sr1 as a stable fre-
quency reference. The results are displayed in Fig. 2. A
linear fit to these data yields [23]

|∆κv| = (0.22± 0.05)Hz/Er. (2)

Note that the vector shift does not directly affect the
clock frequency, since it is rejected on average by alter-
nately probing symmetrical Zeeman states. If the lattice
polarization is linear, the vector shift also does not affect
the bias field calibration, which must be done with per-
cent accuracy to determine the frequency shift ∆νq due
to the second order Zeeman effect. We measured its the
coefficient:

∆νq

Z2
s

= −0.246(2)Hz/kHz
2
, or

∆νq

B2
0

= −23.5(2)MHz/T
2
.

(3)
The linear component of the dependence of the average

clock frequency ν ≡ (ν(mF ) + ν(−mF )) /2 on the trap
depth U0 is (∆κs + ∆κtβ)U0, which gives access to the
scalar and tensor polarizabilities. By varying the param-
eter β on Sr1 while using Sr2 as a frequency reference
(Fig. 3), we measure the tensor shift coefficient

∆κt = (−0.0577± 0.0023)mHz/Er. (4)

Its uncertainty is dominated by the knowledge of the
atomic temperature, that determines the average power
experienced by the atoms. This is the first observation
of the tensor shift in a lattice clock. If the fluctuations
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FIG. 3: Linear dependence of the average clock frequency
on the trap depth. We vary the β parameter by changing
the orientation of the quantization axis ~eB , by probing the
|mF | = 7/2 and |mF | = 9/2 line and by switching between
the two linear polarization eigen-modes of the lattice cavity.
The lack of vector shift observed in Sr1 ensures that the po-
larization of the lattice light is linear to a high degree. For β
= 0, we observe no dependence of the clock frequency on the
trap depth, meaning that the lattice is tuned to the magic
wavelength.

of β are kept smaller than 1, the induced clock frequency
fluctuations due to the tensor shift will be below 10−17

for U0 = 100Er. This would correspond to fluctuations
of ~ε ·~eB at the 10−3 level which can easily be achieved for
any lattice polarization/bias field configuration. By op-
erating the experiment in a configuration with a second
order polarization dependence of β (|~ε ·~eB|

2 = 0 or 1), β
can certainly be kept constant to within 0.1 or less. This
confirms that the tensor shift will not limit the accuracy
of Sr lattice clocks.
Moreover, one can take advantage of the tensor shift to

get rid of polarization inhomogeneities in a 3D lattices.
This can be done by choosing different polarizations
(hence different values of β) for the lattice beams propa-
gating in different directions and accordingly tuning their
frequencies so that the total linear shift (∆κs+∆κtβ)U0

is canceled everywhere in the lattice. The frequency dif-
ference would wash out any polarization interference be-
tween orthogonal directions, giving a perfectly homoge-
neous effective polarization in the lattice. If for instance
one uses |~ε ·~eB|

2 = 0 i.e. β = −36 in two directions, and
|ε · ~eB|

2 = 1 i.e. β = 72 in the third one, the frequency
difference is 300 MHz and the configuration is such that
the β dependence on possible polarization fluctuations is
second order for all the lattice beams.
Making β = 0 gives an accurate determination of the

magic wavelength of the lattice for which the scalar term
∆κs in (1) is canceled. We find

νm = 368 554 693(5)MHz, (5)

which is in agreement with previous measurements [5],
with an accuracy improved by more than one order of
magnitude.
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FIG. 4: Left: hyperpolarizability extracted from the tensor
shift data on Sr1 shown in Fig. 3. Right: hyperpolarizability
obtained from a preliminary measurement of the vector shift
on Sr2 with |ξ| ∼ 0.1 for various orientations of ~eB . The latter
exhibits a higher resolution due to a deeper trap. The grayed
areas show the 1-σ deviation from the weighted mean.
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FIG. 5: M1/E2 dependence of the average clock frequency ν
of Sr1. We observe no dependence of the clock frequency, but
can put an upper bound on the ζ coefficient.

The hyperpolarizability is the U2
0 dependence of the

average clock frequency ν. Its coefficient was extracted
by fitting the same data that gave the vector and tensor
shift measurements with a parabola, and is plotted in
Fig. 4. Though it is not resolved here, the hyperpolariz-
ability shift is expected to depend on the lattice geome-
try [22]. However, whatever this dependence, there exists
at least one configuration where the effect is smaller than
the weighted mean of the two datasets:

∆νHyper. = (0.46± 0.18)µHz(U0/Er)
2. (6)

Its uncertainty is a factor of 60 lower than the previous
evaluation reported in [9], and is at the level of 10−17 or
lower if the lattice depth is kept at U0 ≤ 150Er.

For evaluating the frequency shift due to the M1/E2
term, we use both the dependence on U0 and on the
atomic motional state in the lattice. Since M1 and E2
interactions modify the oscillation frequency in each lat-
tice well, the shift of the clock transition for an atom in

motional state |n〉 can be written

∆νM1/E2 = ζ(n + 1/2)
√

U0. (7)

Eq. 7 holds for a harmonic trapping potential, which is a
good approximation for the large lattice depths and low
atomic temperatures considered here. Experimentally n
is varied by changing the atomic temperature T along the
strong confinement direction while keeping the transverse
temperature constant. The effective quantum number is
then 〈n〉 = (exp(hνl/kBT )− 1)

−1
, where νl is the oscila-

tion frequency along the lattice axis. Measurements are
performed by interleaving configurations with different
lattice depth and temperatures, with U0 and 〈n〉 ranging
from 50 to 400Er and from 0.5 to 3.5 respectively. The
data are displayed in Fig. 5, giving the coefficient

ζ = (0± 0.31)mHz/
√

Er. (8)

The shift is not resolved here but gives a very stringent
upper limit on the effect in optimal operating conditions.
For the coolest configuration achived here (〈n〉 = 0.5)
and a trap depth of 150Er, the uncertainty of the M1/E2
shift is smaller than 10−17. We therefore conclude that
this effect is much smaller than first feared and does not
constitute a threat to the ultimate performance of Sr
clocks.
In conclusion, we have evaluated all relevant shifts due

to the trap for a Sr lattice clock, showing that they will
not thwart the ultimate performance of the clock. Sr
clocks can even be operated at relatively large potential
depths (U0 ∼ 150Er or more) while still keeping the lat-
tice related perturbations below 10−17. We also propose
using the tensor shift for designing a 3D lattice configu-
ration with no polarization gradients and a perfect can-
celation of the linear shift.
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