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Abstract. The complex interactions of localized vortices with waves is investigated using a model of point
vortices in the presence of a transverse or longitudinal wave. This simple model shows a rich dynamical
behavior including oscillations of a dipole, splitting and merging of two like-circulation vortices, and chaos.
The analytical and numerical results of this model have been found to predict under certain conditions, the
behavior of more complex systems, such as the vortices of the Charney-Hasegawa-Mima equation, where
the presence of waves strongly affects the evolution of large coherent structures.

PACS. 47.32.Cc — 52.35.Kt — 05.45.Ac

1 Introduction

Physical systems like large scale motion in oceans and at-
mospheres [1-3], space and laboratory plasmas [4,5], or in
statistical physics, the XY planar spin model [6,7], are all
able to generate both vortices and waves, which interac-
tion is one of the keys to their behavior. The phenomenol-
ogy of these systems is very rich, ranging from turbulence
to self-organization, formation of coherent structures [8—
11] and anomalous transport [12-14]. Understanding the
elementary mechanisms dominating the dynamics is cru-
cial to model the statistical properties of these flows. One
important fundamental process is the vortex interaction in
presence of waves. Besides complex dynamical patterns,
particular behaviors have been identified, indeed, it has
been observed that collisions of vortices may induce their
merging, and on the other hand, the inverse process of
splitting is also possible, large vortices may break under
the action of waves. Both mechanisms are accompanied by
the emission of waves, as for instance in the interaction of
plasma vortices and drift waves [15-17].

The role played by waves in the interaction and evo-
lution of vortices is not well understood. A comparison of
the long-time evolution of Euler decaying two-dimensional

servation equation which is a slight generalization of the
vorticity Euler equation. In general the existence of vor-
tex solutions is related to the so-called Poisson nonlinear-
ity, which is the two-dimensional version of the convective
nonlinearity in a normal fluid, or the electrostatic drift
in magnetized plasmas. Besides, waves may be related to
some source of divergence of the velocity field, as com-
pressibility or as in the two-dimensional reduction of a
stratified flow. The equation for the generalized vorticity
{2, containing these basic mechanisms (a linear dispersion
relation, and a Poisson nonlinearity) is given by
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(1)
where [f,g] = fugy — fyg> (f and g are arbitrary func-
tions of (x,y), and the subscripts denote derivatives) is
the usual Poisson bracket, and v is the stream function.
The actual relation 2 = F'(¢) depends on the considered
physical system, for the Euler equation it is simply given
by £2 = —V?1. This equation expresses the conservation
of the generalized vorticity following the current lines. The
Hasegawa-Mima equation for plasma drift waves [4,22],
also known in fluid mechanics as the Charney geostrophic

turbulence [10] and the Charney-Hasegawa-Mima one (which equation for Rossby waves [23-25], reduces to (1) with the

supports wave modes) [18], shows that the relaxation to-
wards a kind of thermodynamic equilibrium state [19] is
much longer or unreachable in presence of a wave field 16,
20,21]. This illustrates that vortex interactions are largely
influenced by the presence of waves.

A common feature of these vortex-wave systems is that
they are two-dimensional and may be described by a con-
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generalized vorticity,

Q=-V*+1/p2— (va/p?) (2)

where 1) is, in the plasma case, related to the electric po-
tential(in suitable units), ps is the hybrid Larmor radius
(Rossby length in the atmosphere) and vy is the drift wave
velocity. The similarity of the equations governing Rossby
waves in the atmosphere and drift waves in a plasma,
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may be traced back to the analogy between Coriolis and
Lorentz forces, which determine the form of the dispersion
relation, and the common convective nonlinearity, which
reduces to a Poisson bracket in two dimensions. These
two parameters, a length scale and a characteristic veloc-
ity, are related to important physical effects that mod-
ify the system’s dynamics with respect to the one of the
simpler Euler fluid. Indeed, the Charney-Hasegawa-Mima
equation admits both waves and localized vortices solu-
tions [17,26-28,11], allowing a rich nonlinear dynamics as
shown in numerical simulations. For instance, a dipole vor-
tex has an oscillatory trajectory when its symmetry axis is
inclined with respect to the wave direction of propagation
[29], or like-sign vortices (monopoles) may merge, under
suitable conditions [15].
The drift velocity is related to the phase velocity of
drift waves, the dispersion relation being
wie = vaky/(1+ pik?) (3)
with w the frequency and k the two-dimensional wavenum-
ber. In the limit of vanishing drift velocity, localized vor-
tices can become point vortices,

r

(4)
of circulation I', with an interaction range of the order of
the characteristic length ps.

The vortex-wave interaction is in general extremely
complicated, involving the emission and scattering of waves
by vortices and simultaneously the deformation of the vor-
tex shape by the wave field [30]. In this paper we investi-
gate the interaction of localized vortices with waves, using
the approximation that the wave is fixed, not affected by
the vortices. We distinguish two situations according to
the longitudinal or transverse character of the imposed
wave. Transverse waves are naturally generated by the
dynamics of Eq. (1), while longitudinal ones appear as
a source term associated with the longitudinal component
of the pressure driven velocity [31,32]. We show that in
both cases the interaction of vortices (with same topologi-
cal charge) with the wave can trigger their merging, or de-
pending on the initial positions and wave strength, their
separation. Moreover complex, chaotic or quasiperiodic,
behavior can be found. We note as well that eventhoug in
a different context, similar features can be observed when
“perturbing” the integrable motion of two equal-sign vor-
tices with noise [33,34].

In the following section, Sec. 2, we state the basic equa-
tions of the point vortex model for the transverse and
longitudinal external wave, and discuss its relation with
Charney-Hasegawa-Mima equation. In Secs. 3 and 4 we
investigate the different dynamical regimes that the pres-
ence of the wave, transverse and longitudinal respectively,
can induce in the motion of the point vortices. We de-
scribe the dipole (opposite circulation vortices) and the
monopole (like-circulation vortices) trajectories. We find
the range of parameters where the strong interaction of the
monopole and the wave leads to their merging or splitting.

In Sec. 5 we compare the results of Secs. 3 and 4, with nu-
merical simulations of the Charney-Hasegawa-Mima equa-
tion, and finally (Sec. 6) we conclude with a summary and
brief discussion of the results.

2 Transverse and longitudinal waves: point
vortex model

In principle, the wave term in the generalized vorticity (2),
being proportional to the z-coordinate and obviously non
localized, forbids a solution in the form of an assembly of
point vortices [35]. However, as a first approximation, we
may consider a system where the vorticity is highly con-
centrated but subject to the action of a wave field in such
a way that the effect of the vortices on the wave may be
neglected. If one neglects the internal structure of the lo-
calized vortices and concomitantly, the feedback effects on
the wave, the velocity field can be considered as resulting
from the superposition of two terms, one related to the
point vortices and one related to the wave. Therefore, our
basic model will be two point vortices driven by the ac-
tion of an external wave. It mimics the phenomenology of
the Charney-Hasegawa-Mima system, dominated by the
dynamics of coherent structures evolving in the field of
transverse and driven longitudinal waves. We show that,
in spite of its extreme simplicity, this system contains a
rich dynamics that can model processes such as splitting
and fusion, and deterministic or chaotic propagation of
vortices.

Point vortices are defined by a potential vorticity dis-
tribution given by a superposition of Dirac functions,

xm%wzé%ijmﬁ@fmJW, (5)

where x is a vector in the plane of the flow, I, is the
circulation of vortex «a, N is the total number of vortices,
and @, () is the vortex position at time ¢. Point vortices
are known to be exact solutions of Euler equation [36],
that is when the vorticity is given by

2=V, (6)
in terms of the local stream function 1, but they are also
exact solutions of the more general equation (1), for

Q=0 ==V +9/p2. (7)
The usual ¢; (solution of the Poisson equation), which
gives a logarithmic interaction, is replaced in the second
case (7), by a modified Bessel function Ky interaction (so-
lution of the Helmholtz equation).

The presence of the wave should add to (5) a regular
source of potential vorticity. Considering that the corre-
sponding stream function is the superposition of a local-
ized (vortex) and a wave term, 1) = 1, + 1)y, the motion
of vortices will be governed by,
v=2xV(hy +¢u) + Vo (8)

To =v(x,t)|z=a.,
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where the velocity field is calculated at the position of
the vortex «, excluding the singular contribution of the
«a vortex and 2 denotes the unit vector parallel to the
z—axis. In addition to the transverse wave, the last term
¢, takes into account the possibility of a longitudinal wave
driven by an external source.

In order to explicitly display the approximation un-
derlying the point vortex model of Eq. (8), we return to
the Charney-Hasegawa-Mima equation (1), that can be
written as

8 Vd 8 -
§9l+p_§a_yw+[w79l] *07

(9)
where (2; given by Eq. (7), is the localized potential vor-
ticity. Introducing the decomposition ¥ = ¥, + 1,,, one
obtains,

0
a(ivl‘pv + 1/}71//)?) + [1/}71 + "/)wa 7V2wv + 1/%//)?]

0 2 9 Vd 0 9
Jr&(*v 7/}w + 'l/)w/Ps) =+ p_ga_y"/)w =+ ["/’wa -V "/’w]

va 0 o2 _
+pg aywar [V, =V = 0.

(10)

We consider now that the localized component of the po-
tential vorticity, £2; = 2;(1,), is given by the superpo-
sition of point vortices (5). Then, the first line of (10)
only contains d-localized terms, and vanishes if the point
vortices trajectories are precisely given by (8) (without
the source term, in V¢). Therefore, the point vortex-wave
model requires the fulfilling of the following two condi-
tions. First, it assumes that the terms on the last line
of (10), that is the dispersion effect on the vortices and
the influence of the vortex on the wave, are negligible.
Second, we remark that for a single drift wave (a wave
satisfying the linear dispersion relation) the second line
vanishes identically.

In general (9) is complemented with a source and dis-
sipation terms, that we write as,

0 vg 0 R

(11)
where v is the kinematic viscosity, and S(x,t) an exter-
nal vorticity source. In the Appendix 7, we show that the
source term can be naturally associated with longitudinal
wave perturbations.

In summary, we apply the velocity field derived from
the stream function whose dynamics is governed by (9) or
(11), to the point vortex model (8). In the source free case
(9), the velocity field is purely transverse, and we may
write it as,
where the stream function is assumed to result from the
superposition of the point vortex term 1; and the non-
local (wave) term t,,. In contrast, in the forced case the

(12)
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Fig. 1. (Color online) Poincaré map of the two vortices-wave
system (16), in (x = x1 — 2,y = y1 — y2) phase plane (a); run-
away trajectories (vortex splitting) are present together with
others approaching the origin (vortex merging), and large chaos
regions. (b) Zoom of the central region that show “merging” tra-
jectories, an ensemble of initial points (blue circle) approaches
the center (red arc) in one period.

velocity field may not be transverse, and contain a longi-
tudinal (potential) contribution. For the driven case (11),
the velocity field can then be chosen as,
v(x,t) = 2 x Vi (x,t) + Vo(x,t), (13)
in accordance with (48) but with z-independent quanti-
ties, where, in addition to the rotational component de-
rived from the stream function ;, there is a gradient
component, whose physical origin is related to the non-
stationary pressure perturbations in the vertical direction
[24,31,32]. The first case (12) corresponds to a system of
point vortices in the field of a transverse wave, and the
second case (13), to the presence of a longitudinal wave.
The motion of the vortices, as a consequence of the
Helmholtz theorem [37], is determined by the value of the
velocity v = 2 X V¢ 4+ V¢ [which contains both cases
(12) and (13)], at the position of the vortices, as already
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shown in (8). If the driven potential ¢ vanishes, this mo-
tion is Hamiltonian. In the general case the point vortex
equations can be written as,

H
éha+nnw@mw.

iy = 2 % (14)

where the Hamiltonian H is given by

H = % Z FaFﬂU(liba —leﬂ|) +ZFaww($a’t)’ (15)

a>f @

with U(z) = —log(z) in the Euler case, and U(z) =
Ko(x/ps), the modified Bessel function of zero order, in
the more general case (when p; — oo it tends to the loga-
rithm). When the distance between the vortices is smaller
than the typical interaction length ps the behavior of the
two systems is similar, in the opposite case, the Kq in-
teraction decreases exponentially and the vortices become
“almost free”.

The Hamiltonian (15) explicitly depends on time, and
in the case of two vortices, reduces to the class of one and
a half degrees of freedom, which generically display Hamil-
tonian chaos [38]. We can therefore expect that two ini-
tially well separated trajectories may approach each other
closely or, at variance, two initially close vortices may fol-
low diverging trajectories. Translating these behaviors to
the extended system described by the Charney-Hasegawa-
Mima equation, we anticipate merging and splitting of lo-
calized structures.

3 Dynamics of two point vortices in the field
of a transverse wave

We assume that a particular solution of (9), as discussed
in the previous section, can be approximated by ¥ = v¢; +
1w, where the first term represents two point vortices of
circulations I'; and I, and the second term, a wave ¥, =
Iy cos(ky — wt) of amplitude I, wavenumber k = (0, k),
and frequency w. The motion equation (14) of the vortex
pair writes,

I o\ Ki(r/ps
& = —2 (yl y2) M — a&loksin(ky; — wt),

2ps \(T2 — T1 r
(16a)
I — K s
.’ig = L <y2 v ) M — .’f)[‘ok sin(kyg — wt) y
2ps \(T1 — T2 r (16b)
16b

where x; = (2;,v;), ¢ = 1, 2, are the vortex positions, r
their distance of separation, K; the modified Bessel func-
tion of first order, and @ the unit vector parallel to the
r—axis. In the absence of wave, the system behaves as a
nonlinear oscillator whose frequency is (I't+1%) K1 (ro/ ps
(where r¢ is the initial distance between the two vortices).
However, driven by the wave, the dynamics of this oscil-
lator will generically exhibit chaotic trajectories.

In the case of two identical point vortices of circulation
I' = I't = I3, the center of mass motion separates from

the relative motion [39]. Using the coordinates (z,y) =
(x1 — 22,91 —y2)/2 and (X,Y) = (21 + 22, y1 + y2)/2, the
relative motion is described by the set,

r
i=—Y K, (L) — Iokcos(kY —wt)sinky, (17a)
2mpsr Ps
r
j=- xlﬁ(L), (17D)
2Tpsr Ps

where r = 2(z? 4+ y?)'/2, and Y = const. The important
point about these equations is that they can be derived
from an effective Hamiltonian:

Hp = %Ko <L> + I'pcos(kY — wt) cos ky (18)
S

which describes the one and a half degrees of freedom

dynamics in the (z,y) phase space, and constitute then

a convenient representation to introduce a Poincaré map,

using the natural period 27 /w of the driven wave.

To identify the diverse dynamical patterns of (16), cor-
responding to a set of initial conditions, we represent in
Fig. 1 the Poincaré map of the phase space r = (x,y)
using the parameters I' = 87, [ = 5.6, k = 37/10 and
w = k/(1+k?) (in units of ps; and vy). We may distinguish
periodic and quasiperiodic, chaotic and runaway trajec-
tories, depending on the initial positions of the vortices.
Chaotic trajectories may include a set of initial conditions
that rapidly (in a few periods) approaches the origin, as
shown in Fig. 1(b). This particular kind of trajectories,
in an extended dissipative system, should correspond to
merging of vortices. Moreover, runaway trajectories should
correspond to splitting of initially bounded monopoles.
We show in Sec. 5, that these processes, including com-
plex monopole interactions, are effectively observed in the
dynamics of the Charney-Hasegawa-Mima equation.

If the two vortices have opposite circulations I =
— I, the system (16) becomes integrable,

& = —Ipksinky cos(kY — wt), (19a)
j=0. (19b)
. Ty Ki(r/ps
X = 1y Kalr/ps) I'ok cos ky sin(kY — wt), (19¢)
2Tps r
'z K s
= _ Tz Ka(r/ps) 7 (19d)
21ps r

from which one finds that y = const., and r = r(t) sep-
arates from the center of mass equations. Hence, the so-
lutions of these equations are typically dipole trajectories
that follow a straight line to which is superposed an os-
cillation (Fig. 2a). One particular solution is obtained in
the case y = nw/k with n integer, the vortex separation
in the y direction is a multiple of the wavelength. In this
case the vortices drift with a constant velocity in the y

) /4¢$§p8tion and execute horizontal excursions in the form,

X(t) = Vot — Fok? COS(t/to) s (20)

where the constants V) and ¢y depend on the initial condi-
tions. These horizontal excursions are present in the tra-

jectory shown in Fig. 2b.
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Fig. 2. (Color online) Trajectory of the dipole vortex in a
transverse wave. Parameters: ¢ = 8w, a = 4, 1 = (0,0) (a)
A representative case of the oscillatory dipole motion x2 =
(1, —0.5); (b) particular solution showing horizontal excursions
T2 = (0, 771’).

4 Dynamics of two point vortices in the field
of a longitudinal wave

We consider now the motion of two vortices in the presence
of a longitudinal wave. The basic equations of the model
are directly derived from (14), where we put 1, = 0 and
choose a wave potential simply defined by ¢ = I cos(k -
x — wt), with I the wave amplitude, k the wave vector,
and w the wave frequency,

k -
7= I % x — —2lkcos (k- R — wt)sin (TT) . (21)
T

. R r . k-r
R:F,zx2—7427F0k81n(k~R7wt)cos (T) , (22)

(in the ps — oo limit), where = r1 — ro is the relative
position of the vortices, R = (71 + r2)/2 is their “cen-
ter of mass”, and I} = (I + I%)/2n, IL = (It — 1)/ 2,
are their reduced circulations. For the analytical computa-
tions we take the simpler logarithmic interaction, although
generalization to the modified Bessel interaction, should
be straightforward.

For further calculations, it is useful to measure lengths
in 1/k and time in 1/w units, and to perform a Galilean

3} .
2} 1
>0
1t 1
of 1
0 10 20 30 40 50
X (a)
10f 1
8, i
6, i
> L
ar ,
2, i
of ]
0 5 10 15 20
X (b)

Fig. 3. (Color online) Trajectory of the dipole vortex in a lon-
gitudinal wave. (a) A representative case of the dipole motion
locking when |V| < ap; (b) the weak wave case (|V| > ag), the
dipole trajectory is modulated by the wave. Parameters: g = 1,
a=0.3, 1 = (0,0), xz2 = (1,-0.7) (a) and 2 = (1,—-1) (b),
ty = 50.

transformation to the frame moving at the wave phase ve-
locity, leading to the following non-dimensional variables
and parameters: @’ = k-r/2,y' =k - (2 xr)/2, t/ = wt,
X' =k-R—t,Y' =k-(2x R), the distance r' = (¢, y'),
and center of mass R = (X', Y’) vectors, and parame-
ters ag = Iok?/w, for the wave amplitude oy = I k? /4w,
a_ = I'_k? /4w, for the vortices circulation (in the follow-
ing we drop the primes). The coordinate system is chosen,
without loss of generality, so that the z-axis is parallel to
the vector k.

In addition to the analytical calculations, we compute
the point vortices trajectories in the presence of a longitu-
dinal wave, by direct integration of the motion equations
in the form,

L Y1 — Y2 Kl(W)_A : _
wl—g(mzl) . Zasin(zy —t),

(23a)

— K
Ty = Fg <y2 Y1 > Kilor) _ Zasin(xg —t), (23b)

T1 — T2 r

for arbitrary v = 1/kps. We used g = kI'/wps, where I" =
It = —TI5 for the dipole (minus sign), and I' = I} = I
for the monopole (plus sign), and a = kly/wp, (in units
of k =1 and w = 1). The vortex motions are qualitatively
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Fig. 4. (Color online) Quasi-periodic (a) and chaotic (b)
motion of the monopole, in the long-wave case. Parameters
x1 = (0,0), &2 = (0.3,0) (a), and @2 = (1,0) (b), t; = 200,
F1:1, ngl,F0:0.5,w:1.

similar for finite range and logarithmic interactions; we
show in the following, results for p, = 1, and different
choices of the initial positions and strengths g and a.

Two cases are of special interest, the so called “dipole”,
when the vortices have opposite circulations cy = 0, and
the “monopole”, when the vortices have the same circula-
tion o = 0. Without wave the dipole moves in a straight
line, and the monopole follows a circular trajectory.

In the dipole case, the equations of motion reduce to
the completely integrable system

&= —apcosXsinx, (24a)
=0, (24)
X=-1-wm sianos:C—i—a_%, (24c)
r
. x
Y=o (24d)
where 72 = 22 + y?. Examples of dipole trajectories are

presented in Fig. 3.

Although the motion of a dipole interacting with a
wave is integrable, to find a quadrature is difficult, so some
insight can be gained by studying particular exact solu-
tions of (24). In analogy with the transverse wave case,
solutions with r = ry constant exist if = nw (the vortex
distance in the z direction is a multiple of the wavelength).
In such a case, we can define wg = a_/(r¢?), the charac-
teristic frequency of the dipole, and V = —1 + wpyg, the

r—component of the speed of the unperturbed dipole in
the frame of the wave. We obtain for R

X =V +(—=1)""agsin X Y = —woxot.  (25)
This equation naturally leads to two different cases, de-
pending on the value of |V/«agl|, which determines the ex-
istence of a fixed point for X. In one case (|V| > agl)
the xz-component of the dipole speed X has a constant
sign, otherwise it changes sign (|V| < «p) and thus can
eventually approach a fixed point.

We first notice, that in the very simple case where V' =
0 (the a-component of speed of the unperturbed dipole is
equal to the phase velocity), which we call the resonant
case, the equation (25) becomes X = (—1)"*Hag sin X.
This equation predicts the existence of selected directions
X = nx for the dipole propagation, a feature reminiscent
to the mode locking phenomenon as for instance the one
observed by in [40,41]. These directions correspond to the
case where the dipole is located at an extremum of the
wave, and therefore where the profile of the wave is flat.
Therefore, if the condition V' = 0 is satisfied the dipole will
only see this flat profile and the influence of the wave on
the dipole motion vanishes. Indeed, the general solution
of (25) for V=0is

X = 2arctan (e(l)nJrlo“’t tan %) ) (26)

and the dipole sets itself in one of the selected directions
where it does not see the wave.

A similar qualitative behavior to the special case V =
0, is found when |V/ag| < 1. The solutions of (25) show
that X (¢) converge towards a fixed value

Xy = (—1)"arcsin <1> +mm.
&

The difference here is that the dipole is trapped, and the
wave forces the z-component of the dipole speed to the
phase velocity w/k, by adjusting the slope of the wave
that the dipole will “see”, Fig. 3(a). On the other hand,
if |[V/ap| > 1, the dipole has enough strength to “sur-
pass” the wave with V' as the averaged z-component of its
speed, Fig. 3(b). The wave has only a small influence on
the dipole.

In the monopole case it is convenient to introduce polar
coordinates: © = rcosf, y = rsinf, to obtain the system,

7 = —ap cos X sin(r cos ) cosd, (27a)

rf =2 4 ap cos X sin(rcos ) sinf , (27b)
r

X = —1 — agsin X cos(r cosf), (27¢)

Y =0. (274d)

These three autonomous nonlinear equations allow chaotic
behavior of the vortex trajectories, the external wave de-
stroying the vortex integrals of motion. The variety of pos-
sible trajectories is illustrated in the series of Figs. 4, 5,
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Fig. 5. (Color online) Vortex trajectory leading to fusion. Typ-
ical motion in the ap > 1 case; (a) trajectory t € (0,1.5),
(b) vortex separation as a function of time. Parameters: &1 =
(0,0), 2 = (3,0), I' = 8w, Iy = 4.

and 6. We introduce various simplifying assumptions in or-
der to qualitatively describe the behavior of the monopole
in these different physical regimes. We first investigate the
long wavelength limit in both weak and finite wave ampli-
tude approximations, and then we discuss the small wave
length behavior. We particularly focus on the merging or
splitting trajectories, in the presence of a finite amplitude
wave.

In the weak long-wave regime, we can assume that
|| ~ 7 < 1, and |ag| ~ 1; the consistency of these
assumption will be valid as long as r remain within the
neighborhood of rg. A series perturbation development
gives then,

(28)

r=rog, 0=uwot,

X=t—apcost, Y =Y, (29)

where wg = ay /r? is the natural frequency of the un-
perturbed monopole. The vortex trajectories are there-
fore confined in a small region of maximum thickness 2aq
around the circle.

In the case where r < 1 and |ag| ~ || = 1 (the wave
amplitude is finite, comparable to the vortex intensity),

0.6
0.4} 1
0.2+ 1

> 0.0+ 1
02! ]
04l ]
R R S S T

e S
50 ]
45 ]

= 40 ]

X 35 ]

530/
25 ]
20 ]

4 & 8 10

In(t) (b)

Fig. 6. (Color online) Trajectory of the monopole leading
to the splitting. (a) Typical splitting process when the wave
length is smaller than the vortices separation. (b) Long-time
behavior, the straight line corresponds to a power-law fit with
exponent 1/3. Parameters are similar to the ones of Fig. 5, but
with a wave phase of .

the motion equations become,

. a+

0= ? s (30&)
P = —agrcos® 0 cos X ~ _Q, cos X , (30b)
X =—-1—qgsinX, (30c)

where in the distance equation (30b), we approximated
the cosine term by its mean value, using the fact that in
the limit » — 0, 6 given by (30a) varies rapidly. We then
obtain for X an equation similar to (25) with V' = 1; it
can be readily integrated to give

X(t) = —2arctan {ao + stan (;(t — to))} (31)
for ap < 1, and for ag > 1,
X(t) = —2arctan {ao — stanh (%(t — to))} . (32)

where s = [a2 — 1|/2.
In the case, ap < 1 and r < 1, quasi-periodic motion
is possible. Indeed, for weak enough wave amplitude, one
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retrieves the perturbation result, with X (¢) ~ Xo(t) =
t(1 —a?)/(1+ ad) — 2arctan(ag) linear and

ao(1+ad)

in X
20— a2) sin Xo(t)] ,

r R Tyexp |— (33)

corresponding to a periodic separation superposed to a
constant drift (X (¢),0) in the z-direction, as illustrated
in Fig. 4a. Increasing the initial distance between the vor-
tices, one can enter a region where the trajectories become
chaotic (see Fig. 4b).

The other case, ay > 1, corresponds to the merging
of the two vortices, as can be seen in Fig. 5. The mo-
tion of the center of mass X converges to a fixed value
X = —2arctan(ag — y/ad — 1); as a result, the distance
r satisfies the long-time solution,

(&%)

T — T exp {—7 COS(Xf)t] , (34)
where cos X is positive for ag > 1. Therefore, we obtain
in this case an exponential approach of the two vortices,
accompanied with a diverging angular velocity § — oo

(Fig. 5b). The merging characteristic time is 2/ cos X ¢ (o),

and within the present approximation, it diverges when
aop — 1. This is consistent with the vortex merging ob-
served in the numerical solutions, as seen in Fig. 5.

Let us now consider the situation where, r > 1 (the
wave length is small compared to the size of the monopole),
1 S ap~ ay < r, such that the first term in (27b) may
be neglected. This case corresponds to the vortex split-
ting process, shown in Fig. 6. Equations (27) become now,
0 ~ const and

& = —apcos X sinx (35a)
X =—1—apsin X cosz (35D)

. a4
Y= oy (35¢)
(35d)

similar to Egs. (24) for the dipole, but with a difference
in the equation for y(t). Asymptotically (35a,35b) give
x(t) + X (t) = const., which justifies the approximation

const

,oylt) ~ 13
y2

(36)

Indeed, if r is initially large, Eq. (36) shows that it remains
large at long times. We confirmed the validity and verified
by direct numerical integration of the vortex equations

(23), that the asymptotic behavior of the vortex distance
follows a power-law with the exponent 1/3 (see Fig. 6b).

5 Wave-vortex interaction in the
Charney-Hasegawa-Mima dynamics

We consider now the Charney-Hasegawa-Mima equation
in its two forms, (9) and (11), to study the evolution of

20.0

10.0

5.0

0.0
20.0%

10.0

5.0

0.0
20.0%

10.0

5.0

0.0
0.0 50 10.0 15.0 20.0

Fig. 7. (Color online) Potential vorticity of two gaussian
monopoles at times 0 (left), 7.5 (center) and 15 (right), in
units of ps and vg. Without the interaction with a wave, the
vortices rotate and drift; the small diffusion of the vorticity is
due to the presence of a viscosity term in (9).

two vortices in the presence of a transverse and a longitu-
dinal wave, respectively. We demonstrated, in the context
of the point vortices model, that the presence of a wave
can induce a variety of behaviors, including merging, split-
ting and chaos. However, in real flows or plasma systems,
a vortex has a spatial extension and waves have to obey
a specific dispersion relation (3). Moreover, as mentioned
before, the separation of waves and vortices is somewhat
arbitrary, their interaction modifies both in such a way
that the distinction can be made only within some length
scale and time interval. It would then be interesting to an-
alyze how the presence of a wave might influence processes
such vortex merging, in the more general framework of the
Charney-Hasegawa-Mima equation.
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Fig. 8. (Color online) Potential vorticity of two vortices in

the initial field of a transverse wave. The sequence shows

the monopole complex trajectory, in the chaotic regime of the corresponding point vortex model. From left to right,
t=0,08, 1.6, 2.4, 3.2, 4.0, 4.8, 5.6, 6.4, square of size 202, and vortex size parameter b = 16.

20.0 20.0

15.0

15.0

5.0 5.0

5.0 5.0

0.0
0.0

0.0

5.0 10.0 150 0.0 5.0 10.0

20.0 (d)
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5.0

20.0 (C)

5.0

0.0

15.0 0.0

5.0

10.0 150

20.0 (e) 20.0 (f)

Fig. 9. (Color online) Evolution of two gaussian monopoles in the transverse wave case. Vortex and wave parameters are as in
Fig, 1. The initial conditions, in (a) and (d), differ only in the phase of the wave with respect to the vortex positions. The first
row (a-c) shows the splitting; the second row (d-f) the merging of the vortices.

For this purpose we integrate numerically equations
(9) and (11), and we kept the dissipation term to ensure
numerical stability. We consider two identical vortices; for
each vortex we assign at the initial time, a local vorticity
£2; in the form of a Gaussian blob,

0 = V(. 0) +(r,0)/p? = - exp(~br?), (37)

(¢(r,0) is the initial stream function), where b controls
the extension of the vortex and I its circulation. In the
case of a system governed by (9), since transverse waves
are naturally generated, we shall not impose an external
one, but instead add a wave form to the initial vorticity
distribution and track its influence on the monopole tra-
jectories. In the case of longitudinal waves, we solve (11)
with a source term of the form,

S(z,t) = Spcos(ky — wt), (38)

where Sy measures the source strength (it has dimensions
of a square frequency).

Simulations are made using periodic boundary con-
ditions on a square domain of length L = 20, and the
number of spectral modes is typically 10242. The numer-
ical code is based on a pseudo-spectral scheme with time
stepping a fourth order Runge-Kutta algorithm; the time
step is 6t = 1072, and we used a the numerical viscosity
of ;1 = 0.005. We measure lengths and velocities in units
of ps and vy, respectively. The initial state consists on
two equal circulation vortices with vorticity distribution
(37), where b = 8 and I' = 87. The set of parameters and
initial vortex positions, used in the various simulations,
correspond to the different cases studied with the point
vortex model.

The reference case is displayed in Fig. 7, where we
represent the potential vorticity 2 of Eq. (7) for three
different times, of two monopoles in the absence of initial
wave or external source. Without extra perturbations, the
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two monopoles simply rotate around each other and slowly
drift in the y-direction; the distance between the vortices
remains sensibly constant, their shape evolving in the vis-
cous time scale. We note that the observed drift motion is
in fact influenced by the emission of a wake, showing that,
although Gaussian monopoles are long lived structures,
they are not exact solutions of the Charney-Hasegawa-
Mima equation.

5.1 Transverse wave

Let us first investigate the transverse wave case, where
in addition to the two monopoles we superpose an ini-
tial wave k%I cos(ky). As it could be inferred from the
large chaotic regions observed in the point vortex model
(Fig. 1), for a range of initial conditions the behavior of
the two monopoles is unpredictable. In the sequence of
Fig. 8, the vortices rotate, approach each other, inter-
change vorticity, and separate in the background of the
wave vorticity. In this case, the initial wave is in phase
with the vortices, and as a result, they drift with the wave
and rotate at a high frequency compared to the free case
of Fig. 7. The horizontal drift is easily explained by the
model (16) that implies,

_c(litX = Ivksinwt cosky,

d

— =

o Y =0 (39)

for the center of mass motion (we use the notation of (17)).

The presence of a transverse wave can also trigger pro-
cesses such as splitting and merging of vortices, as in the
point vortex model. In Fig. 9 we present numerical simu-
lations differing in the phase of the initial wave, showing
the sensitivity on the initial condition typical of a chaotic
system, and leading to split or fusion. We observe that
the vortex evolution is much faster than the wave one, as
can be asserted by comparing the fusion time of ¢ty ~ 3
in Fig. 9f, to the slow rotation of the two free vortices in
Fig. 7.

It is interesting to compare more quantitatively the
motion of the point vortices with the actual evolution
governed by the full equations. One obvious difference be-
tween the two approaches is that point vortices lack ex-
tension, in contrast to the Gaussian vortices of the full
simulation. However, one may introduce a patch of point
vortices over a region whose size is of the order of the
Gaussian monopole, and follow their Hamiltonian dynam-
ics. Such a comparison is presented in Fig. 10, where we
chose the same initial positions and wave phase, and ad-
justed the point vortices strength to obtain similar time
scales as in the extended vortex system. We observe that
the approach of the two coherent structures follows the
same pattern, including the enhancement of the asymme-
try between the bottom and top vortices; both patches are
strongly stretched during they approach, at ¢t ~ 1.5. In-
deed, in the Charney-Hasegawa-Mima simulation we also
observe that the top monopole is slightly reinforced as it

11

: (b)

Fig. 10. (Color online) Comparison of the dynamics of a
patch of point vortices (a) with the evolution of two Gaus-
sian monopoles (b), for the merging case at times t =
0, 0.38, 0.76, 1.13, 1.51. (a) The different patches correspond
to successive time steps, showing how they approach each other
from their initial positions (8,10.5), (12,9.5). (b) Successive
monopole positions.

approaches the bottom vortex, which moves faster than
the top one. However a difference arises in the y-direction
displacement; while in the vortex model its mean value is
zero, for extended vortices there is a supplementary drift
coming from the background vorticity gradient [42-44].
Although this effect is responsible of a quantitative dif-
ference between the point and extended vortex cases, the
determination of the appropriated range of parameters for
vortex merging as determined by the point vortex model,
appears to be rather robust against this effect.

5.2 Longitudinal wave

We turn out now to the study of the longitudinal wave
driven system. The direction of the longitudinal wave can
be in principle arbitrary. However, it is convenient to well
separate the longitudinal and transverse situations in or-
der to identify the physical mechanisms. Therefore, we
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Fig. 11. (Color online) Evolution of two gaussian monopoles with a source of longitudinal waves. Splitting (a-d) or merging
(d-f) depend on the phase of the source term. (a,d), initial state; (b,e), intermediate state (¢ = 1.5); (c,f), final state (¢t = 3).
Vortex and wave parameters are as in the transverse case (Fig. 9).

take a source that generates longitudinal waves perpen-
dicular to the propagating intrinsic transverse waves. This
is the best suited situation to apply the results of the
point vortex model. Although the source term added to
the vorticity equation is restricted to a wave of the form
& sin(kxz — wt), the evolution of the two equal circulation
vortices can display a large variety of behaviors. We focus
here, on the strong interaction of vortices induced by the
wave, and leading to their separation or fusion as predicted
by the point vortex model. Therefore, we take parameters
similar to the ones of Figs. 5 and 6, for the vortices and
wave intensities, positions and phase. Remarkably, we ob-
tained the same kind of trajectories in the extended case,
shown in Fig. 11, where the vortex pair split or merge
according to the phase of the longitudinal wave.

We remark that the relative position of the monopoles
with respect to the wave influences the behavior of their
vorticity: the wave possesses its own vorticity which super-
poses to the monopoles one, reinforcing the monopole in
the positive vorticity background and weakening the one
in the negative vorticity background and causing addi-
tional drift [45,42-44]. This effect, in the observed regime
of parameters, slightly affects the motion of the vortices
during the time of their evolution, without changing qual-
itatively the fusion or splitting process. In addition, the
vortex interaction mechanisms resulted to be much faster
than the evolution of the wave vorticity, showing that ne-

glecting as a first approximation the influence of the vortex
motion on the wave vorticity appears to be justified.

Although we chose to present results on the monopole
dynamics in the general case, we note that the point vortex
model predicts, in the presence of a longitudinal or trans-
verse wave, that a dipole will follow an almost straight
trajectory with a superposed oscillation, along certain di-
rections with respect to the wave propagation. This be-
havior was also observed in dipole systems obeying the
Hasegawa-Mima equation [29).

6 Conclusions

In this paper we introduced a simple model based on the
dynamics of point vortices, in order to get an idea on
how extended vortices and waves interact in more real-
istic flows. As a matter of fact, it turned out that this
simple model was much richer in the variety of behaviors
it could reflect, than what would be expected. Namely,
it demonstrated how stable a dipole was, and in oppo-
sition how like-circulation vortices could be destroyed or
merged by a wave. Comparison of the point vortex plus
wave analytical results and the Charney-Hasegawa-Mima
simulations, shown that the distinction between localized
and extended vorticity is justified by the existence of well
separated length and time scales, and is also relevant to
determine, for instance, the conditions for vortex merging
or splitting.
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We considered in particular, the interaction of equal
circulation vortices in the presence of an intrinsic drift
(transverse) and of an external (longitudinal) wave. We
found that, depending on the relative phase of the wave
with respect to the positions of the monopoles, merg-
ing, splitting or even chaotic trajectories are possible. Us-
ing the same set of parameters, we confirmed that the
point vortex model reasonably predicts the behavior of the
extended vortices obeying the Charney-Hasegawa-Mima
equation.

In summary, the results obtained in the case of the
point vortex model and confirmed by numerical simula-
tions, could partially explain how coherent structures can
appear by the merging of small structures and then or-
ganize themselves into dipoles and monopoles, especially
in systems where waves can be present or generated by
the dynamics of the structures. We may hope that this
simple model, that permits to identify the range of pa-
rameters relevant for the vortex-wave interactions, could
be a help in understanding the dynamics of large coherent
structures in decaying turbulent flows.
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7 Appendix: Charney equation with source
term

In this appendix we briefly discuss the derivation of the

Charney-Hasegawa-Mima equation in the geostrophic frame-

work [24], in order to establish its relation with (8) and
the origin of the source term.
The velocity field v satisfies the motion equation,

d P
Ev:fv?fgﬁquvxﬁ, (40)
where p 5
E:§+v~v,

is the total derivative, p is the fluid density, P the pressure,
g the acceleration of gravity, and f = f(y) the Coriolis
frequency (which is a function of the latitude). The usual
choice of coordinates is = in the equator east direction and
y in the north direction. Note that the plasma convention,
as in (2), exchange the role of the coordinates: (z,y) —
(y, —). The continuity equation writes,

d
Vov=-"mLl,

41
TR (41)

where py = const. The equation of state, for instance the
adiabatic relation between pressure and density P ~ p7,
complete the basic equations. Applying the rotational to
(40), one obtains the vorticity evolution equation,

%(w—i—f,%) + (w4 f2)V-v—

(w+ f2) - Vo= —V% x VP, (42)
where w =V x v.

We consider a fluid layer at height Hy of width h =
h(z,t), with € = (z,y). To describe the dynamics of this
layer it is convenient to separate in the equation of motion
(40), the horizontal (L) and vertical (z) components:

d 1
E'UL = —EVLP + f’U X 2, (43)
and d 10P
v,
- 44
= pr i (44)

respectively. We also consider that in addition to the hy-
drostatic pressure ppogh, there can be a forcing pressure
p = p(x, z,t) such that the total pressure writes,

P = po+ pogh+p. (45)
The extra pressure term induces a vertical flow,
v, 10
== -—, (46)
ot po 0z

where we neglected the nonlinear convective term and re-
placed everywhere the density by its mean value pg. More-
over, from the horizontal motion equation (43), the bal-
ance of the hydrostatic pressure gradient and the Coriolis
force leads to a drift velocity,

vL:fiAxVh,

0

(47)

where, to this order, the Coriolis frequency is replaced
by its averaged value fp, and the inertia and unsteady
pressure p terms, are neglected [23]. The total velocity
field can thus be written as,

v=wv, +Vo, (48)
where the second term, that takes into account the fluctu-
ations around the equilibrium drift velocity (47), is of the
same order as the fluctuating pressure term in (45). Equa-
tion (48) can be compared with (8), to note that the point
vortex model reduces to the advection of the localized part
of the height h field, in the field of the drift velocity v,
possibly driven in addition, by a external velocity field
V¢. Using this expression in (46), one obtains,

b= 4
o=, (49)

which relates the pressure fluctuation with a vertical (po-
tential) motion.
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Introducing (47) into (42), and neglecting the baro-
clinic term (which vanishes for adiabatic motions), the
vorticity equation becomes,

i(w—i—f)—i—(w-i—f)v-vlzo,,

p (50)

where wz = V x v . Using now (41), with

1 h
1n£z—ln(1+—+£),
pPo 7

neglecting w in the second term of (50), and averaging
over the vertical layer, one obtains,
ov,
, 51
). 6D

0
o ) s <_L N
YHo Ot vpo
where all the quantities depend on the horizontal coordi-
nates. The right-hand side term can be explicitly calcu-

lated using (49),
0 p ov, -1 /0%  ,0% S(x,t)
<5t7190 M > G <5t2 C55«22> - fo
(52)

where ¢; = (ypo/po)'/? is the sound velocity, and where
we defined S = S(x,t), the effective source of vorticity
that contains the contribution of vertical unsteady mo-
tions. The appearance of the sound speed is a consequence
of the assumption on the equation of state. An equivalent
equation, with a different source term, can be obtained if
instead of an external force, one introduces in the energy
equation a heat source, and relates the pressure fluctua-
tions with the temperature fluctuations [31,24]. It is worth
noting that if ¢ satisfy the wave equation, the source term
reduces to the form S ~ k%@, where k = (k,,k,) only
contains the perpendicular component of the wavevector.
Although the specific form of the source term will depend
on the physical mechanism from which it originates, being
proportional to v, /dz, it naturally generate longitudinal
perturbations.

Replacing w = (g/fo)V?h and (52) into (51), and
putting f = fo + By, we finally get

fo
~vHo

jt(w—i—f—

d (9o
7 (fov h+ By (53)
In the usual quasi-geostrophic approximation, the S term
is neglected, and one recovers the Charney-Hasegawa-Mima
equation (9), where we used the following identifications
between plasma and fluid parameters: ¥ = gh/ fo, vqa =
ByHo/ fo, and p? = vHy/ fo, and changed axes according
to the plasma convention, (z,y) — (y, —x).

) =0,
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