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The complex interactions of localized vortices with self-generated waves is investigated using a
model of point vortices in the presence of a transverse or longitudinal wave. This simple model
shows a rich dynamical behavior including oscillations of a dipole, splitting and merging of two like-
circulation vortices, and chaos. The analytical and numerical results of this model have been found
to predict under certain conditions, the behavior of more complex systems, such as the vortices of
the Charney-Hasegawa-Mima equation (drift waves in plasmas or in geostrophic flows), where the
presence of waves strongly affects the evolution of large coherent structures.

PACS numbers: 47.32.Cc,52.35.Kt

I. INTRODUCTION

Physical systems like large scale motion in oceans and
atmospheres [1–3], space and laboratory plasmas [4, 5],
or in statistical physics, the XY planar spin model [6, 7],
are all able to generate both vortices and waves, whose
interaction is one of the key to their behavior. The
phenomenology of these systems is very rich, ranging
from turbulence to self-organization, formation of coher-
ent structures [8–11] and anomalous transport [12–14].
Understanding the elementary mechanisms dominating
the dynamics is crucial to model the statistical proper-
ties of these flows. One important fundamental process
is the vortex interaction in presence of waves. Indeed, it
has been observed that collisions of vortices may induce
their merging, and on the other hand, the inverse pro-
cess of splitting is also possible, large vortices may break
under the action of waves. Both mechanisms are accom-
panied by the emission of waves, as for instance in the
interaction of plasma vortices and drift waves [15–17].

The role played by waves in the interaction and evolu-
tion of vortices is not well known. A comparison of the
long-time evolution of Euler decaying two-dimensional
turbulence [10] and the Hasegawa-Mima one (which sup-
ports wave modes) [18], shows that the relaxation to-
wards a kind of thermodynamic equilibrium state [19] is
much longer or unreachable in presence of a wave field
[16, 20, 21]. This illustrates that vortex interactions are
largely influenced by the presence of waves.

A common feature of these vortex-wave systems is that
they are almost two-dimensional and may be described by
a conservation equation which is a slight generalization
of the vorticity Euler equation. In general the existence
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of vortex solutions is related to the so-called Poisson non-
linearity, which is the two-dimensional version of the con-
vective nonlinearity in a normal fluid, or the electrostatic
drift in magnetized plasmas. Besides, waves may be re-
lated to some source of divergence of the velocity field,
as compressibility or as in the two-dimensional reduc-
tion of a stratified flow. The equation for the generalized
vorticity Ω, containing these basic mechanisms (a linear
dispersion relation, and a Poisson nonlinearity) is given
by

∂Ω

∂t
+ [ψ,Ω] = 0 , (1)

where [f, g] = fxgy−fygx (f and g are arbitrary functions
of (x, y), and the indices denote derivatives) is the usual
Poisson bracket, and ψ is the stream function; the ac-
tual relation Ω = F (ψ) depends on the considered phys-
ical system, for the Euler equation it is simply given by
Ω = −∇2ψ. This equation expresses the conservation of
the generalized vorticity following the current lines. The
Hasegawa-Mima equation for plasma drift waves [4, 22],
also known in fluid mechanics as the Charney geostrophic
equation for Rossby waves [23–25], reduces to (1) with
the generalized vorticity,

Ω = −∇2ψ + ψ/ρ2s − (vd/ρ
2
s)x , (2)

where ψ is, in the plasma case, related to the electric po-
tential (in suitable units), ρs is the hybrid Larmor radius
(Rossby length in the atmosphere) and vd is the drift
wave velocity. The similarity of the equations govern-
ing Rossby waves in the atmosphere and drift waves in
a plasma, may be traced back to the analogy between
Coriolis and Lorentz forces, which determine the form
of the dispersion relation, and the common convective
nonlinearity, which reduces to a Poisson bracket in two
dimensions. These two parameters, a length scale and
characteristic velocity, are related to important physical
effects that modify the system dynamics with respect to
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the one of the simpler Euler fluid. Indeed, the Charney-
Hasegawa-Mima equation admits both waves and local-
ized vortices solutions [11, 17, 26–28], allowing a rich non-
linear dynamics as shown in numerical simulations. For
instance, a dipole vortex has an oscillatory trajectory
when its symmetry axis is inclined with respect to the
wave direction of propagation [29], or like-sign vortices
(monopoles) may merge, under appropriated conditions
[15].

In the limit of vanishing drift velocity, localized vor-
tices can become point vortices,

Ω →
Γ

2π
δ(x) (3)

of circulation Γ, with an interaction whose range is of the
order of the characteristic length ρs. The drift velocity is
related to the phase velocity of drift waves, the dispersion
relation being

ωk = vdky/(1 + ρ2sk
2) , (4)

with ω the frequency and k the two-dimensional
wavenumber.

The vortex-wave interaction is in general extremely
complicated, involving the emission and scattering of
waves by the vortices and simultaneously the deformation
of the vortex shape by the wave field [30]. In this paper
we investigate the interaction of localized vortices with
waves, using the approximation that the wave is fixed,
not affected by the vortices. We distinguish two situa-
tions according to the longitudinal or transverse charac-
ter of the imposed wave. transverse waves are naturally
generated by the dynamics of Eq. (1), while longitudinal
ones appear as a source term associated with the longitu-
dinal component of the pressure driven velocity [31, 32].
We show that in both cases the interaction of like circu-
lation vortices with the wave can trigger their merging,
or depending on the initial positions and wave strength,
their separation.

In the following section, Sec. II, we state the ba-
sic equations of the point vortex model, for the trans-
verse and longitudinal external wave. In Secs. III and
IV we investigate the different dynamical regimes that
the presence of the wave, transverse and longitudinal re-
spectively, can induce in the motion of the point vor-
tices, we describe the dipole (opposite circulation vor-
tices) and the monopole (like-circulation vortices) trajec-
tories, we find the range of parameters where the strong
interaction of the monopole and the wave leads to their
merging or splitting. In Sec. V we compare the results
of Secs. III and IV, with numerical simulations of the
Charney-Hasegawa-Mima equation, and finally (Sec. VI)
we conclude with a summary and brief discussion of the
results.

II. TRANSVERSE AND LONGITUDINAL

WAVES: POINT VORTEX MODEL

In principle, the wave term in the generalized vortic-
ity (2), proportional to the x-coordinate and obviously
non localized, forbids the solution of (1) in the form of
an assembly of point vortices [33]. However, in a first
approximation we may consider a system where the vor-
ticity is highly concentrated but subject to the action of
a wave field in such a way that the effect of the vortices
on the wave may be neglected. If one neglects the inter-
nal structure of the localized vortices and concomitantly,
the feedback effects on the wave, the velocity field can
be considered as resulting from the superposition of two
terms, one related to the point vortices and one related to
the wave. Therefore, our basic model will be two point
vortices driven by the action of an external wave. We
show that, in spite of its extreme simplicity, this system
contains a rich dynamics that can model processes such
splitting and fusion, and deterministic or chaotic propa-
gation of vortices.

Point vortices are defined by a potential vorticity dis-
tribution given by a superposition of Dirac functions,

Ωl(x, t) =
1

2π

N
∑

α=1

Γαδ (x− xα(t)) , (5)

where x is a vector in the plane of the flow, Γα is the
circulation of vortex α, N is the total number of vortices,
and xα(t) is the vortex position at time t. Point vortices
are known to be exact solutions of Euler equations [34],
that is when the vorticity is given by −∇2ψl in terms
of the local stream function ψl, but they are also exact
solutions of the more general equation (1), for Ω = Ωl,

Ωl = −∇2ψl + ψl/ρ
2
s . (6)

The usual ψl (solution of the Poisson equation), which
gives a logarithmic interaction, is replaced in the second
case (6), by a modified Bessel function K0 interaction
(solution of the Helmholtz equation).

To determine the wave contribution to the velocity field
we consider first the usual derivation of (1) [23], giving
a perpendicular velocity field (in the (x, y) plane), and
then, the contribution due to a non-stationary pertur-
bation of the vertical pressure gradient, that will add a
parallel (vertical, in the z direction) component to the
fluid velocity [31]. In order to be specific, we choose the
geostrophic flow [24], but a parallel reasoning can be fol-
lowed for the plasma system. The velocity field v satisfies
the motion equation,

∂v

∂t
+ v · ∇v = −

∇p

ρ
− g∇h+ fv × ẑ , (7)

where h = h(x, t) with x = (x, y), is the deviation of the
elevation of the atmospheric layer from its mean value
H0, ρ is the fluid density, p = P − ρgh the residual
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pressure (here P is the total pressure), g the acceler-
ation of gravity, and f = f(y) the Coriolis frequency
(which is a function of the latitude). The usual choice
of coordinates is x in the equator east direction and y in
the north direction; we use here the plasma convention
(x, y) → (y,−x). We consider the low Rossby number
situation Ro = |Ω/f | ≪ 1, when inertia is small with
respect to the Coriolis force. In a first approximation the
solution of (7) is obtained from the balance of the two
last forces, giving the drift velocity,

v⊥ =
g

〈f〉
ẑ ×∇h , (8)

where 〈f〉 is the averaged value of the Coriolis frequency.
Inserting this velocity into the equation for the vorticity,
and neglecting small terms in the Rossby number Ro one
obtains the Charney-Hasegawa-Mima equation (1),

∂

∂t
(ψ − ρ2s∇

2ψ) + vd
∂

∂y
ψ + [ψ,−ρ2s∇

2ψ] = 0 , (9)

where we denoted ψ = gh/〈f〉 the current function (in
the plasma case ψ = V/〈Bz〉, with V the electrostatic
potential, and 〈Bz〉 the characteristic magnetic field),
vd = (gH0)

1/2 is the drift velocity, and ρs = vd/〈f〉 is
the Rossby length.

The vertical part of the velocity can be obtained, in
the next approximation, from the balance of the residual
pressure and the inertia term ∂vz/∂t = −(1/ρ)∂p/∂z.
We assume a solution in the form of a wave,

vz =
kz
ωz

p

ρ
=

∂

∂z
φ(z,x, t) , (10)

where ωz and kz characterize the inverse temporal and
length variations of the residual pressure p; we also intro-
duced the velocity potential φ. Therefore, the continuity
equation is modified by the vertical flow

(

∂

∂t
+ v⊥ · ∇

)

log
h

H0
= −∇⊥ · v⊥ −

∂2

∂z2
φ (11)

where the extra last term, neglected in the derivation of
(9), contributes as a source in the vorticity equation,

∂

∂t

(

ψ

ρ2s
−∇2ψ

)

+
vd
ρ2s

∂

∂y
ψ+

[

ψ,−∇2ψ
]

= S(x, t) , (12)

where S, on the right hand side, is estimated at the mean
height H0,

S(x, t) =

〈

f
∂2

∂z2
φ(z,x, t)

〉

.

In summary, we considered two different approxima-
tions. In the first case, we can associate a velocity field
having the form,

v(x, t) = ẑ ×∇ψ(x, t) , ψ = ψl + ψw (13)
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FIG. 1. (Color online) Poincaré section of the two vortices-
wave system (17), in (x = x1−x2, y = y1−y2) phase plane (a);
runaway trajectories (vortex splitting) are present together
with others approaching the origin (vortex merging), and
large chaos regions. (b) Zoom of the central region that show
“merging” trajectories, an ensemble of initial points (blue cir-
cle) approaches the center (red arc) in one period.

to (9), where the stream function is assumed to result
from the superposition of the point vortex term ψl and
the nonlocal (wave) term ψw; and, in the second case
(12), the velocity field can be chosen as,

v(x, t) = ẑ ×∇ψl(x, t) +∇φ(x, t) , (14)

where, in addition to the rotational component derived
from the stream function ψl, there is a gradient com-
ponent φ, whose physical origin is related to the non-
stationary pressure perturbations in the vertical direc-
tion. [24, 31, 32]. The first case (13) corresponds to a
system of point vortices in the field of a transverse wave,
and the second case (14), to the presence of a longitudinal
wave.

The motion of the vortices, as a consequence of the
Helmholtz theorem [35], is determined by the value of the
velocity v = ẑ×∇ψ+∇φ [which contains both cases (13)
and (14)], at the position of the vortices; the correspond-
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ing equations of motion can be written in Hamiltonian
form,

Γαẋα = ẑ ×
∂H

∂xα
+ Γα∇φ(xα, t) . (15)

where the Hamiltonian H is given by

H =
1

2π

∑

α>β

ΓαΓβU(|xα−xβ|)+
∑

α

Γαψw(xα, t) , (16)

with U(x) = − log(x) in the Euler case, and U(x) =
K0(x/ρs), the modified Bessel function of zero order, in
the more general case (when ρs → ∞ it tends to the
logarithm). When the distance between the vortices is
smaller than the typical interaction length (ρs) the be-
havior of the two systems is similar, in the opposite case,
the K0 interaction decreases exponentially and the vor-
tices become almost free at large separations.

The Hamiltonian (16) explicitly depends on time, and
in the case of two vortices reduces to the class of 1− 1/2
degree of freedom, which generically display Hamiltonian
chaos[36]. We can therefore expect that two initially well
separated trajectories may approach each other closely
or, at variance, two initially close vortices may follow di-
verging trajectories. Translating these behaviors to the
extended system described by the Charney-Hasegawa-
Mima equation, we anticipate merging and splitting of
localized structures.

III. DYNAMICS OF TWO POINT VORTICES IN

THE FIELD OF A TRANSVERSE WAVE

We assume that a particular solution of (9), as dis-
cussed in the previous section, can be approximated by
ψ = ψl + ψw, where the first term represents two point
vortices of circulations Γ1 and Γ2, and the second term, a
wave ψw = Γ0 cos(ky−ωt) of amplitude Γ0, wavenumber
k = (0, k), and frequency ω. The motion equation (15)
of the vortex pair writes,

ẋ1 =
Γ2

2πρs

(

y1 − y2
x2 − x1

)

K1(r/ρs)

r
− x̂Γ0k sin(ky1 − ωt) ,

(17a)

ẋ2 =
Γ1

2πρs

(

y2 − y1
x1 − x2

)

K1(r/ρs)

r
− x̂Γ0k sin(ky2 − ωt) ,

(17b)

where xi = (xi, yi), i = 1, 2, are the vortex positions, r
their distance of separation, and K1 the modified Bessel
function of first order. In the absence of wave, the system
of two identical vortices Γ, behaves as a nonlinear oscil-
lator of frequency ΓK1(r0/ρs)/2πρsr0 (where r0 is the
initial distance), so (17) belongs to the class of a one and
a half degrees of freedom hamiltonians, that generically
exhibit chaotic trajectories.

To identify the diverse dynamical patterns of (17),
corresponding to a set of initial conditions, we repre-
sent in Fig. 1 the Poincaré section of the phase space
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FIG. 2. (Color online) Trajectory of the dipole vortex in a
transverse wave. (a) A representative case of the oscillatory
dipole motion; (b) particular solution showing horizontal ex-
cursions.

r = (x, y) = (x1 − x2, y1 − y2) using the parameters
Γ = 8π, Γ0 = 5.6, k = 3π/10 and ω = k/(1 + k2) (in
units of ρs and vd). We may distinguish periodic and
quasiperiodic, chaotic and runaway trajectories, depend-
ing on the initial positions of the vortices. Chaotic trajec-
tories may include a set of initial conditions that rapidly
(in a few periods) approaches the origin, as shown in
Fig. 1(b). This particular kind of trajectories, in an ex-
tended dissipative system, should correspond to merging
of vortices. Moreover, runaway trajectories should cor-
respond to splitting of initially bounded monopoles. We
show in Sec. V, that these processes, including complex
monopole interactions, are effectively observed in the dy-
namics of the Charney-Hasegawa-Mima equation.

If the two vortices have opposite circulations Γ1 =
−Γ2, the system (17) becomes integrable,

ẋ = −Γ0k sin ky cos(kY − ωt) , (18a)

ẏ = 0 , (18b)

Ẋ =
Γy

2πρs

K1(r/ρs)

r
− Γ0k cos ky sin(kY − ωt) ,(18c)

Ẏ = −
Γx

2πρs

K1(r/ρs)

r
, (18d)

where x = (x1 −x2)/2, y = (y1− y2)/2, X = (x1 +x2)/2
and Y = (Y1 + Y2)/2. The solutions to these equations
are typically dipole trajectories that follow a straight line
to which is superposed an oscillation (Fig. 2a). One par-
ticular solution is obtained in the case y = nπ/k with
n integer, the vortex separation in the y direction is a
multiple of the wavelength. In this case the vortices drift
with a constant velocity in the y direction and execute
horizontal excursions in the form,

X(t) = V0t− Γ0k cos(t/t0) , (19)

where the constants V0 and t0 depend on the initial con-
ditions. These horizontal excursions are present in the
trajectory shown in Fig. 2b.

IV. DYNAMICS OF TWO POINT VORTICES IN

THE FIELD OF A LONGITUDINAL WAVE

We consider now the motion of two vortices in the
presence of a longitudinal wave. The basic equations of
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FIG. 3. (Color online) Trajectory of the dipole vortex in a lon-
gitudinal wave. (a) A representative case of the dipole motion
locking when |V | < α0; (b) the weak wave case (|V | > α0),
the dipole trajectory is modulated by the wave. Parame-
ters: g = 1, a = 0.3, x1 = (0, 0), x2 = (1,−0.7) (a) and
x2 = (1,−1) (b), tf = 50.

the model are directly derived from (15), where we put
ψw = 0 and choose a wave potential simply defined by
φ = Γ0 cos(k ·x−ωt), with Γ0 the wave amplitude, k the
wave vector, and ω the wave frequency,

ṙ = Γ+ẑ×
r

r2
−2Γ0k cos (k ·R− ωt) sin

(

k · r

2

)

, (20)

Ṙ = Γ−ẑ×
r

2r2
−Γ0k sin (k ·R− ωt) cos

(

k · r

2

)

, (21)

(in the ρs → ∞ limit), where r = r1 − r2 is the relative
position of the vortices, R = (r1 + r2)/2 is their “center
of mass”, and Γ+ = (Γ1 + Γ2)/2π, Γ− = (Γ1 − Γ2)/2π,
are their reduced circulations. For the analytical compu-
tations we take the simpler logarithmic interaction, al-
though generalization to the modified Bessel interaction,
should be straightforward.

For further calculations, it is useful to measure lengths
in 1/k and time in 1/ω units, and to perform a Galilean
transformation to the frame moving at the wave phase
velocity, leading to the following non-dimensional vari-
ables and parameters: x′ = k · r/2, y′ = k · (ẑ × r)/2,
t′ = ωt, X ′ = k · R − t, Y ′ = k · (ẑ × R), the dis-
tance r

′ = (x′, y′), and center of mass R
′ = (X ′, Y ′)

vectors, and parameters α0 = Γ0k
2/ω, for the wave am-

plitude α+ = Γ+k
2/4ω, α− = Γ−k

2/4ω, for the vortices
circulation (in the following we drop the primes). The
coordinate system is chosen, without loss of generality,
so that the x-axis is parallel to the vector k.

In addition to the analytical calculations, we compute
the point vortices trajectories in the presence of a longitu-
dinal wave, by direct integration of the motion equations
in the form,

ẋ1 = g

(

y1 − y2
x2 − x1

)

K1(νr)

r
− x̂a sin(x1 − t) , (22a)

ẋ2 = ∓g

(

y2 − y1
x1 − x2

)

K1(νr)

r
− x̂a sin(x2 − t) ,(22b)

for arbitrary ν = 1/kρs. We used g = kΓ/ωρs, where
Γ = Γ1 = −Γ2 for the dipole (minus sign), and Γ =
Γ1 = Γ2 for the monopole (plus sign), and a = kΓ0/ωρs
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FIG. 4. (Color online) Quasi-periodic (a) and chaotic (b)
motion of the monopole, in the long-wave case. Parameters
x1 = (0, 0), x2 = (0.3, 0) (a), and x2 = (1, 0) (b), tf = 200,
Γ1 = 1, Γ2 = 1, Γ0 = 0.5, ω = 1.

(in units of k = 1 and ω = 1). The vortex motions
are qualitatively similar for finite range and logarithmic
interactions; we show in the following, results for ρs = 1,
and different choices of the initial positions and strengths
g and a.

Two cases are of special interest, the so called “dipole”,
when the vortices have opposite circulations α+ = 0, and
the “monopole”, when the vortices have the same circula-
tion α− = 0. Without wave the dipole moves in a straight
line, and the monopole follows a circular trajectory.

In the dipole case, the equations of motion reduce to
the completely integrable system

ẋ = −α0 cosX sinx , (23a)

ẏ = 0 , (23b)

Ẋ = −1− α0 sinX cosx+ α−
y

r2
, (23c)

Ẏ = −α−
x

r2
. (23d)

where r2 = x2 + y2. Examples of dipole trajectories are
presented in Fig. 3.

Although the motion of a dipole interacting with a
wave is integrable, to find a quadrature is difficult, so
some insight can be gained by studying particular exact
solutions of (23). In analogy with the transverse wave
case, solutions with r = r0 constant exist if x = nπ
(the vortex distance in the x direction is a multiple of
the wavelength). In such a case, we can define ω0 =
α−/(r0

2), the characteristic frequency of the dipole, and
V = −1 + ω0y0, the x−component of the speed of the
unperturbed dipole in the frame of the wave. We obtain
for R

Ẋ = V + (−1)n+1α0 sinX Y = −ω0x0t . (24)

This equation naturally leads to two different cases, de-
pending on the value of |V/α0|, which determines the
existence of a fixe point for X . In one case (|V | > α0|)
the x-component of the dipole speed Ẋ remains constant
sign, while it change sign in the opposite case (|V | < α0)
and thus can eventually approach a fixed point.

We first notice, that in the very simple case where V =
0 (the x-component of speed of the unperturbed dipole is
equal to the phase velocity), which we call the resonant
case, the equation (24) becomes Ẋ = (−1)n+1α0 sinX .
This equation predicts the existence of selected directions
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FIG. 5. (Color online) Vortex trajectory leading to fusion.
Typical motion in the α0 > 1 case; (a) trajectory t ∈ (0, 1.5),
(b) vortex separation as a function of time. Parameters: x1 =
(0, 0), x2 = (3, 0), Γ = 8π, Γ0 = 4.

X = nπ for the dipole propagation, a feature reminiscent
to the mode locking phenomenon as for instance the one
observed by in [37, 38]. These directions correspond to
the case where the dipole is located at an extremum of
the wave, and therefore where the profile of the wave
is flat. Therefore, if the condition V = 0 is satisfied
the dipole will only see this flat profile and the influence
of the wave on the dipole motion vanishes. Indeed, the
general solution of (24) for V = 0 is

X = 2 arctan

(

e(−1)n+1α0t tan
X0

2

)

, (25)

and the dipole sets itself in one of the selected directions
where it does not see the wave.

A similar qualitative behavior to the special case V =
0, is found when |V/α0| < 1. The solutions of (24)
show that X(t) converge towards a fixed value Xf =

(−1)n arcsin
(

V
α0

)

+mπ. The difference here is that the

dipole is trapped, and the wave forces the x-component of
the dipole speed to the phase velocity ω/k, by adjusting
the slope of the wave that the dipole will “see”, Fig. 3(a).
On the other hand, if |V/α0| > 1, the dipole has enough
strength to “surpass” the wave with V as the averaged
x-component of its speed, Fig. 3(b). The wave has only
a small influence on the dipole.

In the monopole case it is convenient to introduce po-
lar coordinates: x = r cos θ, y = r sin θ, to obtain the
system,

ṙ = −α0 cosX sin(r cos θ) cos θ , (26a)

rθ̇ =
α+
r

+ α0 cosX sin(r cos θ) sin θ , (26b)

Ẋ = −1− α0 sinX cos(r cos θ) , (26c)

Ẏ = 0 . (26d)

These three autonomous nonlinear equations allow
chaotic behavior of the vortex trajectories, the external
wave destroying the vortex integrals of motion. The va-
riety of possible trajectories is illustrated in the series of
Figs. 4, 5, and 6. We introduce various simplifying as-
sumptions in order to qualitatively describe the behavior
of the monopole in these different physical regimes. We
first investigate the long wavelength limit in both weak
and finite wave amplitude approximations, and then we
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FIG. 6. (Color online) Trajectory of the monopole leading
to the splitting. (a) Typical splitting process when the wave
length is smaller than the vortices separation. (b) Long-time
behavior, the straight line corresponds to a power-law fit with
exponent 1/3. Parameters are similar to the ones of Fig. 5,
but with a wave phase of π.

discuss the small wave length behavior. We particularly
focus on the merging or splitting trajectories, in the pres-
ence of a finite amplitude wave.

In the weak long-wave regime, we can assume that
|α0| ∼ r ≪ 1, and |α+| ∼ 1; the consistency of these
assumption will be valid as long as r remain within the
neighborhood of r0. A series perturbation development
gives then,

r = r0 , θ = ω0t , (27)

X = t− α0 cos t , Y = Y0 , (28)

where ω0 = α+/r0
2 is the natural frequency of the un-

perturbed monopole. The vortex trajectories are there-
fore confined in a small region of maximum thickness 2α0

around the circle.
But if we only assume that r ≪ 1 and |α0| ∼ |α+| ≈ 1

(the wave amplitude is finite, comparable to the vortex
intensity), the motion equations become,

θ̇ =
α+

r2
, (29a)

ṙ = −α0r cos
2 θ cosX ≈ −

α0

2
r cosX , (29b)

Ẋ = −1− α0 sinX , (29c)

where in the distance equation (29b), we approximated
the cosine term by its mean value, using the fact that in
the limit r → 0, θ given by (29a) varies rapidly. We then
obtain for X an equation similar to (24) with V = 1; it
can be readily integrated to give

X(t) = −2 arctan
[

α0 + s tan
(s

2
(t− t0)

)]

(30)

for α0 < 1, and for α0 > 1,

X(t) = −2 arctan
[

α0 − s tanh
(s

2
(t− t0)

)]

, (31)

where s = |α2
0 − 1|1/2.

In the case, α0 < 1 and r ≪ 1, quasi-periodic motion
is possible. Indeed, for weak enough wave amplitude, one
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retrieves the perturbation result, with X(t) ≈ X0(t) =
t(1− α2

0)/(1 + α2
0)− 2 arctan(α0) linear and

r ≈ r0 exp

[

−
α0(1 + α2

0)

2(1− α2
0)

sinX0(t)

]

, (32)

corresponding to a periodic separation superposed to a
constant drift (Ẋ(t), 0) in the x-direction, as illustrated
in Fig. 4a. Increasing the initial distance between the
vortices, one can enter a region where the trajectories
become chaotic (see Fig. 4b).

The other case, α0 > 1, corresponds to the merg-
ing of the two vortices, as can be seen in Fig. 5. The
center of mass motion X converges to a fixed value
Xf = −2 arctan(α0 −

√

α2
0 − 1); as a result, the distance

r satisfies the long-time solution,

r → r0 exp
[

−
α0

2
cos(Xf )t

]

, (33)

where cosXf is positive for α0 > 1. Therefore, we
obtain in this case an exponential approach of the two
vortices, accompanied with a diverging angular velocity
θ̇ → ∞ (Fig. 5b). The merging characteristic time is
2/α0 cosXf (α0), and within the present approximation,
it diverges when α0 → 1. This is consistent with the vor-
tex merging observed in the numerical solutions, as seen
in Fig. 5.

Let us now consider the situation where, r ≫ 1
(the wave length is small compared to the size of the
monopole), 1 . α0 ∼ α+ ≪ r, such that the first term
in (26b) may be neglected. This case corresponds to the
vortex splitting process, shown in Fig. 6. Equations (26)
become now, θ ≈ const. and

ẋ = −α0 cosX sinx (34a)

Ẋ = −1− α0 sinX cosx (34b)

ẏ =
α+x

x2 + y2
(34c)

(34d)

similar to Eqs. (23) for the dipole, but with a difference
in the equation for y(t). Asymptotically (34a,34b) give
x(t) +X(t) = const., which justifies the approximation

ẏ ≈
const.

y2
, y(t) ∼ t1/3 (35)

Indeed, if r is initially large, Eq. (35) shows that it re-
mains large at long times. We confirmed the validity
and verified by direct numerical integration of the vortex
equations (22), that the asymptotic behavior of the vor-
tex distance follows a power-law with the exponent 1/3
(see Fig. 6b).

V. WAVE-VORTEX INTERACTION IN THE

CHARNEY-HASEGAWA-MIMA DYNAMICS

We consider now the Charney-Hasegawa-Mima equa-
tion in its two forms, (9) and (12), to study the evolu-
tion of two vortices in the presence of a transverse and

FIG. 7. (Color online) Potential vorticity of two gaussian
monopoles at times 0 (left), 7.5 (center) and 15 (right), in
units of ρs and vd. Without the interaction with a wave, the
vortices rotate and drift; the small diffusion of the vorticity is
due to the presence of a viscosity term in (9).

a longitudinal wave, respectively. We demonstrated, in
the context of the point vortices model, that the pres-
ence of a wave can induce a variety of behaviors, in-
cluding merging, splitting and chaos. However, in real
flows or plasma systems, a vortex has a spatial exten-
sion and waves have to obey a specific dispersion rela-
tion (4). Moreover, as mentioned before, the separation
of waves and vortices is somewhat arbitrary, their inter-
action modifies both in such a way that the distinction
can be made only within some length scale and time in-
terval. It would then be interesting to analyze how the
presence of a wave might influence processes such vortex
merging, in the more general framework of the Charney-
Hasegawa-Mima equation.

For this purpose we integrate numerically equations
(9) and (12) to which we added a small dissipation term
to ensure numerical stability. We consider two identical
vortices; for each vortex we assign at the initial time, a
local vorticity Ωl in the form of a Gaussian blob,

Ωl = −∇2ψ(r, 0) + ψ(r, 0)/ρ2s =
bΓ

π
exp(−br2) , (36)

(ψ(r, 0) is the initial stream function), where b controls
the extension of the vortex and Γ its circulation. In the
case of a system governed by (9), since transverse waves
are naturally generated, we shall not impose an external
one, but instead add a wave form to the initial vorticity
distribution and track its influence on the monopole tra-
jectories. In the case of longitudinal waves, we solve (12)
with a source term of the form,

S(x, t) = S0 cos(ky − ωt) , (37)

where S0 measures the source strength (it has dimensions
of a square frequency).

Simulations are made using periodic boundary condi-
tions on a square domain of length L = 20, and the
number of spectral modes is typically 10242. The numer-
ical code is based on a pseudo-spectral scheme with time
stepping a fourth order Runge-Kutta algorithm; the time
step is δt = 10−3, and we used a the numerical viscosity
of µ = 0.005. We measure lengths and velocities in units
of ρs and vd, respectively. The initial state consists on
two equal circulation vortices with vorticity distribution
(36), where b = 8 and Γ = 8π. The set of parameters and
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FIG. 8. (Color online) Potential vorticity of two vortices in the initial field of a transverse wave. The sequence shows
the monopole complex trajectory, in the chaotic regime of the corresponding point vortex model. From left to right, t =
0, 0.8, 1.6, 2.4, 3.2, 4.0, 4.8, 5.6, 6.4, square of size 202, and vortex size parameter b = 16.

(a) (b) (c)

(d) (e) (f)

FIG. 9. (Color online) Evolution of two gaussian monopoles in the transverse wave case. Vortex and wave parameters are as
in Fig, 1. The initial conditions, in (a) and (d), differ only in the phase of the wave with respect to the vortex positions. The
first row (a-c) shows the splitting; the second row (d-f) the merging of the vortices.

initial vortex positions, used in the various simulations,
correspond to the different cases studied with the point
vortex model.

The reference case is displayed in Fig. 7, where we
represent the potential vorticity Ωl of Eq. (6) for three
different times, of two monopoles in the absence of initial
wave or external source. Without extra perturbations,
the two monopoles simply rotate around each other and
slowly drift in the y-direction; the distance between the
vortices remains sensibly constant, their shape evolving
in the viscous time scale. We note that the observed drift
motion, is in fact influenced by the emission of a wake,
showing that, although gaussian monopoles are long lived
structures, they are not exact solutions of the Charney-
Hasegawa-Mima equation.

Let us first investigate the transverse wave case, where

in addition to the two monopoles we superpose an ini-
tial wave k2Γ0 cos(ky). As it could be inferred from the
large chaotic regions observed in the point vortex model
(Fig. 1), for a range of initial conditions the behavior of
the two monopoles is unpredictable. In the sequence of
Fig. 8, the vortices rotate, approach each other, inter-
change vorticity, and separate in the background of the
wave vorticity. In this case, the initial wave is in phase
with the vortices, and as a result, they drift with the wave
and rotate at a high frequency compared to the free case
of Fig. 7. The horizontal drift is easily explained by the
model (17) that implies,

d

dt
[x1(t) + x2(t)] = 2Γ0k sin(ωt) cos[k(y1 − y2)/2],

d

dt
[y1(t) + y2(t)] = 0 (38)
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(a) (b) (c)

(d) (e) (f)

FIG. 10. (Color online) Evolution of two gaussian monopoles with a source of longitudinal waves. Splitting (a-d) or merging
(d-f) depend on the phase of the source term. (a,d), initial state; (b,e), intermediate state (t = 1.5); (c,f), final state (t = 3).
Vortex and wave parameters are as in the transverse case (Fig. 9)

.

for the center of mass motion.
The presence of a transverse wave can also trigger pro-

cesses such as splitting and merging of vortices, as in the
point vortex model. In Fig. 9 we present numerical simu-
lations differing in the phase of the initial wave, showing
the sensitivity on the initial condition typical of a chaotic
system, and leading to split or fusion. We observe that
the vortex evolution is much faster than the wave one, as
can be asserted by comparing the fusion time of tf ≈ 3
in Fig. 9f, to the slow rotation of the two free vortices in
Fig. 7.

We turn out now to the study of the longitudinal wave
driven system. The direction of the longitudinal wave
can be in principle arbitrary. However, it is convenient to
well separate the longitudinal and transverse situations
in order to identify the physical mechanisms. Therefore,
we take a source that generates longitudinal waves per-
pendicular to the propagating intrinsic transverse waves.
This is the best suited situation to apply the results of the
point vortex model. Although the source term added to
the vorticity equation is restricted to a wave of the form
x̂ sin(kx−ωt), the evolution of the two equal circulation
vortices can display a large variety of behaviors. We fo-
cus here, on the strong interaction of vortices induced
by the wave, and leading to their separation or fusion as
predicted by the point vortex model. Therefore, we take

parameters similar to the ones of Figs. 5 and 6, for the
vortices and wave intensities, positions and phase. Re-
markably, we obtained the same kind of trajectories in
the extended case, shown in Fig. 10, where the vortex
pair split or merge according to the phase of the longitu-
dinal wave.

In contrast to the point vortex approximation, in the
extended case (for both, transverse or longitudinal waves)
the relative position of the monopoles with respect to
the wave influences the behavior of their vorticity: the
wave possesses its own vorticity which superposes to the
monopoles one, reinforcing the monopole in the positive
vorticity background and weakening the one in the neg-
ative vorticity background and causing additional drift
[39, 40]. This effect, in the observed regime of parame-
ters, slightly affects the motion of the vortices during the
time of their evolution, without changing qualitatively
the fusion or splitting process. In addition, the vortex
interaction mechanisms resulted to be much faster than
the evolution of the wave vorticity, the neglect, as a first
approximation, of the influence of the vortex motion on
the wave vorticity, appears to be justified.

Although we chose to present results on the monopole
dynamics in the general case, we note that the point
vortex model predicts, in the presence of a longitudinal
or transverse wave, that a dipole will follow an almost
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straight trajectory with a superposed oscillation, along
certain directions with respect to the wave propagation.
This behavior was also observed in dipole systems obey-
ing the Hasegawa-Mima equation [29].

VI. CONCLUSIONS

In this paper we introduced a simple model based on
the dynamics of point vortices, in order to get an idea on
how extended vortices and waves interact in more real-
istic flows. As a matter of fact, it turned out that this
simple model was much richer in the variety of behaviors
it could reflect, than what would be expected. Namely,
it demonstrated how stable a dipole was, and in oppo-
sition how like-circulation vortices could be destroyed or
merged by a wave. Comparison of the point vortex plus
wave analytical results and the Charney-Hasegawa-Mima
simulations, shown that the distinction between localized
and extended vorticity is justified by the existence of well
separated length and time scales, and is also relevant to
determine, for instance, the conditions for vortex merging
or splitting.

We considered in particular, the interaction of equal
circulation vortices in the presence of an intrinsic drift
(transverse) and of an external (longitudinal) wave. We
found that, depending on the relative phase of the wave

with respect to the positions of the monopoles, merging,
splitting or even chaotic trajectories are possible. Us-
ing the same set of parameters, we confirmed that the
point vortex model reasonably predicts the behavior of
the extended vortices obeying the Charney-Hasegawa-
Mima equation.

In summary, the results obtained in the case of the
point vortex model and confirmed by numerical simula-
tions, could partially explain how coherent structures can
appear by the merging of small structures and then or-
ganize themselves into dipoles and monopoles, especially
in systems where waves can be present or generated by
the dynamics of the structures. We may hope that this
simple model, that permits to identify the range of pa-
rameters relevant for the vortex-wave interactions, could
be a help in the understanding the dynamics of large co-
herent structures in decaying turbulent flows.
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