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The complex interactions of concentrated vortices with self-generated waves is investigated using
a model of point vortices in the presence of an external wave. In spite of its simplicity, this model
shows a rich dynamical behavior including oscillations of a dipole, splitting and merging of two like-
circulation vortices, and chaos. The analytical and numerical results of this model have been found
to predict under certain conditions, the behavior of more complex systems, such as the vortices
of the Charney-Hasegawa-Mima equation (drift waves or geostrophic flows), where the presence of
waves strongly affects the evolution of large coherent structures.

PACS numbers: 47.32.Cc,52.35.Kt

I. INTRODUCTION

Physical systems like large scale motion in oceans and
atmospheres [1–3], space and laboratory plasmas [4, 5],
or in statistical physics, the XY planar spin model [6, 7],
are all able to generate both vortices and waves, whose
interaction is one of the keys to their behavior. The
phenomenology of these systems is very rich, ranging
from turbulence to self-organization, formation of coher-
ent structures [8–10] and anomalous transport [11–13].
Understanding the elementary mechanisms dominating
the dynamics is crucial to model the statistical proper-
ties of these flows. One important fundamental process
is the vortex interaction in presence of waves. Indeed, it
has been observed that collisions of vortices may induce
their merging, and on the other hand, the inverse pro-
cess of splitting is also possible, large vortices may break
under the action of waves. Both mechanisms are accom-
panied by the emission of waves, as for instance in the
interaction of plasma vortices and drift waves [14–16].
The role played by waves in the interaction and evolu-

tion of vortices is not well known. A comparison of the
long-time evolution of Euler decaying two-dimensional
turbulence [10] and the Hasegawa-Mima one (which sup-
ports wave modes) [17], shows that the relaxation to-
wards a kind of thermodynamic equilibrium state [18]
is much longer or unreachable in presence of a wave
field [19–21]. This illustrates that vortex interactions are
largely influenced by the presence of waves.
A common feature of these vortex-wave systems is that

they are almost two-dimensional and may be described
by a conservation equation which is a slight generaliza-
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tion of the vorticity Euler equation. In general the exis-
tence of vortex solutions is related to the so-called Pois-
son nonlinearity, which is the two-dimensional version
of the convective nonlinearity in a normal fluid, or the
electrostatic drift in magnetized plasmas. Besides, waves
may be related to some source of divergence of the veloc-
ity field, as compressibility or as in the two-dimensional
reduction of a layered flow. The equation for the gener-
alized vorticity Ω, containing these basic mechanisms (a
linear dispersion relation, and a Poisson nonlinearity) is
given by

∂Ω

∂t
+ [Ω, ψ] = 0 , (1)

where [·, ·] is the usual Poisson bracket, and ψ is the
stream function; the actual relation Ω = F (ψ) depends
on the considered physical system, for the Euler equa-
tion it is simply given by Ω = −∇2ψ. This equation
expresses the conservation of the generalized vorticity fol-
lowing the current lines. The Hasegawa-Mima equation
for plasma drift waves, also known in fluid mechanics as
the geostrophic equation for Rossby waves [4, 22, 23],
reduces to (1) with the generalized vorticity,

Ω = −∇2ψ + ψ/ρ2s − (vd/ρ
2
s)x , (2)

where ψ is, in this context, related to the electric po-
tential (in suitable units) in the plasma, ρs is the hybrid
Larmor radius and vd is the drift wave velocity. The sim-
ilarity of the equations governing Rossby waves in the
atmosphere and drift waves in a plasma, may be traced
back to the analogy between Coriolis and Lorentz forces,
which determine the form of the dispersion relation, and
the common convective nonlinearity, which reduces to a
Poisson bracket in two dimensions. The two parameters,
a length scale and characteristic velocity, are related to
important physical effects which modify the system evo-
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lution with respect to the simpler Euler fluid. The Lar-
mor radius is a characteristic length which introduces
a finite range interaction between concentrated vortices.
The drift velocity is related to the phase velocity of drift
waves, the dispersion relation being

ωk = vdky/(1 + ρ2sk
2) , (3)

with ω the frequency and k the two-dimensional
wavenumber. The Hasegawa-Mima equation admits both
localized vortex and wave solutions [16, 24], allowing a
rich nonlinear dynamics as shown in numerical simula-
tions.
The vortex-wave interaction is in general extremely

complicated, involving the emision and scattering of
waves by the vortices and simultaneously the deforma-
tion of the vortex shape by the wave field. Although the
wave term in (2), proportional to the x-coordinate, is
obviously non localized and it forbids the solution of the
Hasegawa-Mima equation (1) in the form of an assembly
of point vortices [25], in a first approximation we may
consider a system where the vorticity is highly concen-
treted but subject to the action of a wave field in such
a way that the effect of the vortices on the wave may
be neglected. Therefore, we propose a simple model of
point vortices, implying that the velocity field is almost
everywhere potential, in the externally imposed field of a
single wave. This model, which is amenable to an analyt-
ical treatement, may serve to investigate the wave-vortex
interaction in the context of equations of the form of (1).
In this case the vortex structure becomes trivial and the
feedback on the wave is neglected. The velocity field may
be written as a superposition of two terms, one related
to the point vortices and one related to the wave. We
show that processes such as propagation, splitting and
fusion of vortices, which involve the binary collision of
localized structures, may be modeled by a system of two
point vortices under the action of an external wave.
In the following section we state the basic equations of

the point vortex model. In Sec. III we investigate the dif-
ferent dynamical regimes that the presence of the wave
can induce in the motion of the point vortices, we de-
scribe the dipole (opposite circulation vortices) and the
monopole (like-circulation vortices) trajectories, we find
the range of parameters where the strong interaction of
the monopole and the wave leads to their merging or
splitting. In Sec. IV we compare the results of Sec. III
with numerical simulations of the Hasegawa-Mima equa-
tion, and finally (Sec. V) we conclude with a summary
and brief discussion of the results.

II. POINT VORTEX MODEL

Point vortices are known to be exact solutions of Eu-
ler equations [26], that is when the vorticity is given by
Ω = −∇2ψ, but they also are exact solutions of the more
general equation (1), when Ω = −∇2ψ + ψ/ρ2s. In the
second case the usual logarithmic interaction is replaced

by a modified Bessel function K0 interaction. Point vor-
tices are defined by a vorticity distribution given by a
superposition of Dirac functions,

Ω(x, t) =
1

2π

N
∑

α=1

Γαδ (x− xα(t)) , (4)

where x is a vector in the plane of the flow, Γα is the
circulation of vortex α, N is the total number of vor-
tices, and xα(t) is the vortex position at time t. Using
this expression of the vorticity and solving the Poisson
equation, in the Euler case, or the Helmholtz equation in
the more general case, one obtains the current function
associated to the point vortices. By Helmholtz theorem
[27], the motion of the vortices is determined by the value
of the velocity field at the position of the vortex. If the
velocity field is written as v = ez ∧ ∇ψ +∇φ, where ez

is the unit vector perpendicular to the plane of the flow,
and φ takes into account the potential flow, in general
the point vortex motion is

Γαẋα = ez ∧
∂H

∂xα
+ Γα∇φ . (5)

where the Hamiltonian H is given by

H =
1

2π

∑

α>β

ΓαΓβU(|xα − xβ|) (6)

with U(x) = − log(x) in the Euler case, and U(x) =
K0(x/ρs) in the more general case (when ρs → ∞ the
modified Bessel function tends to the logarithm). When
the distance between the vortices is smaller than the
typical interaction length (ρs) the behavior of the two
systems is similar, in the opposite case, the K0 interac-
tion decrease exponentially and the vortices are almost
free. In the following, analytical computations will be
made using the simpler logarithmic interaction, general-
ization to the modified Bessel interaction is straightfor-
ward. The basic equations of the model are directly de-
rived from (5), where the wave potential is simply defined
by φ = Γ0 cos(k ·x−ωt), with Γ0 the wave amplitude, k
the wave vector, and ω is the wave pulsation,

ṙ = Γ+ez ∧
r

r2
− 2Γ0k cos (k ·R − ωt) sin

(

k · r

2

)

, (7)

Ṙ = Γ−ez∧
r

2r2
−Γ0k sin (k ·R− ωt) cos

(

k · r

2

)

, (8)

where r = r1 − r2 is the relative postion of the vor-
tices, R = (r1 + r2)/2 is their “center of mass”, and
Γ+ = (Γ1+Γ2)/2π, Γ− = (Γ1−Γ2)/2π, are their reduced
circulations.
For further calculations, it is useful to measure the

lengths in 1/k and the time in 1/ω, and to perform
a Galileo transformation to the frame moving at the
wave phase velocity, which leads to the following non-
dimensional variables and parameters: x′ = k · r/2,
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y′ = k·(ez∧r)/2, t
′ = ωt, X ′ = k·R−τ , Y ′ = k·(ez∧R),

and the new vectors r = (x′, y′), R = (X ′, Y ′) (in
the following we drop the primes) and the parameters
α0 = Γ0k

2/ω, for the wave amplitude α+ = Γ+k
2/4ω,

α− = Γ−k
2/4ω, for the vortices circulation. The coordi-

nate system is chosen, without loss of generality, so that
the x-axis is parallel to the vector k. The parameter α0

measures the strength of the wave, and α+, α− are the
effective vortex circulations.
Two cases are of special interest, the so called “dipole”,

when the vortices have opposite circulations α+ = 0, and
the “monopole”, when the vortices have the same circula-
tion α− = 0. Without wave the dipole moves in a straight
line, and the monopole follows a circular trajectory.
In the dipole case, the equations of motion reduces to

the completely integrable system

ẋ = −α0 cosX sinx , (9a)

ẏ = 0 , (9b)

Ẋ = −1− α0 sinX cosx+ α−
y

r2
, (9c)

Ẏ = −α−
x

r2
. (9d)

where r2 = x2 + y2.
In the monopole case it is convenient to introduce po-

lar coordinates: x = r cos θ, y = r sin θ, to obtain the
system,

ṙ = −α0 cosX sin(r cos θ) cos θ , (10a)

rθ̇ =
α+
r

+ α0 cosX sin(r cos θ) sin θ , (10b)

Ẋ = −1− α0 sinX cos(r cos θ) , (10c)

Ẏ = 0 . (10d)

These three autonomous nonlinear equations allow
chaotic behavior of the vortex trajectories, the external
wave destroying the vortex integrals of motion. The sys-
tems (9) and (10) are the basic equations of our model.

III. DYNAMICS OF TWO POINT VORTICES IN

THE FIELD OF A WAVE

In this section we study the motion of the point vor-
tices for the two configurations, dipole and monopole,
using analytical and numerical methods. The numerical
analysis is performed by direct computation of the point
vortices trajectories,

ẋ1 = g

(

y1 − y2
x2 − x1

)

K1(νr)

r
− x̂a sin(x1 − t) , (11a)

ẋ2 = ∓g

(

y2 − y1
x1 − x2

)

K1(νr)

r
− x̂a sin(x2 − t) ,(11b)

for arbitrary ν = 1/kρs, or

ẋ1 =
1

r2

(

y1 − y2
x2 − x1

)

− x̂α0 sin(x1 − t) , (12a)

ẋ2 = ∓
1

r2

(

y2 − y1
x1 − x2

)

− x̂α0 sin(x2 − t) , (12b)
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FIG. 1. (Color online) Trajectory of the dipole vortex with a
weak wave. The initial conditions for the two point vortices
and the wave are x1 = (0, 0), x2 = (1,−1), tf = 50π, g = 1,
a = 0.3, where tf is the final time.

in the limit ν → 0. We used g = k2Γ/ωkρs (Γ = Γ1 =
−Γ2 for the dipole, minus sign, and Γ = Γ1 = Γ2 for the
monopole, plus sign, and a = α0/kρs. Units are such
that k = 1 and ω = 1, with the vector k chosen parallel
to the x-axis. Most numerical integrations of (11) were
performed with g = 1 and ν = 1, and varying the wave
amplitude a and the initial distance between the vortices.
Let us start with the analysis of the dipole trajecto-

ries (see Fig. 1). As mentioned, the motion of a dipole
interacting with a wave is integrable. The quadrature is
difficult, but a first insight can be given by the study of
particular exact solutions of the motion.
Solutions with r = r0 constant exist if x = nπ. We can

then define ω0 = α−/(r0
2), the characteristic frequency

of the dipole, and V = −1 + ω0y0, the x−component of
the speed of the unperturbed dipole in the frame of the
wave. We obtain for R

Ẋ = V + (−1)n+1α0 sinX Y = −ω0x0τ . (13)

This equation naturally leads to two different cases, de-
pending on the value of |V/α0|, which determines the
existence of a fixe point for X . In one case (|V | > α0|)

the x-component of the dipole speed Ẋ maintains con-
stant sign, while it is subject to a change of sign in the



4

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0.4

-0.2

0.0

0.2

0.4

x

y

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0.4

-0.2

0.0

0.2

0.4

x

y

(b)

FIG. 2. (Color online) Trajectory of the monopole vortex
with a weak wave. The initial conditions for the two point
vortices and the wave are x1 = (0, 0), x2 = (1, 0), tf = 20,
g = 1, a = 0.1.

opposite case (|V | < α0|) and approach a fixed point.
We first notice, that in the very simple case where V =

0 (the x-component of speed of the unperturbed dipole is
equal to the phase velocity), which we call the resonant

case, the equation (13) becomes Ẋ = (−1)n+1α0 sinX .
This equation predicts the existence of selected directions
X = nπ for the dipole propagation, a feature reminiscent
to the mode locking phenomenon as for instance the one
observed by in [28, 29]. These directions correspond to
the case where the dipole is located at an extremum of
the wave, and therefore where the profile of the wave
is flat. Therefore, if the condition V = 0 is satisfied
the dipole will only see this flat profile and the influence
of the wave on the dipole motion vanishes. Indeed, the
general solution of (13) for V = 0 is

X = 2 arctan

(

tan

(

X0

2

)

exp
(

(−1)
n+1

α0τ
)

)

, (14)

and the dipole sets itself in one of the selected directions
where it does not see the wave.
An analog behavior is found when |V/α0| < 1, the solu-

tions of (13), show thatX(τ) is going to converge towards

the following fixed value Xf = (−1)n arcsin
(

V
α0

)

+mπ.

The difference here is that the dipole is trapped , and the
wave forces the x-component of the speed of the dipole

to the phase velocity ω/k, by adjusting the slope of the
wave that the dipole will “see”.
On the other hand, if |V/α0| > 1, the dipole has

enough strength to “surpass” the wave with V as the
averaged x-component of its speed. The wave has only
a small influence on the dipole. We remind that all the
previous results are made without any assumption on
the intensity of the wave α0. This study of simple so-
lutions let us guess that there might be, two types of
dynamical regimes, one where the dipole is trapped, and
therefore fixed points of the dynamics exist, the system is
in a constant “dissipative” or “exciting” regime whether
the dipole is accelerated or slowed to ω/k, and another
one where the dipole “surpass” the wave, the system os-
cillates between dissipative and exciting regimes. This
seems to be confirmed by the run of numerous simula-
tions using a wide range of parameters values and initial
conditions, and we can suspect that the presence of a
wave is not going to affect much the structure of the
dipole. Another way to convince ourselves with this af-
firmation is to perform a perturbative calculation to the
fisrt order with a small wave. The development is then
possible if we assume that α0/V ≪ 1. It seems therefore
that a weak wave (α0 ≪ α−) will only affect the dipole
near the resonance (V = 0), which is the exact situation
where our particular solution do not “see” the wave. In
Fig. 1 we can see the trajectory of the dipole in a weak
wave field for the two cases, short and long range vortex
interaction of Eqs. (11) and (12) respectively.
In the case of the “monopole” (α− = 0), the dynamics

result in three coupled equations (10), which allow com-
plex trajectories as is shown in the series of Figs. 2, 3, 4,
5 and 6. Therefore, in order to investigate this case, we
make different perturbative approaches, which can quali-
tatively describe the behavior of the monopole in different
physical situations. We first investigate the long wave-
length behavior with a weak wave, then the long wave be-
havior itself, and finally we discuss the small wave length
behavior. In the last two approaches, we particularly
focus on the merging or splitting trajectories.
To perform the perturbative calculation in long-wave

approximation with a weak wave, we assume that |α0| ∼
r ≪ 1, and |α+| ∼ 1; the consistency of these assumption
will be valid as long as r remain within the neighborhood
of r0. A series perturbation development gives then,

r = r0 θ = ω0τ , (15)

X = τ − α0 cos τ Y = Y0 , (16)

where ω0 = α+/r0
2 is the natural frequency of the un-

perturbed monopole. The vortex trajectories are there-
fore confined in a small region of maximum thickness 2α0

around the circle. A simulation of this situation can be
seen in Fig. 2.
But if we only assume that r ≪ 1 and |α0| ∼ |α+| ≈ 1

(the wave is not weak anymore), the motion equations
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FIG. 3. (Color online) Trajectory of the monopole leading to
the splitting. The initial conditions for the two point vortices
and the wave are x1 = (0, 0), x2 = (4.2, 0), tf = 40, Γ1 = 1,
Γ2 = 1, Γ0 = 1.2, ω = 1..

become,

θ̇ =
α+

r2
, (17a)

ṙ = −α0r cos
2 θ cosX ≈ −

α0

2
r cosX , (17b)

Ẋ = −1− α0 sinX , (17c)

where in the distance equation (17b), we approximated
the cosine term by its mean value, using the fact that in
the limit r → 0, θ given by (17a) varies rapidly. We then
obtain for X an equation similar to (13) with V = 1; it
can be readily integrated to give

X(t) = −2 arctan
[

α0 + s tan
(s

2
(t− t0)

)]

(18)

for α0 < 1, and for α0 > 1,

X(t) = −2 arctan
[

α0 − s tanh
(s

2
(t− t0)

)]

, (19)

where s = |α2
0 − 1|1/2. In the case where α0 > 1, X con-

verges to a fixed value Xf = −2 arctan(α0 −
√

α2
0 − 1),

given for the distance r the long-time solution,

r → r0 exp
[

−
α0

2
cos(Xf )t

]

, (20)
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FIG. 4. (Color online) Trajectory of the monopole leading to
the fusion. The initial conditions for the two point vortices
and the wave are x1 = (0, 0), x2 = (3.5, 0), tf = 15, Γ1 = 1,
Γ2 = 1, Γ0 = 0.5, ω = 1..

where cosXf is positive for α0 > 1. Therefore, we obtain
in this case an exponential approach of the two vortices,
accompanied with a diverging angular velocity θ̇ → ∞.
The merging characteristic time is 2/α0 cosXf(α0), and
within the present approximation, it diverges when α0 →
1. This is consistent with the vortex merging observed
in the numerical solutions, as seen in Fig. 4.
In the other case, α0 < 1 and r ≪ 1, quasi-periodic mo-

tion is possible. Indeed, X(t) is periodic in t, with a pe-

riod 2π/
√

1− α2
0. In the weak wave amplitude limit, one

retrieves the perturbation result, with X(t) ≈ X0(t) =
t(1− α2

0)/(1 + α2
0)− 2 arctan(α0) linear and

r ≈ r0 exp

[

−
α0(1 + α2

0)

2(1− α2
0
)
sinX0(t)

]

, (21)

Let us now consider the situation where, r ≫ 1
(the wave length is small compared to the size of the
monopole), 1 . α0 ∼ α+ ≪ r, such that the first term
in (10b) may be neglected. Equations (10) become now,
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FIG. 5. (Color online) Quasi-periodic motion of the
monopole. The initial conditions for the two point vortices
and the wave are r1 = (0, 0), r2 = (0.3, 0), tf = 200, Γ1 = 1,
Γ2 = 1, Γ0 = 0.5, ω = 1.

θ ≈ const. and

ẋ = −α0 cosX sinx (22a)

Ẋ = −1− α0 sinX cosx (22b)

ẏ =
α+x

x2 + y2
(22c)

(22d)

similar to Eqs. (9) for the dipole, but with a difference
in the equation for y(t). Asymptotically (22a,22b) give
x(t) +X(t) = const., which justifies the approximation

ẏ ≈
const.

y2
, y(t) ∼ t1/3 (23)

Indeed, if r is initially large, Eq. (23) shows that it re-
mains large at long times. We confirmed the validity
and verified by direct numerical integration of the vortex
equations (12), that the asymptotic behavior of the vor-
tex distance follows a power-law with the exponent 1/3
(see Fig. 7).

IV. MERGING OF TWO VORTICES IN THE

HASEGAWA-MIMA EQUATION

We consider now the Charney-Hasegawa-Mima equa-
tion (2). As mentioned, this equation was introduced
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FIG. 6. (Color online) Complex trajectory of the monopole.
The initial conditions for the two point vortices and the wave
are r1 = (0, 0), r2 = (1, 0), tf = 200, Γ1 = 1, Γ2 = 1,
Γ0 = 0.5, ω = 1.
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FIG. 7. (Color online) Long-time behavior of the splitting
trajectory of Fig. 3 in logarithmic scale. The straight line
corresponds to a power-law fit with exponent 1/3.

in the study of plasma drift waves in a tokamak edge
plasma and is known in this context as the Hasegawa-
Mima equation; the same equation, referred as the Char-
ney equation, describes Rossby waves geophysical flows.
The interest in this equation is that it is able to generate
both vortices and waves. Vortex-wave interaction in this
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 8. (Color online) Hasegawa-Mima evolution of two gaussian monopoles. First column (a,d,g), initial state; second column
(b,e,h), intermediate state (t = 7.5 ρs/vd); and third column (c,f,i), final state (t = 15 ρs/vd). Row (a-c), the two monopoles
distant of 3 ρs drift and rotate without merge. Row (d-f), the distance is 5 ρs and the wave amplitude is 4 ρs/vd; the separation
between the two monopoles increases in time. Row (g-i), fusion of two monopoles distant of 3 ρs in the presence of a wave
(amplitude, 4 vdρs).

system drive a large variety of effects related in particu-
lar, to the motion and collisions of localized structures.
For instance, a dipole vortex has an oscillatory trajectory
when its symmetry axis is inclined with respect to the
wave direction of propagation [30], or like-sign vortices
(monopoles) may merge under appropriated conditions
[14]. We demonstrated theses processes in the context
of point vortices. However, in real flows or plasma sys-
tems, a vortex has a spatial extension and waves have to
obey a specific dispersion relation (3). Moreover, as men-
tioned in the introduction, the separation of waves and

vortices is somewhat arbitrary, their interaction modi-
fies both in such a way that the distinction can be made
only within some length scale and time interval. It would
then be interesting to analyze how the presence of a wave
might influence processes such vortex merging, in the
more general framework of the Charney-Hasegawa-Mima
equation.
For this purpose we consider two identical vortices; for

each vortex we assign at the initial time, a local vorticity
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FIG. 9. (Color online) Point vortex trajectories using pa-
rameters comparable to the numerical simulation of Fig. 8:
r1 = (0, 0), r2 = (0, 3), Γ = 25, Γ0 = 4, and ω = 1. (Left)
maximum time 1.015; (Right) maximum time 1.6.

Ωl in the form of a gaussian,

Ωl = −∆ψ(r, 0) + ψ(r, 0)/ρ2s =
bΓ+

π
exp(−b r2) , (24)

(ψ(r, 0) is the initial stream function), where b controls
the extension of the vortex and Γ+ it’s circulation. Since
the waves are naturally appearing in the model we shall
not impose an external one, but instead add a wave form
to the initial vorticity distribution and see its influence.
In order for vortices to merge, we have found for point

vortices that we need a condition of the type α0 ∼ α+,
(we notice that the value of ω is not affecting the con-
dition). To simplify things we shall choose as well
|k| = ky = 1 (in units of ρs). We may then find that
the vorticity of a distribution of the type (24), results in
πΓ+/b. Given these facts, the initial condition is chosen
as follows

Ωl = 64
[

exp(−8r21) + exp(−8r22)
]

+ε4 cos(y−13) , (25)

where ε = 1 when the wave is present or ε = 0, when it
is absent, and r21,2 = (x− x1,2)

2 + (y − y1,2)
2, the values

of (x1,2, y1,2), being adapted to check different cases. It
is convenient to introduce the units of length and time in
terms of dimensional parameters of the linear dispersion
(3), ρs and vd. For the finite range case we put ρs = 1,
and vd = 1/2 such that the frequency of a ky = 1/ρs
wave be one. Simulations are made using periodic bound-
ary conditions on a square domain of length L = 20 ρs,
and the final time corresponds to t = 15 ρs/vd. The nu-
merical code is based on a pseudo-spectral scheme with
time stepping a fourth order Runge-Kutta algorithm; the
time step is δt = 10−3 ρs/vd, the numerical viscosity
µ = 0.005 ρsvd, and the number of spectral modes is
10242.

(a) (b)

(c) (d)

FIG. 10. (Color online) Hasegawa-Mima evolution of two
gaussian monopoles in the long range interaction case (ρs =
9.5, vd = 14.5, and initial distance 6ρs). First row, without
wave, (a) initial state ; (b) final state t = 15 ρs/vd showing
the increased separation of the monopoles. Second row, with
an initial wave, (c) initial distance 6ρs; (d) final merged state
(t = 15 ρs/vd).

We performed a series of simulations changing the ini-
tial vortex separation and the presence or not of the
wave: (i) we let the two monopoles, separated by a
distance of 3 ρs, evolve freely from the initial positions
(x1, y1) = (10, 8.5), and (x2, y2) = (10, 11.5), with-
out wave, ε = 0; (ii) we added a wave to the initial
state, ε = 1, and choose conditions where our point vor-
tices model predicted splitting (increase of the initial dis-
tance, fixed at 5 ρs with positions (x1, y1) = (10, 7.5), and
(x2, y2) = (10, 12.5)), and finally (iii), we chose param-
eters corresponding to the fusion of the point vortices,
with an initial distance of 3 ρs and a wave ε = 1 (the
initial positions are as in case (i)). Results for the three
cases are shown in Fig. 8.
In case (i), shown in Fig. 8a, the monopoles motion re-

sults from the superposition of a drift in the y-direction
and a rotation around each other; the distance between
the vortices remains sensibly constant (it evolves in the
viscous time scale). Cases (ii) and (iii), show that when a
wave is present, splitting and merging depend on the ini-
tial distance (we fixed the other parameters). Figure 8b
shows that for far away monopoles, the influence of the
initial wave is to reduce significantly the rotation mo-
tion and to increase their separation. In contrast, when
the initial distance is smaller, the two monopoles tend
to merge (case (iii), Fig. 8). The relative position of the
monopoles with respect to the wave influences the behav-
ior of their vorticity: the wave possesses its own vorticity
which superposes to the monopole one, reinforcing the
positive vorticity monopole and weakening the negative
vorticity one. This effect, that is not present in the simple
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model, although affects the subsequent motion of the vor-
tices, do not change qualitatively the fusion process. We
show in Fig. 9 the trajectories of the point vortices that
merge under conditions similar to the case (iii) (same vor-
tex circulations, wave amplitude and initial separation).
Therefore, we conclude the wave forces the fusion of the
vortices, but if the distance between them is too large,
the fusion is avoided. This is related to the presence in
the vorticity of the Larmor-radius term, which introduces
interactions of finite range.
Modifications of the interaction characteristic length,

as also studied in the point vortex model where we pre-
sented the case ρs → ∞, lead to the same distinction be-
tween merging or splitting conditions depending on the
initial distance (c.f. Fig. 3(b) and Fig. 4(b)). We show in
Fig. 10 a simulation with a large ρs = 9.5 that confirms
the influence of the presence of a wave, in the evolution of
the two monopoles according to their initial separation.
We chose the vortex and wave parameters the same as
for the other cases, and vd = 14.5 such that the phase
velocity for the ky = 1 is about 0.16; we remark that in
the long interaction limit the natural units of length and
time are defined by the initial condition. The dispersion
relation becomes ω = vdky/(ρsk)

2 implying that in this
ρs → ∞ limit, the combination vd/ρ

2
s must be finite for

the existence of propagating waves. It is worth noting
that the relative position of the initial monopoles with
respect to the wave phase of Figs. 10(c), is different from
that of case (iii), here the two monopoles are in an pos-
itive vorticity wave region; in this case the amplitude of
the two monopoles remains nearly the same during their
motion, up to the fusion time.
Although we chose to present results on the monopole

dynamics in the general case, we note that the point vor-
tex model predicts the oscillations of a dipole in certain
directions also observed in dipole systems obeying the
Hasegawa-Mima equation [30].

V. CONCLUSIONS

In this paper we introduced a simple model based on
the dynamics of point vortices, in order to get an idea

on how extended vortices and waves interact in more re-
alistic flows. As a matter of fact, it turned out that
this simple model was much richer in the variety of be-
haviors it could reflect, than what would be expected.
Namely, it showed how stable a dipole was, and in oppo-
sition how like-circulation vortices could be destroyed or
merged by a wave. Comparison of the point vortex plus
wave analytical results and the Charney-Hasegawa-Mima
simulations, shown that the distinction between localized
and extended vorticity is justified by the existence of well
separated length and time scales, and is also relevant to
determine, for instance, the conditions for vortex merg-
ing or splitting.
The results obtained in the case of the point vortex

model and confirmed by numerical simulations of a much
more complex system, could partially explain how co-
herent structures can appear by the merging of small
structures and then organize themselves into dipoles and
monopoles, especially in systems where waves can be
present or generated by the dynamics of the structures.
We may hope that this simple model, that permits to
identify the range of parameters relevant for the vortex-
wave interactions, could be a help in the understanding
the dynamics of large coherent structures in decaying tur-
bulent flows.
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