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ESTIMATES FOR SOLUTIONS OF THE ∂̄ -EQUATION AND APPLICATION TO THE CHARACTERIZATION OF

THE ZERO VARIETIES OF THE FUNCTIONS OF THE NEVANLINNA CLASS FOR LINEALLY CONVEX

DOMAINS OF FINITE TYPE

PHILIPPE CHARPENTIER, YVES DUPAIN & MODI MOUNKAILA

ABSTRACT. In the late ten years, the resolution of the equation ∂̄u = f with sharp estimates has been intensively studied for convex domains
of finite type in Cn by many authors. Generally they used kernels constructed with holomorphic support function satisfying “good” global
estimates. In this paper, we consider the case of lineally convex domains. Unfortunately, the method used to obtain global estimates for the
support function cannot be carried out in that case. Then we use a kernel that does not gives directly a solution of the ∂̄ -equation but only a
representation formula which allows us to end the resolution of the equation using Kohn’s L2 theory.

As an application we give the characterization of the zero sets of the functions of the Nevanlinna class for lineally convex domains of finite
type.

1. INTRODUCTION

The general notion of extremal basis and the class of “geometrically separated” domains has been introduced in [CD08]. For
such domains it is proved that if there exist “good” plurisubharmonic functions, in which case the domains are called “completely
geometrically separated”, then sharp estimates on the Bergman and Szegö projections and on the classical invariants metrics can be
obtained.

Moreover, using the description of the complex geometry of lineally convex domains of finite type initiated in [Con02] and the
construction of a local support function described in [DF03], it is shown, already in [CD08], that every lineally convex domain of
finite type is completely geometrically separated.

The present paper is a continuation of the study of complex analysis in such domains. We are now interested in the problem of the
characterization of the zero sets of functions in the Nevanlinna class. The main result obtained concerns the class of lineally convex
domains of finite type and generalizes the results obtained in the case of convex domains ([BCD98, Cum01b, DM01]):

Theorem 1.1. Let Ω be a bounded lineally convex domain of finite type in Cn with smooth boundary. Then a divisor in Ω can be

defined by a function of the Nevanlinna class of Ω if and only if it satisfies the Blaschke condition.

The general scheme of the proof is identical to the one used in the convex case and consists in three steps. First, for the general
case of geometrically separated domains, we prove some “Malliavin conditions” on closed positive (1,1)-currents Θ and then we
solve the equation dw = Θ with good estimates. The third step, which solves the ∂̄ -equation for (0,1)-form with L1 estimates on the
boundary, is only done in the case of lineally convex domains of finite type:

Theorem 1.2. Let Ω be a bounded lineally convex domain of finite type in Cn with smooth boundary. Let f be a (0,1)-form in Ω

whose coefficients are C 1(Ω) functions and which is ∂̄ -closed. Then there exists a solution of the equation ∂u = f , smooth on Ω and

continuous on Ω such that ‖u‖L1(∂Ω) ≤C||| f |||k (see Section 2.1 formula (2.3)), the constant C depending only on Ω. In other words,

there exists a solution of the equation ∂bu = f , in the sense of [Sko76], in L1(∂Ω).

2. SOLUTIONS FOR THE ∂̄ -EQUATION FOR LINEALLY CONVEX DOMAINS OF FINITE TYPE

First of all, we recall the definition of lineally convex domain:

Definition 2.1. A domain Ω in Cn, with smooth boundary is said to be lineally convex at a point p∈ ∂Ω if there exists a neighborhood
W of p such that, for all point z ∈ ∂Ω∩W ,

(

z+T 10
z

)

∩ (D∩W) = /0,

where T 10
z is the holomorphic tangent space to ∂Ω at the point z.

Furthermore, we always suppose that ∂Ω is of finite type at every point of ∂Ω∩W . Shrinking W if necessary, we may assume
that there exists a C ∞defining function ρ for Ω and a number η0 > 0 such that ∇ρ(z) 6= 0 at every point of W and the level sets
{z ∈W such that ρ(z) = η}, −η0 ≤ η ≤ η0, are lineally convex of finite type.

As we want to obtain global results, we need these properties at every boundary point. Thus, in all our work, by “lineally convex
domain” we mean a bounded smooth domain having a (global) defining function satisfying the previous hypothesis at every point of
∂Ω.

In Section 2.1 we define a punctual anisotropic norm for forms, ‖.‖k, related to the geometry of the domain (formula (2.2)). With
this notation, the main goal of this Section is to prove the following reformulation of Theorem 1.2 for (0,q)-forms:
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Theorem 2.1. Let Ω be a smooth bounded lineally convex domain of finite type in Cn. Then there exists a constant C > 0 such that,

for any smooth ∂̄ -closed (0,q)-form f , 1 ≤ q ≤ n− 1, on Ω there exists a solution u of the equation ∂u = f , continuous on Ω, such

that
∫

∂Ω
|u(z)|dσ(z)≤C

∫

Ω
‖ f (z)‖k dV (z).

Except for the case of finite type domains in C2 where such an estimate was proved by D. C. Chang, A. Nagel and E. M. Stein
([CNS92]) for the ∂̄ -Neumann problem, this kind of result was always proved using explicit kernels solving the ∂̄ -equation. The first
result was obtained, independently, by G. M. Henkin and H. Skoda for strictly pseudo-convex domains ([Hen75, Sko76]). Afterward,
some generalizations to special pseudo-convex domains of finite type (in dimension n ≥ 3) were obtained by several authors. For
example, the case of complex ellipsoids was obtained by A. Bonami and Ph. Charpentier ([BC82]), and, probably the most notable
result, the case of convex domains of finite type by J. Bruna, Ph. Charpentier & Y. Dupain, A. Cumenge and K. Diederich & E.
Mazzilli ([BCD98, Cum01b, DM01]).

Here, we consider the more general case of lineally convex domains of finite type. Our starting point is similar to the one used in
[Cum01b] and [DM01]. We try to construct a kernel solving the ∂̄ -equation following the method described in the classical paper of
B. Berndtsson and M. Andersson [BA82]. Such kernel is constructed using two forms, s(z,ζ ) and Q(z,ζ ) satisfying some conditions.
In particular Q(z,ζ ) is supposed to be holomorphic in z. In many works using these constructions, the forms s and Q (or only Q)
are constructed using a holomorphic support function for the domain. In the case of lineally convex domains of finite type such
support functions have been constructed by K. Diederich and J. E. Fornaess in [DF03]. Let us denote by S0 = ∑Q0

i (z,ζ )(zi − ζi) this
support function. If we want to use S0 to define s and/or Q, a problem appears immediately: some precise global estimates of S0 are
necessary since this function appears in the denominators of the kernels, and Diederich and Fornaess result gives only local estimates
(i.e. when the two points z and ζ are close and close to the boundary of the domain). This problem has been noticed previously in
the case of convex domains by W. Alexandre in [Ale01] where a modification of the support function is done. Unfortunately, this
modification cannot apply for lineally convex domains, the convexity being strongly used to solve a division problem with estimates.
Another way to construct a kernel without support function, introduced by A. Cumenge for convex domains in [Cum01b], is to use
the Bergman kernel with the estimates obtained in [McN94]. These needed estimates on the Bergman kernel have been obtained
for lineally convex domains in [CD08] but, once again, the method cannot be carried out for lineally convex domains for the same
reason.

Thus we start with the method of Berndtsson and Andersson with Q constructed with S0, but the form Q being holomorphic in
z only when the two points z and ζ are close (and close to the boundary). Then the construction does not give a kernel solving the
∂̄ -equation but a representation formula of the following form: if f is a (0,q)-form smooth in Ω̄, there exist kernels K(z,ζ ), K1(z,ζ )
and P(z,ζ ) such that

f (z) = ∂̄

(

∫

Ω
f (ζ )∧K(z,ζ )

)

+

∫

Ω
∂̄ f (ζ )∧K1(z,ζ )+

∫

Ω
f (ζ )∧P(z,ζ ).

In this formula one important point is that, by construction, the kernel P is C
∞
(

Ω̄× Ω̄
)

. If f is ∂̄ -closed then the form g =
∫

Ω f (ζ )∧P(z,ζ ) is also ∂̄ -closed, and, by the regularity of P (Lemma 2.2), for all integer r, the Sobolev norm ‖g‖W r of order r is
controlled by Cr ‖ f‖L1(Ω). Then, using Kohn’s theory ([Koh73]), it is possible, using a linear operator, to solve the equation ∂̄v = g

with an estimate of the form ‖v‖W r ≤Cr ‖ f‖L1(Ω) (Lemma 2.3). By Sobolev Lemma, choosing r sufficiently large (depending only

on the dimension), there exists a constant C such that, if f ∈ L1(Ω), this solution v is continuous on Ω and ‖v‖L1(∂Ω) ≤C‖ f‖L1(Ω).

Finally, to obtain a solution of the equation ∂̄u = f , given by a linear operator, satisfying the desired estimate it suffices to estimate
the integral

∫

Ω f (ζ )∧K(z,ζ ) which can be done, as we will see, using only the local estimates of the support function S0 given in
[DF03].

2.1. Geometry and local support function.

2.1.1. Geometry of lineally convex domains of finite type. Adapting the construction made by J. McNeal for convex domains
([McN94]) to the case of lineally convex domains of finite type, M. Conrad defined, in [Con02], the geometry of these domains
and, in particular, the notion of extremal basis in this context (note that in his construction the basis are not maximal but minimal, see
[Hef04, NPT09] for more details). Here we will only recall the results which are useful for our purpose. A more detailed exposition
is given in [DF06].

For ζ close to ∂Ω and ε ≤ ε0, ε0 small, define, for all unitary vector v,

τ (ζ ,v,ε) = sup{c such that |ρ (ζ +λ v)−ρ(ζ )|< ε, ∀λ ∈C, |λ |< c} .

Note that, if v is tangent to the level set of ρ passing through ζ , τ (ζ ,v,ε) & ε1/2 (with uniform constant in ζ , v and ε) and that, Ω

being of finite type ≤ 2m, τ (ζ ,v,ε) . ε1/2m.
Let ζ and ε be fixed. Then, an orthonormal basis (v1,v2, . . . ,vn) is called (ζ ,ε)-extremal (or ε-extremal, or simply extremal) if v1

is the complex normal (to ρ) at ζ , and, for i > 1, vi belongs to the orthogonal space of the vector space generated by (v1, . . . ,vi−1)
and minimizes τ (ζ ,v,ε) in that space. In association to this extremal basis, we denote

τ(ζ ,vi,ε) = τi(ζ ,ε).

Note that there may exist many (ζ ,ε)-extremal bases but they all give the same geometry we recall now.
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With these notations, one defines polydiscs APε(ζ ) by

APε(ζ ) =

{

z = ζ +
n

∑
k=1

λkvk such that |λk| ≤ c0Aτk(ζ ,ε)

}

,

c0 depending on Ω, Pε(ζ ) being the corresponding polydisc with A = 1 and we also define

d(ζ ,z) = inf{ε such that z ∈ Pε(ζ )} .

The fundamental result here is that d is a pseudo-distance which means that, ∀α > 0, there exist constants c(α) and C(α) such that

(2.1) c(α)Pε(ζ )⊂ Pαε(ζ )⊂C(α)Pε(ζ ) and Pc(α)ε(ζ )⊂ αPε(ζ ) ⊂ PC(α)ε(ζ ).

We insist on the fact that this pseudodistance is well defined and is independent of the choice of the extremal bases.
We will make use of the following properties:

(1) Let w = (w1, . . . ,wn) be an orthonormal system of coordinates centered at ζ . Then
∣

∣

∣

∣

∣

∂ |α+β |ρ(ζ )

∂wα ∂ w̄β

∣

∣

∣

∣

∣

.
ε

∏i τ (ζ ,wi,ε)
αi+βi

, |α +β | ≥ 1.

(2) Let ν be a unit vector. Let aν
αβ (ζ ) =

∂ α+β ρ

∂λ α∂ λ̄ β (ζ +λ ν)|λ=0. Then

∑
1≤|α+β |≤2m

∣

∣

∣
aν

αβ (ζ )
∣

∣

∣
τ(ζ ,ν,ε)α+β ≃ ε.

(3) If (v1, . . . ,vn) is a (ζ ,ε)-extremal basis and γ = ∑n
1 a jv j 6= 0, then

1
τ(ζ ,γ,ε)

≃
n

∑
j=1

∣

∣a j

∣

∣

τ j(ζ ,ε)
.

(4) If v is a unit vector then:
(a) z = ζ +λ v ∈ Pδ (ζ ) implies |λ |. τ(ζ ,v,δ ),
(b) z = ζ +λ v with |λ | ≤ τ(ζ ,v,δ ) implies z ∈CPδ (ζ ).

(5) τ1(ζ ,ε) = ε , and, for j > 1 and λ ≥ 1, λ 1/mτ j(ζ ,ε) . τ j(ζ ,λ ε) . λ 1/2τ j(ζ ,ε).

Remark. Every lineally convex domain of finite type is completely geometrically separated and the pseudo-distance defined here is
equivalent to the one defined in [CD08] using tangent complex vector fields (see Section 7.1 of [CD08] for some details).

With these notations, we define a punctual anisotropic norm ‖.‖k for (0,q)-forms with functions coefficients f by

(2.2) ‖ f (z)‖k = sup
‖vi‖=1

∣

∣

〈

f ;v1, . . . ,vq

〉

(z)
∣

∣

∑
q
i=1 k (z,vi)

,

where k (z,v) =
δ∂ Ω(z)

τ(z,v,δ∂ Ω(z)) , δ∂Ω(z) being the distance of z to the boundary of Ω. Note that this definition generalizes the definition

given in [CD08] for (0,1)-forms. Moreover, in the coordinate system associated to an (z,δ (z))-extremal basis, we have
∥

∥dz̄I
∥

∥

k
≃

mini∈I
τi(z,δ∂ Ω(z))

δ∂ Ω(z) , and, if f = ∑I aIdz̄I ,

‖ f‖k ≃ sup
I

|aI|min
i∈I

τi (z,δ∂Ω(z))

δ∂Ω(z)
.

If f is a (0,q)-form with continuous coefficients, ‖ f (z)‖k is also continuous and we define it’s |||.|||k norm by

(2.3) ||| f |||k =
∫

Ω
‖ f (z)‖k dV (z).

2.1.2. The holomorphic support function. In [DF03] the following result is proved:

Theorem 2.2 (K. Diederich & J. E. Fornaess). Let Ω be a bounded lineally convex domain in Cn of finite type 2m with C ∞ boundary.

Then there exist a neighborhood W0 of the boundary of Ω and, for any ε > 0 small enough a function S0(z,ζ ) ∈C
∞ (Cn,W0) which is

a holomorphic polynomial of degree 2m in z for any ζ ∈W0 fixed, such that S0(ζ ,ζ ) = 0, satisfying the following precise properties:

Let M, K > 0 be chosen sufficiently large and ε > 0 sufficiently small. Choose lζ a family of affine unitary transformations on

W0 translating ζ to 0 and rotating the complex normal nζ to ρ at ζ to the vector (1,0, . . . ,0). Then there exists, on W0, a family of

holomorphic polynomials Aζ , Aζ (0) = 0, such that, if Φζ is defined by Φ−1
ζ
(z)1 = z1

(

1−Aζ(z)
)

, Φ−1
ζ
(z)k = zk, k = 2, . . . ,n, then

(2.4) S0
(

lζ ◦Φζ (ξ ),ζ
)

= ξ1 +Kξ 2
1 − ε

2m

∑
j=2

M2 j

σ j ∑
|α |= j

α=(0,α1,...,αn)

1
α!

∂ρζ (0)

∂ξ α
ξ α

where ρζ (ξ ) = ρ
(

lζ ◦Φζ (ξ )
)

−ρ(ζ ) and

σ j =







1 for j = 0 mod 4
−1 for j = 2 mod 4
0 otherwise

.
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Moreover, there exist d = d(ε)> 0 and c > 0 such that, if nζ is the unit real exterior normal to ρ at ζ , for (w1,w2) ∈ C2 and t a

unit vector in the holomorphic tangent space to ρ at ζ , for |w|< d, the following estimate holds

(2.5) ℜeS0
(

ζ +w1nζ +w2t,ζ
)

≤
[

ρ
(

ζ +w1nζ +w2t
)

−ρ(ζ )
]

h
(

ζ +w1nζ +w2t
)

− εc
n

∑
j=2

∥

∥

∥
P

j

ζ ,t

∥

∥

∥
|w2|

j ,

where h is a positive function bounded away from 0, P
j

ζ ,t
(w) = P

j

ζ

(

ζ +w1nζ +w2t
)

, with

P
j

ζ
(z) = ∑

|α |+|β |= j

1
α!β !

∂ jρ(ζ )

∂ zα ∂ z̄β
(z− ζ )α (

z̄− ζ̄
)β

and, for any polynomial P = ∑aαβ zα z̄β , ‖P‖= ∑
∣

∣aαβ

∣

∣.

Remark. In the above Theorem the function S0 is globally defined for ζ ∈ W0, and (2.4) is independent of the choice of lζ . In
particular, as it is stated in [DF03], if we restrict ζ to a small open set in W0, the functions lζ , h and Aζ can be chosen C ∞ in that set
(with respect to the two variables ζ and z).

2.2. Koppelman formulas. With the notations used for the holomorphic support function S0, we choose R < d such that
∣

∣Aζ (z)
∣

∣<

10−1 if |z− ζ |< R and, reducing η0 if necessary, we may suppose that δ∂Ω(ζ )< η0 implies ζ ∈W0.
Let us define two C ∞ functions χ1(z,ζ ) = χ̂ (|z− ζ |) and χ2(z) = χ̃ (δ∂Ω(z)) (where δ∂Ω denotes the distance to the boundary of

Ω) where χ and χ̃ are C ∞ functions, 0 ≤ χ̂, χ̃ ≤ 1, such that χ̂ ≡ 1 on [0,R/2] and χ̂ ≡ 0 on [R,+∞[ and χ̃ ≡ 1 on [0,η0/2] and χ̃ ≡ 0
on [η0,+∞[. Then we define

χ(z,ζ ) = χ1(z,ζ )χ2(ζ )

and

S(z,ζ ) = χ(z,ζ )S0(z,ζ )− (1− χ(z,ζ )) |z− ζ |2 =
n

∑
i=1

Qi(z,ζ )(zi − ζi) .

Now we define the two forms s and Q used in [BA82] in the construction of the Koppelman formula by

s(z,ζ ) =
n

∑
i=1

(

ζi − zi

)

d (ζi − zi)

and

Q(z,ζ ) =
1

K0ρ(ζ )

n

∑
i=1

Qi(z,ζ )d (ζi − zi) ,

where K0 is a large constant chosen so that

(2.6) ℜe

(

ρ(ζ )+
1

K0
S(z,ζ )

)

<
ρ(ζ )

2
.

Notice that ℜeS≤ χℜeS0 ≤−Cρ(ζ ), by (2.5), so it suffices to take K0 ≥ 2C . Remark also that, if ζ ∈ ∂Ω, (2.5) implies ℜeS(z,ζ )<
0 for z ∈ Ω.

We point out also that Q is not holomorphic in z and that s satisfies

|z− ζ |2 = |〈s,z− ζ 〉| ≤C |z− ζ | , z,ζ ∈ Ω.

Following the construction done in [BA82], with G(ξ ) = 1
ξ

, we obtain two kernels

(2.7) K(z,ζ ) =Cn

n−1

∑
k=0

(n− 1)!
k!

G(k)

(

1
K0ρ(ζ )

S(z,ζ )+ 1

)

s(z,ζ )∧ (dQ)k ∧ (ds)n−k−1

|ζ − z|2(n−k)

and

(2.8) P(z,ζ ) =C′
nG(n)

(

1
K0ρ(ζ )

S(z,ζ )+ 1

)

(dQ)n

giving the following Koppelman formula:

For all (0,q)-form f , with C 1(Ω̄) coefficients, we have, for z ∈ Ω,

(2.9) f (z) =
∫

∂Ω
f (ζ )∧K0(z,ζ )+ (−1)q+1∂z

∫

Ω
f (ζ )∧K1(z,ζ )+ (−1)q

∫

Ω
∂̄ f (ζ )∧K2(z,ζ )−

∫

Ω
f (ζ )∧P(z,ζ )

where K0 (resp. K1, resp. K2, resp. P) is the component of K of be-degree (0,q) in z and (n,n− q− 1) in ζ (resp. (0,q− 1) in z and

(n,n− q) in ζ , resp. (0,q) in z and (n,n− q− 1) in ζ , resp. (0,q) in z and (n,n− q) in ζ ).

Moreover, by definition of S, G(k) (S(z,ζ )+ 1) = ckρ(ζ )k+1
[

1
K0

S(z,ζ )+ρ(ζ )
]k+1 , and, for ζ ∈ ∂Ω, K0(z,ζ ) = 0 so that the first integral in the

Koppelman formula disappears, and if f is ∂̄ -closed (2.9) becomes

(2.10) f (z) = (−1)q+1∂z

∫

Ω
f (ζ )∧K1(z,ζ )− g,
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with

g =

∫

Ω
f (ζ )∧P(z,ζ )

and g is ∂̄ -closed.

To be able to estimate the kernels K1 and P, we need a fundamental estimate for
∣

∣

∣
ρ(ζ )+ 1

K0
S(z,ζ )

∣

∣

∣
.

Lemma 2.1. There exists K0 such that, for ζ ∈ Pi
ε(z) = P2−iε(z)\P2−i−1ε(z), we have:

(1)
∣

∣

∣
ρ(ζ )+ 1

K0
S(z,ζ )

∣

∣

∣
& 2−iε , (z,ζ ) ∈ Ω̄× Ω̄;

(2)
∣

∣

∣

1
K0

S(ζ ,z)
∣

∣

∣
& 2−iε , (z,ζ ) ∈ ∂Ω× Ω̄.

Proof. Clearly (2) is a special case of (1) (because d(z,ζ )≃ d(ζ ,z)). Let us prove (1).
First note that, by (2.5), if z = ζ +w1nζ +w2t,

ℜe

(

ρ(ζ )+
1

K0
S(z,ζ )

)

≤ χ(z,ζ )

[

c1ρ(z)+
1
2

ρ(ζ )

]

− (1− χ(z,ζ )) |z,ζ |2 − c2

n

∑
j=2

∥

∥

∥
P

j

ζ ,t

∥

∥

∥
|w2|

j ,

and then, if |z− ζ |> ε0, ℜe
(

ρ(ζ )+ 1
K0

S(z,ζ )
)

.−c0 (ε0), and it is enough to prove the Lemma for ε < ε0 small enough.

Let us denote ε ′ = 2−i−1ε and let (w1, . . . ,wn) be an ε ′-extremal basis at ζ . Let us write z = ζ +∑n
i=1 λiwi = ζ +λ1w1 + v1 =

ζ +λ1w1 + ‖v1‖v. Remark that, by (2.6), the result is trivial if |ρ(ζ )|& ε ′. Let us suppose |ρ(ζ )| ≪ ε ′.
Let 0 < k0 ≪ 1 be a real number which will be fixed later.
Suppose first that, ∀i ≥ 2, |λi|< k0τi(ζ ,ε

′). Then |λ1|& ε ′ (property (4) of Section 2.1.1), and, as

m

∑
j=2

M2 j

σ j ∑
|α |= j
α1=0

∂ρζ (0)

∂ξ α
ξ α =

m

∑
j=2

M2 j

σ j ∑
|α |= j
α1=0

∂ρ(z)

∂wα |w=0
(λ w)α ,

by (1) of Section 2.1.1, we have
∣

∣

∣

∣

∣

∣

∣

∣

m

∑
j=2

M2 j

σ j ∑
|α |= j
α1=0

∂ρ(z)

∂wα |w=0
(λ w)α

∣

∣

∣

∣

∣

∣

∣

∣

. k2
0ε ′.

Using formula (2.4), this gives
∣

∣

∣

∣

ρ(ζ )+
1

K0
S0(z,ζ )

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

ρ(ζ )+
λ1
(

1−Aζ(z)
)

K0
+

Kλ 2
1

(

1−Aζ(z)
)2

K0

∣

∣

∣

∣

∣

−C1k2
0ε ′

≥

∣

∣

∣

∣

∣

ρ(ζ )+
λ1
(

1−Aζ(z)
)

K0

∣

∣

∣

∣

∣

−C2ε ′
(

k2
0 + ε ′

)

,

the last inequality following the fact that |λ1|. ε ′ (property (4) of Section 2.1.1). As
∣

∣Aζ (z)
∣

∣< 10−1, it follows that
∣

∣

∣

∣

ρ(ζ )+
1

K0
S0(z,ζ )

∣

∣

∣

∣

& ε ′,

if k0 and ε0 are chosen sufficiently small.

We now fix ε0. As ℜe
(

ρ(ζ )+ 1
K0

S0(z,ζ )
)

< 0, we have
∣

∣

∣

∣

ρ(ζ )+
1

K0
S(z,ζ )

∣

∣

∣

∣

& χ(z,ζ )

∣

∣

∣

∣

ρ(ζ )+
1

K0
S0(z,ζ )

∣

∣

∣

∣

+(1− χ(z,ζ )) |z− ζ |2 ,

and the inequality |z− ζ |2 & ‖v1‖
2 & τ(ζ ,v,ε)2 & ε ′ (properties (3) and (5) of Section 2.1.1) proves the Lemma in that case.

Suppose then there exists i ≥ 2 such that |λi| ≥ k0τi(ζ ,ε
′). By (4) of Section 2.1.1, we have ‖v1‖ ≃ τ(ζ ,v,ε ′), and by (2) of

Section 2.1.1, we get (v being tangent to ρ = ρ(ζ ) at ζ )

∑
2≤|α+β |≤m

∣

∣

∣
av

αβ (ζ )
∣

∣

∣
τ(ζ ,v,ε)α+β = ∑

1≤|α+β |≤m

∣

∣

∣
av

αβ (ζ )
∣

∣

∣
τ(ζ ,v,ε)α+β ≃ ε ′,

and (2.5) implies

ℜeS0(z,ζ ) .Cρ(ζ )− c1ε ′,

and we conclude by the same argument on |z− ζ |2. �

Lemma 2.2. If q ≥ 1, all the derivatives, in z, of P(z,ζ ) are uniformly bounded in Ω̄× Ω̄.
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Proof. Recall P(z,ζ ) = cn
ρ(ζ )n+1

(

1
K0

S(z,ζ )+ρ(ζ )
)n+1 (dQ)n. If δ∂Ω(ζ ) > η0/2, this is clear by (2.6). Suppose δ∂Ω(ζ ) ≤ η0/2. If |z− ζ |< R/2

then Q is holomorphic in z and the component of (dQ)n of be-degree (0,q) in z (recall we suppose q ≥ 1) is identically 0 which

implies P = 0. If |z− ζ | ≥ R/2, the preceding Lemmas, give
∣

∣

∣

1
K0

S(z,ζ )+ρ(ζ )
∣

∣

∣
& (R)2m (because, for unitary v, τ(z,v,ε) . ε1/2m),

and the Lemma follows easily. �

Lemma 2.3. For each positive integer s there exists a linear operator Ls and a constant C(s) such that, if g =
∫

Ω f (ζ )∧P(z,ζ ) is

the ∂̄ -closed form of (2.10) there exists a solution vs = Ls(g) to the equation ∂̄vs = g satisfying the estimate

‖vs‖s ≤C(s)‖ f‖L1(Ω) ,

where ‖.‖s denotes the Sobolev norm of index s in Ω.

Proof. This is an immediate consequence of the preceding Lemma and the results on the weighted ∂̄ -Neumann problem obtained by
J. J. Kohn in [Koh73]. �

As explained at the end of the introduction of Section 2 this last Lemma shows that to obtain sharp estimates for solution of
the ∂̄ -equation in lineally convex domains of finite type, like the one stated in Theorem 2.1, it is enough to prove that the form
z 7→

∫

Ω f (ζ )∧K1(z,ζ ) (c.f.(2.10)) is continuous on Ω and that
∥

∥

∥

∥

∫

Ω
f (ζ )∧K1(z,ζ )

∥

∥

∥

∥

L1(∂Ω)

≤C||| f |||k.

This will be done in the next section.

2.3. Proof of Theorem 2.1. By formulas (2.7) and (2.9), we have

K1(z,ζ ) =
n−1

∑
k=n−q

C′
k

ρ(ζ )k+1s∧
(

∂ζ̄ Q
)n−q

∧ (∂z̄Q)k+q−n ∧ (∂z̄s)
n−k−1

|z− ζ |2(n−k)
(

1
K0

S(z,ζ )+ρ(ζ )
)k+1 .

A priory, formula (2.9) is only valid for z ∈ Ω. But, as noted by H. Skoda in [Sko76], the form
∫

Ω
f (ζ )∧K1(z,ζ )

is continuous in Ω̄ if the kernel K1 satisfies a condition of uniform integrability:

(2.11)
∫

Ω∩Pε (z)

∣

∣K1(z,ζ )
∣

∣dV (ζ ) = O
(

ε
1/m

)

,

uniformly for z satisfying δ∂Ω(z)≤ ε and ε small enough.
Under these hypothesis (ζ ∈ Pε(z)), Q(z,ζ ) = 1

K0ρ(ζ ) ∑n
i=1 Qi(z,ζ )d (ζi − zi) is holomorphic in z and K1 is reduced to

K1(z,ζ ) = c
ρ(ζ )n−q+1s∧

(

∂ζ̄ Q
)n−q

∧ (∂z̄s)
q−1

|z− ζ |2q
(

1
K0

S(z,ζ )+ρ(ζ )
)n−q+1 .

To prove (2.11), we use the coordinate system (ζ1, . . . ,ζn) associated to the (z,δ∂Ω(z))-extremal basis and the following estimates:

Lemma 2.4. For z close to ∂Ω, ε small and ζ ∈ Pε(z), we have:

(1)
∣

∣

∣

∂ρ
∂ζi

(ζ )
∣

∣

∣
. ε

τi(z,ε)
((1) of Section 2.1.1);

(2) |Qi(z,ζ )|+ |Qi(ζ ,z)| .
ε

τi(z,ε)
(see [DF06]);

(3)

∣

∣

∣

∣

∂Qi(z,ζ )

∂ζ j
. ε

τi(z,ε)τ j(z,ε)

∣

∣

∣

∣

(see [DF06]).

A straightforward calculus shows that

(

∂ζ̄ Q
)n−q

=

(

1
ρ(ζ )

)n−q

∑
′

I=(i1,...,in−q)
J=( j1,..., jn−q)

n−q

∏
k=1

∂Qik(z,ζ )

∂ζ jk

∧

i∈I

dζi

∧

j∈J

dζ j ±

±

(

1
ρ(ζ )

)n−q+1

∑
′

I=(i1,...,in−q)
J=( j1,..., jn−q)

∑
k0∈{1,...,n−q}

∂ρ(ζ )

∂ζ jk0

Qik0
(z,ζ ) ∏

1≤k≤n−q
k 6=k0

∂Qik (z,ζ )

∂ζ jk

∧

i∈I

dζi

∧

j∈J

dζ j,

where ∑
′

means that the ir (resp. jr) are all different.
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Suppose ζ ∈ P0
ε = Pε(z) \Pε/2(z). Then, by Lemma 2.1, |z− ζ |2q

(

1
K0

S(z,ζ )+ρ(ζ )
)n−q+1

& εn−q+1 |z− ζ |2q, and, by Lemma

2.4,
∣

∣K1(z,ζ )
∣

∣ . ∑
′

I=(i1,...,in−q)
J=( j1,..., jn−q)

(ρ(ζ )+ ε)εn−q

∏
n−q

k=1 τik τ jk εn−q+1 |z− ζ |2q−1

. ∑
′

I=(i1,...,in−q)
J=( j1,..., jn−q)

1

∏
n−q

k=1 τik τ jk |z− ζ |2q−1 ,

because δ∂Ω(z)< ε and using (1) of Section 2.1.1.
The τi being supposed ordered increasingly, it is easy to see that

∫

P0
ε

1

|z− ζ |2q−1 .

∫

P0
ε

1

|z− ζ |2q−1 + ε2q−1
. τn−q+1(z,ε)

n−q

∏
i=1

τ2
i (z,ε),

and we obtain
∫

P0
ε

∣

∣K1(z,ζ )
∣

∣ dV (ζ ). τn−q+1(z,ε) = O
(

ε
1/m

)

,

and, if we denote Pi
ε = Pi

ε(z) = P
(

z,2−iε
)

\P
(

z,2−(i+1)ε
)

,

∫

Pε

∣

∣K1(z,ζ )
∣

∣ dV (ζ ) =
∞

∑
i=0

∫

Pi
ε

∣

∣K1(z,ζ )
∣

∣ dV (ζ ).
∞

∑
i=0

O
(

(

ε2−i
)1/m
)

= O
(

ε1/m

)

,

which ends the proof of (2.11).

To finish the proof of Theorem 2.1, by Fubini’s Theorem, we have to prove that
∫

∂Ω

∣

∣K1(z,ζ )∧ f (ζ )
∣

∣ dσ(z). ‖ f (ζ )‖k ,

and, by Lemma 2.1, it is enough to see that, for ζ near the boundary and η small enough (to have the reduced form of K1),
∫

∂Ω∩Pη (ζ )

∣

∣K1(z,ζ )∧ f (ζ )
∣

∣ dσ(z). ‖ f (ζ )‖k .

To see it, let us denote ε = δ∂Ω(ζ ), Q0
ε(ζ ) = Pε(ζ ) and Qi

ε(ζ ) = P2iε (ζ )\P2i−1ε(ζ ), i ≥ 1, and let us estimate
∫

∂Ω∩Qi
ε (ζ )

∣

∣K1(z,ζ )∧ f (ζ )
∣

∣ dσ(z)

using the coordinate system associated to the
(

ζ ,2iε
)

-extremal basis. By the properties of the norm ‖.‖k it is enough to prove

the estimate when the form f is (in the extremal coordinate system) f =
(

dζ
)I

, with |I| = q. Then, denoting I = (i1, . . . , iq) and

J = ( j1, . . . , jn−q), I∪ J = {1, . . . ,n}, K1(z,ζ )∧ f (ζ ) is a sum of expressions of the form Wi
D

, i = 1,2, with

D(ζ ,z) = |z− ζ |2q

(

1
K0

S(z,ζ )+ρ(ζ )

)n−q+1

and

W1 = (ζm − zm)ρ(α)
n−q

∏
k=1

∂Qik(z,ζ )

∂ζ jk

n
∧

i=1

(

dζi ∧dζi

)

∧

l∈L
|L|=q−1

dzl

and, if 1 /∈ I,

W2 = (ζm − zm)
∂ρ(ζ )

∂ζ1
Qik0

(ζ ,z) ∏
1≤k≤n−q

k 6=k0

∂Qik(z,ζ )

∂ζ jk

n
∧

i=1

(

dζi ∧dζi

)

∧

l∈L
|L|=q−1

dzl .

Now, remarking that
∫

Qi
ε (ζ )∩∂Ω

dσ(z)

|ζ − z|2q−1 . 2iετn−q+1
(

ζ ,2iε
)

n−q

∏
i=2

τ2
i

(

ζ ,2iε
)

,

we get, using property (5) of Section 2.1.1,
∫

Qi
ε (ζ )∩∂Ω

∣

∣

∣

∣

W1(ζ ,z)

D(ζ ,z)
∧ f (ζ )

∣

∣

∣

∣

dσ(z).
ρ(ζ )

2iε
min
j∈I

τ j

(

ζ ,2iε
)

2iε
.

ρ(ζ )

2iε
min
j∈I

τ j(ζ ,ε)

ε
. min

j∈I

τ j (ζ ,δ∂Ω(ζ ))

2iδ∂Ω(ζ )

and, because 1 /∈ I,
∫

Qi
ε (ζ )∩∂Ω

∣

∣

∣

∣

W2(ζ ,z)

D(ζ ,z)
∧ f (ζ )

∣

∣

∣

∣

dσ(z). min
j∈I

τ j

(

ζ ,2iε
)

2iε
. min

j∈I

τ j(ζ ,δ∂Ω(ζ ))

2i/2δ∂Ω(ζ )
,

and the proof is complete.
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3. NONISOTROPIC ESTIMATES OF CLOSED POSITIVE CURRENTS ON GEOMETRICALLY SEPARATED DOMAINS

In this Section, Ω is a pseudo-convex domain in Cn with C ∞ boundary which is geometrically separated at a point p0 ∈ ∂Ω. To
state the main result of this Section we fix some notations.

We denote by ρ a defining function of Ω and N = 1
|∇ρ |2

∑i
∂ρ
∂ zi

dzi the unit normal defined in a neighborhood U of ∂Ω. Recall

(see [CD08]) that the hypothesis made on Ω means that there exists a constant K > 0, a neighborhood V = V (p0) ⊂ U of p0 and
a (n− 1)-dimensional complex vector space E0 of (1,0)-vector fields C ∞ in V , tangent to ρ (i.e. L(ρ) ≡ 0 in V for L ∈ E0) such
that, at every point p of V ∩Ω and for every 0 < δ < δ0 there exists a (K, p,δ ))-extremal (or (p,δ )-extremal) basis whose elements
belong to E0. We will denote by E1 the complex vector space generated by E0 and N.

For L ∈ E1, 0 < ε < δ0 and z ∈V ∩Ω, in [CD08] we defined the weight F(L,z,ε) as follows:
If L = Lτ + anN, the weight is defined by

F(L,z,ε) = ∑
L ∈LM(L)

∣

∣

∣

∣

L (∂ρ)(z)

ε

∣

∣

∣

∣

2/|L |

+
|an|

2

ε2 ,

where M is an integer larger than the type, LM(L) denotes the set of lists
(

L1, . . .Lk
)

, of length k ≤ M, L j ∈
{

Lτ ,Lτ

}

, and

L (∂ρ)(z) = L1 . . .Lk−2
(〈

∂ρ ,
[

Lk−1,Lk
]〉)

(z).

Remark. To keep the same notations as in [CD08], the normal is denoted by Ln in opposite of the preceding Section where it was
denoted by L1.

Now we denote τ (L,z,ε) = F (L,z,ε)−
1/2. If v is any non zero vector in Cn, and z ∈ V ∩Ω, there exists a unique vector field

L = Lz in E1 such that L(z) = v. Then we denote

τ (z,v,ε) = τ (L,z,ε) and k (z,v,ε) =
δ∂Ω(z)

τ (z,v,ε)
,

where δ∂Ω(z) is the distance from z to the boundary of Ω. When ε = δ∂Ω(z) we denote τ (z,v) = τ (z,v,δ∂Ω(z)) and k (z,v) =
k (z,v,δ∂Ω(z)).

To simplify the exposition, we will also use the following terminology. For each point z ∈V ∩Ω and each 0 < δ ≤ δ0, if (vi)1≤i≤n

is a basis of Cn such that vn = N(z) and (Li)1≤i≤n−1 (Li ∈ E0) is a (z,δ )-extremal basis such that Li(z) = vi we will say that (vi)1≤i≤n

is a (z,δ )-extremal basis.
Suppose now that Θ is a C ∞ (1,1)-form defined in V ∩Ω. Then, following [BCD98], we define, for z ∈V ∩Ω,

‖Θ(z)‖k = ‖Θ(z)‖p0
k

= sup
u,v∈C∗

|Θ(z)(u,v)|

k(z,u)k(z,v)

and

‖Θ(z)‖E = sup
u,v∈C∗

|Θ(z)(u,v)|

‖u‖‖v‖
,

where ‖.‖ denotes the euclidean norm.
Similarly, with the above notations, we extend the notations defined in formulas (2.2) and (2.3) for (0,q)-forms to forms defined

in a geometrically separated domain.
The aim of the Section is to prove the following result:

Theorem 3.1. Let Ω be a pseudo-convex domain in Cn which is geometrically separated at a boundary point p0. Then there exist

two neighborhoods V and W ⊂V of p0 and a constant C > 0 such that, if Θ is a smooth positive closed (1,1)-form defined in V then
∫

W
δ∂Ω(z)‖Θ(z)‖k dV (z)≤C

∫

V
δ∂Ω(z)‖Θ(z)‖E dV (z).

If Ω is a bounded pseudo-convex domain which is geometrically separated at every point of it’s boundary, we choose a finite
number of points pi, 1 ≤ i ≤ N, in ∂Ω such that the set of the neighborhoods Vi = V (pi) is a covering V of ∂Ω, V0 = Ω \

⋃

i≥1 Vi,
and we define

‖Θ(z)‖V

k = max
z∈Vi

‖Θ(z)‖i
k ,

where, ‖Θ(z)‖i
k = ‖Θ(z)‖pi

k if i ≥ 1 and ‖Θ(z)‖0
k = ‖Θ(z)‖E .

With this notation, the local result immediately implies a global one:

Theorem 3.2. If Ω is a pseudo-convex domain in C
n which is geometrically separated at every point of it’s boundary, a covering V

of ∂Ω being chosen, there exists a constant C > 0 such that
∫

Ω
δ∂Ω(z)‖Θ(z)‖V

k dV (z)≤C

∫

Ω
δ∂Ω(z)‖Θ(z)‖E dV(z)

for all smooth closed positive (1,1)-form Θ in Ω.
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In fact the two statements are equivalent. In [CD08] it is proved that if Ω is geometrically separated at p0 ∈ ∂Ω then there
exists a bounded pseudo-convex domain D with C ∞ boundary contained in Ω which is geometrically separated at every point of it’s
boundary and whose boundary contains a neighborhood of p0 in the boundary of Ω. Thus, Theorem 3.1 for Ω follows immediately
Theorem 3.2.

We now prove the Theorems. As it is very similar to the proof of the same result for convex domains given in Section 2 of
[BCD98], we will refer to that paper for many details. Precisely, we will only give the mains articulations and the proof of Lemmas
where the differences due to the fact that the weights F are defined with vector fields instead of coordinates systems are relevant.

We still use the previous notations for the defining function ρ of Ω, the point p0 ∈ ∂Ω, the neighborhood V of p0 and W a
neighborhood of p0 relatively compact in V .

In Section 3.3 of [CD08] it is shown that there exists a (z,ε)-adapted coordinate system (ξi)i used, in particular, to define
“polydiscs” centered at the point z by

Pε(z) = P(z,ε) = {q = (ξi)i such that |ξi| ≤ cτ(z,vi,ε)} ,

where vi = Li(z), 1≤ i ≤ n, (Li)1≤i≤n being the (z,ε)-extremal basis, and c a sufficiently small constant (depending on Ω). Moreover,
the set of these polydiscs are associated to a pseudo-distance. With these notations we have

Lemma 3.1. For z ∈V ∩Ω and v ∈ C
n, v 6= 0, if w ∈ Pε(z) we have τ(w,v,ε) ≃ τ(z,v,ε).

Proof. Let Lz (resp. Lw) the vector field belonging to E1 such that Lz(z) = v (resp. Lw(w) = v). Let (Li)1≤i≤n be the (z,ε)-extremal
basis and let us write Lz = ∑n

i=1 biLi and Lw = ∑n
i=1 b′iLi, bi, b′i ∈ C. If (ξi)1≤i≤n is the (z,ε)-adapted coordinate system let us write

L j(.) = ∑i ai
j(.)

∂
∂ξi

, with ai
j(z) = δ

j
i so that

Lz(z) =
n

∑
i=1

bi

∂

∂ξi
and Lw(w) =

n

∑
i=1

(

n

∑
j=1

b′ja
i
j(w)

)

∂

∂ξi
.

In [CD08] we proved (Proposition 3.6) that,if w ∈ Pε(z),
∣

∣ai
j(w)

∣

∣. F
1/2

j (z,ε)F
−1/2

i (z,ε).

The basis (Li) being (z,ε)-extremal we have immediately that F(Lz,z,ε) ≃ F(Lw,z,ε), and, using another time Proposition 3.6
of [CD08], that F(Lw,z,ε) ≃ F(Lw,w,ε) finishing the proof of the Lemma. �

The proof of the Theorems is done in three steps.

First step: definition of a family of polydiscs. As the polydiscs Pε(z) are associated to a pseudodistance, there exists a constant
M such that, for δ and ε sufficiently small, there exists points zi, 1 ≤ i ≤ n(δ ,ε) belonging to the set {ρ =−δ} such that, if
Sδ ,ε(z) = Sε(z) = Pε(z)∩{ρ =−δ} and S∗δ ,ε(z) = S∗ε(z) = 2Pε(z)∩{ρ =−δ} then

(1) {Sε(zi)}i is a covering of W ∩{ρ =−δ};
(2) for all i, S∗ε(zi) is contained in V ∩{ρ =−δ};
(3) for all z ∈ {ρ =−δ}, there exist at most M index i such that r ∈ S∗ε(zi).

Let α ∈ ]0,1[ be a parameter that will be fixed later. For ρ = αk, k ≥ k0, let
(

zk
i

)

1≤i≤nk
be a family of points satisfying these

properties for δ = αk and ε = αk/2. The family
⋃

k≥k0

{

zk
i , 1 ≤ i ≤ nk

}

will be denoted by (zi)i.
For z close enough to ∂Ω and δ > 0 sufficiently small, let πδ (z) denote the point where the integral curve of ∇ρ passing through z

meets the set {ρ =−δ}. V being small enough, πδ is C ∞ in V and any finite number of derivatives of πδ is bounded independently
of δ .

For all z j belonging to (zi)i, if −ρ(z j) = αk we set S j = Sαk/2
(z j), S∗j = S∗

αk/2
(z j),

Q j =
{

w ∈ Ω such that αk ≥−ρ(w)≥ αk+1, πδ (w) ∈ S j

}

,

and
Q∗

j =
{

w ∈ Ω such that αk−1 ≥−ρ(w)≥ αk+2, πδ (w) ∈ S∗j

}

.

We suppose k0 chosen sufficiently large so that
⋃

j Q∗
j ⊂V . Moreover, note that there exist at most 4M index j such that z ∈ Q∗

j .

Second step: some estimates related to the radius τi.

Lemma 3.2. Let z ∈V ∩Ω, v ∈Cn, v 6= 0, and m an integer larger than the type of p0.

(1) If ε1 ≥ ε2,
(

ε1
ε2

)1/2

τ (z,v,ε2)& τ (z,v,ε1)&
(

ε1
ε2

)1/m

τ (z,v,ε2) .

(2) If v = ∑n
i=1 wiLi(z), where (Li, 1 ≤ i ≤ n) is the (z,ε)-extremal basis, then

n

∑
i=1

|wi|k (z,vi,ε)≃ k (z,v,ε) .

Lemma 3.3. If z = πδ (w), then

(1) if δ∂Ω(w)≤ δ∂Ω(z), τ(z,v)
(

δ∂ Ω(w)
δ∂ Ω(z)

)1/2

. τ(w,v) . τ(z,v)
(

δ∂ Ω(w)
δ∂ Ω(z)

)1/m

,
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(2) if δ∂Ω(w)≥ δ∂Ω(z), τ(z,v)
(

δ∂ Ω(w)
δ∂ Ω(z)

)1/m

. τ(w,v) . τ(z,v)
(

δ∂ Ω(w)
δ∂ Ω(z)

)1/2

.

Proof. We only need to prove 1., and, by Lemma 3.2 (1), it is enough to prove that

τ (z,v,δ∂ Ω(z)/2)≃ τ (w,v,δ∂ Ω(z)/2) .

This follows the fact that, if Lz = ∑i aiL
0
i and Lw = ∑i biL

0
i are so that Lz(z) = Lw(w) = v, then Lz = Lw +O(δ∂Ω(z)), and, thus

F (Lz,z,δ∂ Ω(z)/2) = F (Lw,z,δ∂ Ω(z)/2)+O(1) and F (Lw,w,δ∂ Ω(z)/2) = F (Lw,z,δ∂ Ω(z)/2)+O(1). �

Lemma 3.4. If (vi)1≤i≤n is a (z j,δ∂ Ω(z j)/2)-extremal basis then, for w ∈ S∗j , supu,v
|Θ(w)(u,v)|

k(z j ,u)k(z j ,v)
≃ ∑n

l=1
Θ(w)(vl ,vl)

k(z j ,vl)
2 .

Proof. The proof is exactly the same as in [BCD98]. It follows Lemma 3.2 (2) and Cauchy-Schwarz inequality. �

Lemma 3.5. Let w be a point in Q∗
j and (w̃i)i be the coordinates of π−ρ(z j)(w) in the (z j ,δ∂ Ω(z j)/2)-adapted coordinate system

(

zi
j

)

i
.

Then
∣

∣

∣

∣

∣

∂ w̃r

∂ zl
j

(w)

∣

∣

∣

∣

∣

.
τ(z j ,vr)

τ(z jvl)
, r ≤ n− 1, l ≤ n,

where (vi)1≤i≤n is (z j,δ∂ Ω(z j)/2)-extremal, and
∣

∣

∣

∣

∣

∂ℑm(w̃n)

∂ zl
j

∣

∣

∣

∣

∣

.
δ∂Ω(z j)

τ(z j ,vl)
,

the constants depending on Ω and α .

Proof. As in [BCD98], the proof is reduced to the case where ρ(w) = ρ(z j), then one consider a (w,δ∂ Ω(z j)/2)-extremal basis and
uses Lemma 3.1. �

Third step: proof of Theorem 4.1 and Theorem 3.2. Let ϕ0 be a C ∞ function supported in [−2,2] and identically equal to 1 in [−1,1],
0 ≤ ϕ0 ≤ 1. Let Ψ = Ψα be a C 1 function supported in

[

α2,α−1
]

equal to 1 on [α,1], 0 ≤ Ψ ≤ 1.
With the notations of Lemma 3.5 we define, for w ∈ Q∗

j ,

ϕ(w) = Ψα

(

δ∂Ω(w)

δ∂Ω(z j)

)

ϕ0

(

|ℑm(w̃n)|

τ(z j ,vn)

)

n

∏
i=2

ϕ0

(

|w̃i|

τ(z j,vi)

)

.

Applying Stokes’s formula to the form (−ρ)
2/m ϕΘ∧ηl , where ηl = in−1dzn

j

∧n−1
r=1
r 6=l

dzr
j ∧ dzr

j, on Ω, using the previous Lemmas

and a convenient function Ψα (see [BCD98, CD97]), for all α > 0, the calculus made p. 404-408 in [BCD98] leads to the following
estimate

∫

Q j

δ∂Ω(w)‖Θ(w)‖k dV (w) ≤ [β (α)+O(diam(Q j)/α + εC(α)]

∫

Q∗
j

δ∂Ω(w)‖Θ(w)‖k dV (w)

+C(ε)C(α)

∫

Q∗
j

δ∂Ω(w)‖Θ(w)‖E dV (w),

with limα→0 β (α) = 0.
To finish the proof of the Theorems choose points pi, 0 ≤ i ≤ N such that the neighborhood V0(pi) is a covering of ∂Ω. Then

choosing α small enough so that β (α)MN is small, then ε small enough so that εC(α)MN is small and finally k0 large enough so
that O(diam(Q j)/α is small, we get a δ0 > 0 such that

∫

W∩{δ∂ Ω(w)≤δ0}
δ∂Ω(w)‖Θ(w)‖k dV (w) .

∫

V
δ∂Ω(w)‖Θ(w)‖E dV (w)

and
∫

Ω∩{δ∂ Ω(w)≤δ0}
δ∂Ω(w)‖Θ(w)‖k dV (w).

∫

Ω
δ∂Ω(w)‖Θ(w)‖E dV (w)

which proves the Theorems. �

4. NON ISOTROPIC ESTIMATES FOR THE d-OPERATOR FOR GEOMETRICALLY SEPARATED DOMAINS

Theorem 4.1. Let Ω be a pseudo-convex domain in Cn which is geometrically separated at a boundary point p0. Then there exist

two neighborhoods of p0, W ⋐ V such that there exists a constant C > 0 such that, for any smooth closed (1,1)-form Θ in V , there

exists a smooth solution w of the equation dw = Θ satisfying the following estimate
∫

W
‖w‖k dV ≤C

∫

W
δ∂Ω(z)‖Θ(z)‖k dV (z).

The proof of this result is quite standard and we will just adapt the proof made in Section 3 of [BCD98].
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Proof. We choose for V a neighborhood contained in the neighborhood V (p0) defined in Section 3 and sufficiently small so that
there exists a neighborhoodW ⋐V of p0 and a point P ∈V such that there exists an open set U ⊂ Ω containing (W ∩Ω)∪{P} which
is starshaped with respect to P. Solving the equation dw = Θ in U , we can assume, without loss of generality, that the support of Θ
does not contain P. By translation, we can also assume that P is the origin in Cn.

Now, for z ∈W ∩Ω, Mt : z 7→ tz being the homotopy between 0 and z, Poincaré’s formula

w =

∫ 1

0
M∗

t (izt (Θ))dt,

where izt (Θ) denotes the inner contraction of Θ with the field Zt =
z
t

and M∗
t the pull-back operator, gives a solution w of the equation

dw = Θ in W ∩Ω.
To finish the proof, we have to estimate this solution, and, for this, following the calculus made in [BCD98] p. 409, we only have

to verify the following Lemma:

Lemma. There exists a constant α > 0 such that, for 0 ≤ t ≤ 1 and v ∈ C∗,

τ (tz, tv,δ∂Ω(tz)/2)≥ α

(

δ∂Ω(tz)

δ∂Ω(z)

)1/m

τ (z,v,δ∂Ω(z)/2) .

Proof of the Lemma. By definition of the polydiscs, there exists a constant K (depending only on c) such that z ∈ PKδ∂ Ω(tz)(tz). Then,
by Lemma 3.1, τ (tz, tv,Kδ∂Ω(tz))≃ τ (z, tv,Kδ∂Ω(tz)), and thus τ (tz, tv,δ∂Ω(tz)/2)≃K τ (z, tv,δ∂Ω(tz))≥ τ (z,v,δ∂Ω(tz)), because
t ≤ 1, and the Lemma follows Lemma 3.2. �

�

From Theorem 4.1 the following global result is easily deduced:

Theorem 4.2. Let Ω be a bounded pseudo-convex domain in Cn which is geometrically separated at every point of it’s boundary.

There exists a constant C > 0 such that, for any smooth closed (1,1)-form Θ in Ω whose cohomology class in H2(Ω,C) is 0, there

exists a smooth solution of the equation dw = Θ in Ω satisfying

|||w|||k ≤C|||Θ|||k.

Here, the |||.|||k norm of a smooth (1,1)-form Θ is defined using the covering Vi defined before the statement of Theorem 3.2:

|||Θ|||k =
N

∑
i=0

∫

Vi

(

sup
u,v∈C∗

|〈Θ;u,v〉|

ki(z,u)ki(z,v)

)

δ∂Ω(z)dV (z),

with k0(z,u) = k0(z,v) = 1.

5. CHARACTERIZATION OF THE ZERO-SETS OF THE FUNCTIONS OF THE NEVANLINNA CLASS FOR LINEALLY CONVEX

DOMAINS OF FINITE TYPE

It is a well-known fact that if X is the zero-set of a function f of the Nevanlinna class N(Ω), then it satisfies the Blaschke
condition: if Xk are the irreducible components of X and nk the multiplicity of f on Xk, then

∑
k

nk

∫

Xk

δ∂Ω dµk <+∞,

where µk is the Euclidean measure on the regular part of Xk. Classically the data {Xk,nk} is called a divisor.
If Θ is the (1,1)-positive current classically associated to the divisor {Xk,nk}, this condition is

∫

Ω
δ∂Ωd

(

∑
j,k

∣

∣Θ j,k

∣

∣

)

<+∞.

For more details we refer to [BCD98].
To prove Theorem 1.1, Ω satisfying automatically some topological condition, by a standard regularization process, it is sufficient

to prove that there exists a constant C > 0 such that if Θ is a (1,1)-closed positive current, C ∞ in Ω̄, there exists a function u in Ω̄

solution of the equation i∂ ∂̄ u = Θ satisfying the estimate
∫

∂Ω
|u| dσ ≤C

∫

Ω
δ∂Ω ‖Θ‖E .

For details see [BCD98] and [Sko76].
As usual, the main part of the proof is done in two steps: resolution of the d-equation and, then, resolution of the ∂̄ -equation. The

second step is done in Section 2. For the first one we use the results of Sections 3 and 4. As this two Sections are written for general
geometrically separated domains and in a local context, we give some precisions (see also [Con02]).
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5.1. Non isotropic estimates on closed positive currents in lineally convex domains. Ω being lineally convex of finite type it
is completely geometrically separated ([CD08]). On the other hand, the proof of the Corollary at the beginning of Section 7.1 of
[CD08] shows that the radius τ(z,v,ε) defined for general geometrically separated domains are equivalents to the ones defined by
M. Conrad in [Con02] (and used in Section 2)

Then, the norm ‖Θ(z)‖ν
k used in Theorem 3.2 is equivalent to the norm ‖Θ(z)‖k defined with the radius τi of [Con02] (and is

independent of ν). Thus, Theorem 3.2 means that there exists a constant C1 such that
∫

Ω
δ∂Ω(z)‖Θ(z)‖k dV ≤C1

∫

Ω
δ∂Ω(z)‖Θ(z)‖E dV.

5.2. Resolution of the d equation in lineally convex domains. As Ω is lineally convex we have H2(Ω,C) = 0 (see for example
[Con02]). Thus, by Theorem 4.2 there exists a smooth form w such that dw = Θ in Ω and

∫

Ω ‖w(z)‖k ≤C2
∫

Ω δ∂Ω(z)‖Θ(z)‖k dV .

6. REMARKS

The method of resolution of the equation ∂̄u = f presented in Section 2 can be used to obtain various other estimates.
For example, the estimates obtained for convex domains of finite type in [Cum01a, DFF99, Fis04, Hef04, Ale05, Ale06] can be

proved for lineally convex domains using our method (see also [DF06]).
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