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ESTIMATES FOR SOLUTIONS OF THE ∂̄ -EQUATION AND APPLICATION TO THE CHARACTERIZATION OF
THE ZERO VARIETIES OF THE FUNCTIONS OF THE NEVANLINNA CLASS F OR LINEALLY CONVEX

DOMAINS OF FINITE TYPE

PHILIPPE CHARPENTIER, YVES DUPAIN & MODI MOUNKAILA

ABSTRACT. In the late ten years, the resolution of the equation∂̄u= f with sharp estimates has been intensively studied for convex domains
of finite type inCn by many authors. Generally they used kernels constructed with holomorphic support function satisfying “good” global
estimates. In this paper, we consider the case of lineally convex domains. Unfortunately, the method used to obtain global estimates for the
support function cannot be carried out in that case. Then we use a kernel that does not gives directly a solution of the∂̄ -equation but only a
representation formula which allows us to end the resolution of the equation using Kohn’sL2 theory.

As an application we give the characterization of the zero sets of the functions of the Nevanlinna class for lineally convex domains of finite
type.

1. INTRODUCTION

The general notion of extremal basis and the class of “geometrically separated” domains has been introduced in [CD08]. For
such domains it is proved that if there exist “good” plurisubharmonic functions, in which case the domains are called “completely
geometrically separated”, then sharp estimates on the Bergman and Szegö projections and on the classical invariants metrics can be
obtained.

Moreover, using the description of the complex geometry of lineally convex domains of finite type initiated in [Con02] and the
construction of a local support function described in [DF03], it is shown, already in [CD08], that every lineally convexdomain of
finite type is completely geometrically separated.

The present paper is a continuation of the study of complex analysis in such domains. We are now interested in the problem of the
characterization of the zero sets of functions in the Nevanlinna class. The main result obtained concerns the class of lineally convex
domains of finite type and generalizes the results obtained in the case of convex domains ([BCD98, Cum01b, DM01]):

Theorem 1.1. Let Ω be a bounded lineally convex domain of finite type inCn with smooth boundary. Then a divisor inΩ can be
defined by a function of the Nevanlinna class ofΩ if and only if it satisfies the Blaschke condition.

The general scheme of the proof is identical to the one used inthe convex case and consists in three steps. First, for the general
case of geometrically separated domains, we prove some “Malliavin conditions” on closed positive(1,1)-currentsΘ and then we
solve the equationdw= Θ with good estimates. The third step, which solves the∂̄ -equation withL1 estimates on the boundary, is
only done in the case of lineally convex domains of finite type:

Theorem 1.2. Let Ω be a bounded lineally convex domain of finite type inCn with smooth boundary. Let f be a(0,q)-form in Ω,
1≤ q≤ n−1, whose coefficients are measure and which is∂̄ -closed. Then if||| f |||k <+∞ (see section 2.1, formula(2.3)) there exists
a solution of the equation∂bu= f , in the sense of[Sko76], in L1(∂Ω).

2. SOLUTIONS FOR THE∂̄ -EQUATION FOR LINEALLY CONVEX DOMAINS OF FINITE TYPE

First of all, we recall the definition of lineally convex domain:

Definition 2.1. A domainΩ in Cn, with smooth boundary is said to be lineally convex at a pointp∈ ∂Ω if there exists a neighborhood
W of p such that, for all pointz∈ ∂Ω∩W,

(

z+T10
z

)

∩ (D∩W) = /0,

whereT10
z is the holomorphic tangent space to∂Ω at the pointz.

Furthermore, we always suppose that∂Ω is of finite type at every point of∂Ω∩W. ShrinkingW if necessary, we may assume
that there exists aC ∞defining functionρ for Ω and a numberη0 > 0 such that∇ρ(z) 6= 0 at every point ofW and the level sets
{z∈W such thatρ(z) = η}, −η0 ≤ η ≤ η0, are lineally convex of finite type.

As we want to obtain global results, we need these propertiesat every boundary point. Thus, in all our work, by “lineally convex
domain” we mean a bounded smooth domain having a (global) defining function satisfying the previous hypothesis at every point of
∂Ω.

In section 2.1 we define a punctual anisotropic norm for forms, ‖.‖k, related to the geometry of the domain (formula (2.2)). With
this notation, the main goal of this Section is to prove the following theorem:
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Theorem 2.1. Let Ω be a smooth bounded lineally convex domain of finite type inCn. Then there exists a constant C> 0 such that,
for any smooth̄∂ -closed(0,q)-form f ,1≤ q≤ n−1, onΩ there exists a smooth solution u of the equation∂ u= f such that

∫

∂Ω
|u(z)|dσ(z)≤C

∫

Ω
‖ f (z)‖k dV(z).

We can already notice that, by a very standard regularization procedure (see [Sko76] for example) using (5) of section 2.1.1,
Theorem 1.2 is a consequence of Theorem 2.1.

Except for the case of finite type domains inC2 where such an estimate was proved by D. C. Chang, A. Nagel and E. M. Stein
([CNS92]) for the∂̄ -Neumann problem, this kind of result was always proved using explicit kernels solving thē∂ -equation. The first
result was obtained, independently, by H. Skoda and G. M. Henkin for strictly pseudo-convex domains ([Sko76, Hen75]). Afterward,
some generalizations to special pseudo-convex domains of finite type (in dimensionn≥ 3) were obtained by several authors. For
example, the case of complex ellipsoids was obtained by A. Bonami and Ph. Charpentier ([BC82]), and, probably the most notable
result, the case of convex domains of finite type by J. Bruna, Ph. Charpentier & Y. Dupain, A. Cumenge and K. Diederich & E.
Mazzilli ([BCD98, Cum01b, DM01]).

Here, we consider the more general case of lineally convex domains of finite type. Our starting point is similar to the one used in
[Cum01b] and [DM01]. We try to construct a kernel solving the∂̄ -equation following the method described in the classical paper of
B. Berndtsson and M. Andersson [BA82]. Such kernel is constructed using two forms,s(z,ζ ) andQ(z,ζ ) satisfying some conditions.
In particularQ(z,ζ ) is supposed to be holomorphic inz. In many works using these constructions, the formss andQ (or only Q)
are constructed using a holomorphic support function for the domain. In the case of lineally convex domains of finite typesuch
support functions have been constructed by K. Diederich andJ. E. Fornaess in [DF03]. Let us denote byS0 = ∑Q0

i (z,ζ )(zi − ζi) this
support function. If we want to useS0 to definesand/orQ, a problem appears immediately: some precise global estimates ofS0 are
necessary since this function appears in the denominators of the kernels, and Diederich and Fornaess result gives only local estimates
(i.e. when the two pointsz andζ are close and close to the boundary of the domain). This problem has been noticed previously in
the case of convex domains by W. Alexandre in [Ale01] where a modification of the support function is done. Unfortunately,this
modification cannot apply for lineally convex domains, the convexity being strongly used to solve a division problem with estimates.
Another way to construct a kernel without support function,introduced by A. Cumenge for convex domains in [Cum01b], is to use
the Bergman kernel with the estimates obtained in [McN94]. These needed estimates on the Bergman kernel have been obtained
for lineally convex domains in [CD08] but, once again, the method cannot be carried out for lineally convex domains for the same
reason.

Thus we start with the method of Berndtsson and Andersson with Q constructed withS0, but the formQ being holomorphic in
z only when the two pointsz andζ are close (and close to the boundary). Then the constructiondoes not give a kernel solving the
∂̄ -equation but a representation formula of the following form: if f is a(0,q)-form smooth inΩ̄, there exist kernelsK(z,ζ ), K1(z,ζ )
andP(z,ζ ) such that

f (z) = ∂̄
(

∫

Ω
f (ζ )∧K(z,ζ )

)

+

∫

Ω
∂̄ f (ζ )∧K1(z,ζ )+

∫

Ω
f (ζ )∧P(z,ζ ).

In this formula one important point is that, by construction, the kernelP is C ∞ (Ω̄× Ω̄
)

. If f is ∂̄ -closed then the formg =
∫

Ω f (ζ )∧P(z,ζ ) is also∂̄ -closed, and, by the regularity ofP, for all integerr, the Sobolev norm‖g‖Wr of orderr is controlled
by Cr ‖ f‖L1(Ω). Then, using Kohn’s theory ([Koh73]), it is possible to solve the equation̄∂v = g with an estimate of the form

‖v‖Wr ≤Cr ‖ f‖L1(Ω). Finally, to obtain a solution of the equation̄∂u= f with the desired estimate it suffices to estimate the integral
∫

Ω f (ζ )∧K(z,ζ ) which can be done, as we will see, using only the local estimates of the support functionS0 given in [DF03].

2.1. Geometry and local support function.

2.1.1. Geometry of lineally convex domains of finite type.Adapting the construction made by J. McNeal for convex domains
([McN94]) to the case of lineally convex domains of finite type, M. Conrad defined, in [Con02], the geometry of these domains
and, in particular, the notion of extremal basis in this context (note that in his construction the basis are not maximal but minimal, see
[Hef04, NPT09] for more details). Here we will only recall the results which are useful for our purpose. A more detailed exposition
is given in [DF06].

For ζ close to∂Ω andε ≤ ε0, ε0 small, define, for all unitary vectorv,

τ (ζ ,v,ε) = sup{c such that|ρ (ζ +λv)−ρ(ζ )|< ε, ∀λ ∈C, |λ |< c} .

Note that, ifv is tangent to the level set ofρ passing throughζ , τ (ζ ,v,ε) & ε1/2 (with uniform constant inζ , v andε) and that,Ω
being of finite type≤ 2m, τ (ζ ,v,ε) . ε1/2m.

Let ζ andε be fixed. Then, an orthonormal basis(v1,v2, . . . ,vn) is called(ζ ,ε)-extremal(or ε-extremal, or simplyextremal) if v1

is the complex normal (toρ) at ζ , and, fori > 1, vi belongs to the orthogonal space of the vector space generated by (v1, . . . ,vi−1)
and minimizesτ (ζ ,v,ε) in that space. In association to this extremal basis, we denote

τ(ζ ,vi ,ε) = τi(ζ ,ε).

Note that there may exist many(ζ ,ε)-extremal bases but they all give the same geometry we recallnow.
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With these notations, one defines polydiscsAPε(ζ ) by

APε(ζ ) =

{

z= ζ +
n

∑
k=1

λkvk such that|λk| ≤ c0Aτk(ζ ,ε)

}

,

c0 depending onΩ, Pε(ζ ) being the corresponding polydisc withA= 1 and we also define

d(ζ ,z) = inf {ε such thatz∈ Pε(ζ )} .

The fundamental result here is thatd is a pseudo-distance which means that,∀α > 0, there exist constantsc(α) andC(α) such that

(2.1) c(α)Pε(ζ )⊂ Pαε(ζ )⊂C(α)Pε(ζ ) andPc(α)ε(ζ )⊂ αPε(ζ ) ⊂ PC(α)ε(ζ ).

We insist on the fact that this pseudodistance is well definedand is independent of the choice of the extremal bases.
We will make use of the following properties:

(1) Letw= (w1, . . . ,wn) be an orthonormal system of coordinates centered atζ . Then
∣

∣

∣

∣

∣

∂ |α+β |ρ(ζ )
∂wα ∂ w̄β

∣

∣

∣

∣

∣

.
ε

∏i τ (ζ ,wi ,ε)αi+βi
, |α +β | ≥ 1.

(2) Letν be a unit vector. Letaν
αβ (ζ ) =

∂ α+β ρ
∂λ α∂ λ̄ β (ζ +λ ν)|λ=0. Then

∑
1≤|α+β |≤2m

∣

∣

∣
aν

αβ (ζ )
∣

∣

∣
τ(ζ ,ν,ε)α+β ≃ ε.

(3) If (v1, . . . ,vn) is a(ζ ,ε)-extremal basis andγ = ∑n
1 a jv j 6= 0, then

1
τ(ζ ,γ,ε)

≃
n

∑
j=1

∣

∣a j
∣

∣

τ j (ζ ,ε)
.

(4) If v is a unit vector then:
(a) z= ζ +λv∈ Pδ (ζ ) implies|λ |. τ(ζ ,v,δ ),
(b) z= ζ +λv with |λ | ≤ τ(ζ ,v,δ ) impliesz∈CPδ (ζ ).

(5) τ1(ζ ,ε) = ε, and, for j > 1 andλ ≥ 1, λ 1/mτ j (ζ ,ε) . τ j(ζ ,λ ε) . λ 1/2τ j(ζ ,ε).

Remark.Every lineally convex domain of finite type is completely geometrically separated and the pseudo-distance defined here is
equivalent to the one defined in [CD08] using tangent complexvector fields (see Section 7.1 of [CD08] for some details).

With these notations, we define a punctual anisotropic norm‖.‖k for (0,q)-forms with functions coefficientsf by

(2.2) ‖ f (z)‖k = sup
‖vi‖=1

∣

∣

〈

f ;v1, . . . ,vq
〉

(z)
∣

∣

∑q
i=1k(z,vi)

,

wherek(z,v) = δ∂ Ω(z)
τ(z,v,δ∂ Ω(z)) , δ∂Ω(z) being the distance ofz to the boundary ofΩ. Note that this definition generalizes the definition

given in [CD08] for(0,1)-forms. Moreover, in the coordinate system associated to an(z,δ (z))-extremal basis, we have
∥

∥dz̄I
∥

∥

k ≃

mini∈I
τi(z,δ∂ Ω(z))

δ∂ Ω(z) , and, if f = ∑I aIdz̄I ,

‖ f‖k ≃ sup
I
|aI |min

i∈I

τi (z,δ∂Ω(z))
δ∂Ω(z)

.

If f is a(0,q)-form with measure coefficients we define it’s|||.|||k norm by

(2.3) ||| f |||k =
∫

Ω
d

(

sup
‖vi‖=1

∣

∣

〈

f ;v1, . . . ,vq
〉∣

∣

∑q
i=1k(z,vi)

)

,

where
∣

∣

〈

f ;v1, . . . ,vq
〉∣

∣ is the total variation of the measure
〈

f ;v1, . . . ,vq
〉

.

2.1.2. The holomorphic support function.In [DF03] the following result is proved:

Theorem 2.2(K. Diederich & J. E. Fornaess). LetΩ be a bounded lineally convex domain inCn of finite type2m withC ∞ boundary.
Then there exist a neighborhoodW0 of the boundary ofΩ and, for anyε > 0 small enough a function S0(z,ζ ) ∈C ∞ (Cn,W0) which is
a holomorphic polynomial of degree2m in z for anyζ ∈W0 fixed, such that S0(ζ ,ζ ) = 0, satisfying the following precise properties:

Let M, K> 0 be chosen sufficiently large andε > 0 sufficiently small. Choose lζ a family of affine unitary transformations on
W0 translatingζ to 0 and rotating the complex normal nζ to ρ at ζ to the vector(1,0, . . . ,0). Then there exists, on W0, a family of

holomorphic polynomials Aζ , Aζ (0) = 0, such that, ifΦζ is defined byΦ−1
ζ (z)1 = z1

(

1−Aζ(z)
)

, Φ−1
ζ (z)k = zk, k= 2, . . . ,n, then

(2.4) S0
(

lζ ◦Φζ (ξ ),ζ
)

= ξ1+Kξ 2
1 − ε

2m

∑
j=2

M2 j
σ j ∑

|α |= j
α=(0,α1,...,αn)

1
α!

∂ρζ (0)

∂ξ α ξ α



4 P. CHARPENTIER, Y. DUPAIN & M. MOUNKAILA

whereρζ (ξ ) = ρ
(

lζ ◦Φζ (ξ )
)

−ρ(ζ ) and

σ j =







1 for j = 0 mod4
−1 for j = 2 mod4
0 otherwise

.

Moreover, there exist d= d(ε)> 0 and c> 0 such that, if nζ is the unit real exterior normal toρ at ζ , for (w1,w2) ∈ C2 and t a
unit vector in the holomorphic tangent space toρ at ζ , for |w|< d, the following estimate holds

(2.5) ℜeS0
(

ζ +w1nζ +w2t,ζ
)

≤
[

ρ
(

ζ +w1nζ +w2t
)

−ρ(ζ )
]

h
(

ζ +w1nζ +w2t
)

− εc
n

∑
j=2

∥

∥

∥
P j

ζ ,t

∥

∥

∥
|w2|

j ,

where h is a positive function bounded away from0, Pj
ζ ,t(w) = P j

ζ
(

ζ +w1nζ +w2t
)

, with

P j
ζ (z) = ∑

|α |+|β |= j

1
α!β !

∂ j ρ(ζ )
∂zα ∂ z̄β (z− ζ )α (z̄− ζ̄

)β

and, for any polynomial P= ∑aαβ zα z̄β , ‖P‖= ∑
∣

∣aαβ
∣

∣.

Remark. In the above Theorem the functionS0 is globally defined forζ ∈ W0, and (2.4) is independent of the choice oflζ . In
particular, as it is stated in [DF03], if we restrictζ to a small open set inW0, the functionslζ , h andAζ can be chosenC ∞ in that set
(with respect to the two variablesζ andz).

2.2. Kopelman formulas. With the notations used for the holomorphic support function S0, we chooseR< d such that
∣

∣Aζ (z)
∣

∣ <

10−1 if |z− ζ |< Rand, reducingη0 if necessary, we may suppose thatδ∂Ω(ζ )< η0 impliesζ ∈W0.
Let us define twoC ∞ functionsχ1(z,ζ ) = χ̂ (|z− ζ |) andχ2(z) = χ̃ (δ∂Ω(z)) (whereδ∂Ω denotes the distance to the boundary of

Ω) whereχ andχ̃ areC ∞ functions, 0≤ χ̂, χ̃ ≤ 1, such that̂χ ≡ 1 on[0,R/2] andχ̂ ≡ 0 on[R,+∞[ andχ̃ ≡ 1 on[0,η0/2] andχ̃ ≡ 0
on [η0,+∞[. Then we define

χ(z,ζ ) = χ1(z,ζ )χ2(ζ )
and

S(z,ζ ) = χ(z,ζ )S0(z,ζ )− (1− χ(z,ζ )) |z− ζ |2 =
n

∑
i=1

Qi(z,ζ )(zi − ζi) .

Now we define the two formssandQ used in [BA82] in the construction of the Kopelman formula by

s(z,ζ ) =
n

∑
i=1

(

ζi − zi

)

d (ζi − zi)

and

Q(z,ζ ) =
1

K0ρ(ζ )

n

∑
i=1

Qi(z,ζ )d (ζi − zi) ,

whereK0 is a large constant chosen so that

(2.6) ℜe

(

ρ(ζ )+
1
K0

S(z,ζ )
)

<
ρ(ζ )

2
.

Notice thatℜeS≤ χℜeS0 ≤−Cρ(ζ ), by (2.5), so it suffices to takeK0 ≥ 2C . Remark also that, ifζ ∈ ∂Ω, (2.5) impliesℜeS(z,ζ )<
0 for z∈ Ω.

We point out also thatQ is not holomorphic inzand thatssatisfies

|z− ζ |2 = |〈s,z− ζ 〉| ≤C|z− ζ | , z,ζ ∈ Ω.

Following the construction done in [BA82], withG(ξ ) = 1
ξ , we obtain two kernels

(2.7) K(z,ζ ) =Cn

n−1

∑
k=0

(n−1)!
k!

G(k)
(

1
K0ρ(ζ )

S(z,ζ )+1

)

s(z,ζ )∧ (dQ)k∧ (ds)n−k−1

|ζ − z|2(n−k)

and

(2.8) P(z,ζ ) =C′
nG(n)

(

1
K0ρ(ζ )

S(z,ζ )+1

)

(dQ)n

giving the following Kopelman formula:

For all (0,q)-form f , withC 1(Ω̄) coefficients, we have, for z∈ Ω,

(2.9) f (z) =
∫

∂Ω
f (ζ )∧K0(z,ζ )+ (−1)q+1∂z

∫

Ω
f (ζ )∧K1(z,ζ )+ (−1)q

∫

Ω
∂̄ f (ζ )∧K2(z,ζ )−

∫

Ω
f (ζ )∧P(z,ζ )

where K0 (resp. K1, resp. K2, resp. P) is the component of K of be-degree(0,q) in z and(n,n−q−1) in ζ (resp.(0,q−1) in z and
(n,n−q) in ζ , resp.(0,q) in z and(n,n−q−1) in ζ , resp.(0,q) in z and(n,n−q) in ζ ).
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Moreover, by definition ofS, G(k) (S(z,ζ )+1) = ckρ(ζ )k+1
[

1
K0

S(z,ζ )+ρ(ζ )
]k+1 , and, forζ ∈ ∂Ω, K0(z,ζ ) = 0 so that the first integral in the

Kopelman formula disappears, and iff is ∂̄ -closed (2.9) becomes

(2.10) f (z) = (−1)q+1∂z

∫

Ω
f (ζ )∧K1(z,ζ )−g,

with
g=

∫

Ω
f (ζ )∧P(z,ζ )

andg is ∂̄ -closed.

To be able to estimate the kernelsK1 andP, we need a fundamental estimate for
∣

∣

∣
ρ(ζ )+ 1

K0
S(z,ζ )

∣

∣

∣
.

Lemma 2.1. There exists K0 such that, forζ ∈ Pi
ε(z) = P2−iε(z)\P2−i−1ε(z), we have:

(1)
∣

∣

∣
ρ(ζ )+ 1

K0
S(z,ζ )

∣

∣

∣
& 2−iε, (z,ζ ) ∈ Ω̄× Ω̄;

(2)
∣

∣

∣

1
K0

S(ζ ,z)
∣

∣

∣
& 2−iε, (z,ζ ) ∈ ∂Ω× Ω̄.

Proof. Clearly (2) is a special case of (1) (becaused(z,ζ )≃ d(ζ ,z)). Let us prove (1).
First note that, by (2.5), ifz= ζ +w1nζ +w2t,

ℜe

(

ρ(ζ )+
1
K0

S(z,ζ )
)

≤ χ(z,ζ )
[

c1ρ(z)+
1
2

ρ(ζ )
]

− (1− χ(z,ζ )) |z,ζ |2− c2

n

∑
j=2

∥

∥

∥
P j

ζ ,t

∥

∥

∥
|w2|

j ,

and then, if|z− ζ |> ε0, ℜe
(

ρ(ζ )+ 1
K0

S(z,ζ )
)

.−c0 (ε0), and it is enough to prove the Lemma forε < ε0 small enough.

Let us denoteε ′ = 2−i−1ε and let(w1, . . . ,wn) be anε ′-extremal basis atζ . Let us writez= ζ +∑n
i=1 λiwi = ζ +λ1w1+ v1 =

ζ +λ1w1+ ‖v1‖v. Remark that, by (2.6), the result is trivial if|ρ(ζ )|& ε ′. Let us suppose|ρ(ζ )| ≪ ε ′.
Let 0< k0 ≪ 1 be a real number which will be fixed later.
Suppose first that,∀i ≥ 2, |λi|< k0τi(ζ ,ε ′). Then|λ1|& ε ′ (property (4) of section 2.1.1), and, as

m

∑
j=2

M2 j
σ j ∑

|α |= j
α1=0

∂ρζ (0)

∂ξ α ξ α =
m

∑
j=2

M2 j
σ j ∑

|α |= j
α1=0

∂ρ(z)
∂wα |w=0

(λw)α ,

by (1) of section 2.1.1, we have
∣

∣

∣

∣

∣

∣

∣

∣

m

∑
j=2

M2 j
σ j ∑

|α |= j
α1=0

∂ρ(z)
∂wα |w=0

(λw)α

∣

∣

∣

∣

∣

∣

∣

∣

. k2
0ε ′.

Using formula (2.4), this gives
∣

∣

∣

∣

ρ(ζ )+
1
K0

S0(z,ζ )
∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

ρ(ζ )+
λ1
(

1−Aζ(z)
)

K0
+

Kλ 2
1

(

1−Aζ(z)
)2

K0

∣

∣

∣

∣

∣

−C1k2
0ε ′

≥

∣

∣

∣

∣

∣

ρ(ζ )+
λ1
(

1−Aζ(z)
)

K0

∣

∣

∣

∣

∣

−C2ε ′
(

k2
0+ ε ′

)

,

the last inequality following the fact that|λ1|. ε ′ (property (4) of section 2.1.1). As
∣

∣Aζ (z)
∣

∣< 10−1, it follows that
∣

∣

∣

∣

ρ(ζ )+
1

K0
S0(z,ζ )

∣

∣

∣

∣

& ε ′,

if k0 andε0 are chosen sufficiently small.

We now fixε0. As ℜe
(

ρ(ζ )+ 1
K0

S0(z,ζ )
)

< 0, we have
∣

∣

∣

∣

ρ(ζ )+
1

K0
S(z,ζ )

∣

∣

∣

∣

& χ(z,ζ )
∣

∣

∣

∣

ρ(ζ )+
1
K0

S0(z,ζ )
∣

∣

∣

∣

+(1− χ(z,ζ )) |z− ζ |2 ,

and the inequality|z− ζ |2 & ‖v1‖
2 & τ(ζ ,v,ε)2 & ε ′ (properties (3) and (5) of section 2.1.1) proves the Lemma inthat case.

Suppose then there existsi ≥ 2 such that|λi | ≥ k0τi(ζ ,ε ′). By (4) of section 2.1.1, we have‖v1‖ ≃ τ(ζ ,v,ε ′), and by (2) of
section 2.1.1, we get (v being tangent toρ = ρ(ζ ) atζ )

∑
2≤|α+β |≤m

∣

∣

∣
av

αβ (ζ )
∣

∣

∣
τ(ζ ,v,ε)α+β = ∑

1≤|α+β |≤m

∣

∣

∣
av

αβ (ζ )
∣

∣

∣
τ(ζ ,v,ε)α+β ≃ ε ′,

and (2.5) implies
ℜeS0(z,ζ ) .Cρ(ζ )− c1ε ′,

and we conclude by the same argument on|z− ζ |2. �
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Lemma 2.2. If q ≥ 1, all the derivatives, in z, of P(z,ζ ) are uniformly bounded in̄Ω× Ω̄.

Proof. RecallP(z,ζ ) = cn
ρ(ζ )n+1

(

1
K0

S(z,ζ )+ρ(ζ )
)n+1 (dQ)n. If δ∂Ω(ζ ) > η0/2, this is clear by (2.6). Supposeδ∂Ω(ζ ) ≤ η0/2. If |z− ζ |< R/2

thenQ is holomorphic inz and the component of(dQ)n of be-degree(0,q) in z (recall we supposeq ≥ 1) is identically 0 which

impliesP= 0. If |z− ζ | ≥ R/2, the preceding Lemmas, give
∣

∣

∣

1
K0

S(z,ζ )+ρ(ζ )
∣

∣

∣
& (R)2m (because, for unitaryv, τ(z,v,ε) . ε1/2m),

and the Lemma follows easily. �

Lemma 2.3. For all positive integer s there exists a constant C(s) such that, if g=
∫

Ω f (ζ )∧P(z,ζ ) is the∂̄ -closed form of(2.10)
there exists a solution vs to the equation̄∂ vs = g satisfying the estimate

‖vs‖s ≤C(s)‖ f‖L1(Ω) ,

where‖.‖s denotes the Sobolev norm of index s inΩ.

Proof. This is an immediate consequence of the preceding Lemma and the results on the weighted̄∂ -Neumann problem obtained by
J. J. Kohn in [Koh73]. �

This last Lemma shows that to obtain sharp estimates for solution of the∂̄ -equation in lineally convex domains of finite type, like
the one stated in Theorem 2.1, it is enough to prove an estimate on the integral

∫

Ω
f (ζ )∧K1(z,ζ )

of (2.10). This will be done in the next Section.

2.3. Proof of Theorem 2.1. By formulas (2.7) and (2.9), we have

K1(z,ζ ) =
n−1

∑
k=n−q

C′
k

ρ(ζ )k+1s∧
(

∂ζ̄ Q
)n−q

∧ (∂z̄Q)k+q−n∧ (∂z̄s)
n−k−1

|z− ζ |2(n−k)
(

1
K0

S(z,ζ )+ρ(ζ )
)k+1 .

A priory, formula (2.9) is only valid forz∈ Ω. But, as noted by H. Skoda in [Sko76], the form
∫

Ω
f (ζ )∧K1(z,ζ )

is continuous inΩ̄ if the kernelK1 satisfies a condition of uniform integrability:

(2.11)
∫

Ω∩Pε (z)

∣

∣K1(z,ζ )
∣

∣dV(ζ ) = O
(

ε1/m
)

,

uniformly for zsatisfyingδ∂Ω(z)≤ ε andε small enough.
Under these hypothesis (ζ ∈ Pε(z)), Q(z,ζ ) = 1

K0ρ(ζ ) ∑n
i=1Qi(z,ζ )d (ζi − zi) is holomorphic inz andK1 is reduced to

K1(z,ζ ) = c
ρ(ζ )n−q+1s∧

(

∂ζ̄ Q
)n−q

∧ (∂z̄s)
q−1

|z− ζ |2q
(

1
K0

S(z,ζ )+ρ(ζ )
)n−q+1 .

To prove (2.11), we use the coordinate system(ζ1, . . . ,ζn) associated to the(z,δ∂Ω(z))-extremal basis and the following estimates:

Lemma 2.4. For z close to∂Ω, ε small andζ ∈ Pε(z), we have:

(1)
∣

∣

∣

∂ρ
∂ζi

(ζ )
∣

∣

∣
. ε

τi(z,ε)
((1) of section 2.1.1);

(2) |Qi(z,ζ )|+ |Qi(ζ ,z)| . ε
τi(z,ε)

(see[DF06]);

(3)

∣

∣

∣

∣

∂Qi (z,ζ )
∂ζ j

. ε
τi(z,ε)τ j (z,ε)

∣

∣

∣

∣

(see[DF06]).

A straightforward calculus shows that

(

∂ζ̄ Q
)n−q

=

(

1
ρ(ζ )

)n−q

∑′

I=(i1,...,in−q)
J=( j1,..., jn−q)

n−q

∏
k=1

∂Qik(z,ζ )
∂ζ jk

∧

i∈I

dζi

∧

j∈J

dζ j ±

±

(

1
ρ(ζ )

)n−q+1

∑′

I=(i1,...,in−q)
J=( j1,..., jn−q)

∑
k0∈{1,...,n−q}

∂ρ(ζ )
∂ζ jk0

Qik0
(z,ζ ) ∏

1≤k≤n−q
k6=k0

∂Qik(z,ζ )
∂ζ jk

∧

i∈I

dζi

∧

j∈J

dζ j ,

where∑′
means that their (resp. jr ) are all different.
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Supposeζ ∈ P0
ε = Pε(z) \Pε/2(z). Then, by Lemma 2.1,|z− ζ |2q

(

1
K0

S(z,ζ )+ρ(ζ )
)n−q+1

& εn−q+1 |z− ζ |2q, and, by Lemma

2.4,
∣

∣K1(z,ζ )
∣

∣ . ∑′

I=(i1,...,in−q)
J=( j1,..., jn−q)

(ρ(ζ )+ ε)εn−q

∏n−q
k=1 τikτ jkεn−q+1 |z− ζ |2q−1

. ∑′

I=(i1,...,in−q)
J=( j1,..., jn−q)

1

∏n−q
k=1 τikτ jk |z− ζ |2q−1 ,

becauseδ∂Ω(z)< ε and using (1) of section 2.1.1.
Theτi being supposed ordered increasingly, it is easy to see that

∫

P0
ε

1

|z− ζ |2q−1 .

∫

P0
ε

1

|z− ζ |2q−1+ ε2q−1
. τn−q+1(z,ε)

n−q

∏
i=1

τ2
i (z,ε),

and we obtain
∫

P0
ε

∣

∣K1(z,ζ )
∣

∣ dV(ζ ). τn−q+1(z,ε) = O
(

ε1/m
)

,

and, if we denotePi
ε = Pi

ε(z) = P
(

z,2−iε
)

\P
(

z,2−(i+1)ε
)

,

∫

Pε

∣

∣K1(z,ζ )
∣

∣ dV(ζ ) =
∞

∑
i=0

∫

Pi
ε

∣

∣K1(z,ζ )
∣

∣ dV(ζ ).
∞

∑
i=0

O
(

(

ε2−i)1/m
)

= O
(

ε1/m
)

,

which ends the proof of (2.11).

To finish the proof of Theorem 2.1, by Fubini’s Theorem, we have to prove that
∫

∂Ω

∣

∣K1(z,ζ )∧ f (ζ )
∣

∣ dσ(z). ‖ f (ζ )‖k ,

and, by Lemma 2.1, it is enough to see that, forζ near the boundary andη small enough (to have the reduced form ofK1),
∫

∂Ω∩Pη (ζ )

∣

∣K1(z,ζ )∧ f (ζ )
∣

∣ dσ(z). ‖ f (ζ )‖k .

To see it, let us denoteε = δ∂Ω(ζ ), Q0
ε(ζ ) = Pε(ζ ) andQi

ε(ζ ) = P2iε (ζ )\P2i−1ε(ζ ), i ≥ 1, and let us estimate
∫

∂Ω∩Qi
ε (ζ )

∣

∣K1(z,ζ )∧ f (ζ )
∣

∣ dσ(z)

using the coordinate system associated to the
(

ζ ,2iε
)

-extremal basis. By the properties of the norm‖.‖k it is enough to prove

the estimate when the formf is (in the extremal coordinate system)f =
(

dζ
)I

, with |I | = q. Then, denotingI = (i1, . . . , iq) and

J = ( j1, . . . , jn−q), I ∪J = {1, . . . ,n}, K1(z,ζ )∧ f (ζ ) is a sum of expressions of the formWi
D , i = 1,2, with

D(ζ ,z) = |z− ζ |2q
(

1
K0

S(z,ζ )+ρ(ζ )
)n−q+1

and

W1 = (ζm− zm)ρ(α)
n−q

∏
k=1

∂Qik(z,ζ )
∂ζ jk

n
∧

i=1

(

dζi ∧dζi

)

∧

l∈L
|L|=q−1

dzl

and, if 1/∈ I ,

W2 = (ζm− zm)
∂ρ(ζ )

∂ζ1
Qik0

(ζ ,z) ∏
1≤k≤n−q

k6=k0

∂Qik(z,ζ )
∂ζ jk

n
∧

i=1

(

dζi ∧dζi

)

∧

l∈L
|L|=q−1

dzl .

Now, remarking that
∫

Qi
ε (ζ )∩∂Ω

dσ(z)

|ζ − z|2q−1 . 2iετn−q+1
(

ζ ,2iε
)

n−q

∏
i=2

τ2
i

(

ζ ,2iε
)

,

we get, using property (5) of section 2.1.1,
∫

Qi
ε (ζ )∩∂Ω

∣

∣

∣

∣

W1(ζ ,z)
D(ζ ,z)

∧ f (ζ )
∣

∣

∣

∣

dσ(z).
ρ(ζ )
2iε

min
j∈I

τ j
(

ζ ,2iε
)

2iε
.

ρ(ζ )
2iε

min
j∈I

τ j(ζ ,ε)
ε

. min
j∈I

τ j (ζ ,δ∂Ω(ζ ))
2iδ∂Ω(ζ )

and, because 1/∈ I ,
∫

Qi
ε (ζ )∩∂Ω

∣

∣

∣

∣

W2(ζ ,z)
D(ζ ,z)

∧ f (ζ )
∣

∣

∣

∣

dσ(z). min
j∈I

τ j
(

ζ ,2iε
)

2iε
. min

j∈I

τ j (ζ ,δ∂Ω(ζ ))
2i/2δ∂Ω(ζ )

,
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and the proof is complete.

3. NONISOTROPIC ESTIMATES OF CLOSED POSITIVE CURRENTS ON GEOMETRICALLY SEPARATED DOMAINS

In this Section,Ω is a pseudo-convex domain inCn with C ∞ boundary which is geometrically separated at a pointp0 ∈ ∂Ω. To
state the main result of this Section we fix some notations.

We denote byρ a defining function ofΩ andN = 1
|∇ρ |2 ∑i

∂ρ
∂zi

dzi the unit normal defined in a neighborhoodU of ∂Ω. Recall

(see [CD08]) that the hypothesis made onΩ means that there exists a constantK > 0, a neighborhoodV = V(p0) ⊂ U of p0 and
a (n−1)-dimensional complex vector spaceE0 of (1,0)-vector fieldsC ∞ in V, tangent toρ (i.e. L(ρ) ≡ 0 in V for L ∈ E0) such
that, at every pointp of V ∩Ω and for every 0< δ < δ0 there exists a(K, p,δ ))-extremal (or(p,δ )-extremal) basis whose elements
belong toE0. We will denote byE1 the complex vector space generated byE0 andN.

ForL ∈ E1, 0< ε < δ0 andz∈V ∩Ω, in [CD08] we defined the weightF(L,z,ε) as follows:
If L = Lτ +anN, the weight is defined by

F(L,z,ε) = ∑
L ∈LM(L)

∣

∣

∣

∣

L (∂ρ)(z)
ε

∣

∣

∣

∣

2/|L |

+
|an|

2

ε2 ,

whereM is an integer larger than the type,LM(L) denotes the set of lists
(

L1, . . .Lk
)

, of lengthk≤ M, L j ∈
{

Lτ ,Lτ
}

, and

L (∂ρ)(z) = L1 . . .Lk−2
(〈

∂ρ ,
[

Lk−1,Lk
]〉)

(z).

Remark.To keep the same notations as in [CD08], the normal is denotedby Ln in opposite of the preceding Section where it was
denoted byL1.

Now we denoteτ (L,z,ε) = F (L,z,ε)−1/2. If v is any non zero vector inCn, andz∈ V ∩Ω, there exists a unique vector field
L = Lz in E1 such thatL(z) = v. Then we denote

τ (z,v,ε) = τ (L,z,ε) andk(z,v,ε) =
δ∂Ω(z)

τ (z,v,ε)
,

whereδ∂Ω(z) is the distance fromz to the boundary ofΩ. Whenε = δ∂Ω(z) we denoteτ (z,v) = τ (z,v,δ∂Ω(z)) andk(z,v) =
k(z,v,δ∂Ω(z)).

To simplify the exposition, we will also use the following terminology. For each pointz∈V∩Ω and each 0< δ ≤ δ0, if (vi)1≤i≤n

is a basis ofCn such thatvn = N(z) and(Li)1≤i≤n−1 (Li ∈ E0) is a(z,δ )-extremal basis such thatLi(z) = vi we will say that(vi)1≤i≤n
is a(z,δ )-extremal basis.

Suppose now thatΘ is aC ∞ (1,1)-form defined inV ∩Ω. Then, following [BCD98], we define, forz∈V ∩Ω,

‖Θ(z)‖k = ‖Θ(z)‖p0
k = sup

u,v∈C∗

|Θ(z)(u,v)|
k(z,u)k(z,v)

and

‖Θ(z)‖E = sup
u,v∈C∗

|Θ(z)(u,v)|
‖u‖‖v‖

,

where‖.‖ denotes the euclidean norm.
Similarly, with the above notations, we extend the notations defined in formulas (2.2) and (2.3) for(0,q)-forms to forms defined

in a geometrically separated domain.
The aim of the Section is to prove the following result:

Theorem 3.1. Let Ω be a pseudo-convex domain inCn which is geometrically separated at a boundary point p0. Then there exist
two neighborhoods V and W⊂V of p0 and a constant C> 0 such that, ifΘ is a smooth positive closed(1,1)-current defined in V
then

∫

W
δ∂Ω(z)‖Θ(z)‖k dV(z)≤C

∫

V
δ∂Ω(z)‖Θ(z)‖E dV(z).

If Ω is a bounded pseudo-convex domain which is geometrically separated at every point of it’s boundary, we choose a finite
number of pointspi , 1≤ i ≤ N, in ∂Ω such that the set of the neighborhoodsVi = V (pi) is a coveringV of ∂Ω, V0 = Ω \

⋃

i≥1Vi ,
and we define

‖Θ(z)‖V

k = max
z∈Vi

‖Θ(z)‖i
k ,

where,‖Θ(z)‖i
k = ‖Θ(z)‖pi

k if i ≥ 1 and‖Θ(z)‖0
k = ‖Θ(z)‖E.

With this notation, the local result immediately implies a global one:

Theorem 3.2. If Ω is a pseudo-convex domain inCn which is geometrically separated at every point of it’s boundary, a coveringV
of ∂Ω being chosen, there exists a constant C> 0 such that

∫

Ω
δ∂Ω(z)‖Θ(z)‖V

k dV(z)≤C
∫

Ω
δ∂Ω(z)‖Θ(z)‖E dV(z)

for all smooth closed positive(1,1)-currentΘ in Ω.
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In fact the two statements are equivalent. In [CD08] it is proved that if Ω is geometrically separated atp0 ∈ ∂Ω then there
exists a bounded pseudo-convex domainD with C ∞ boundary contained inΩ which is geometrically separated at every point of it’s
boundary and whose boundary contains a neighborhood ofp0 in the boundary ofΩ. Thus, Theorem 3.1 forΩ follows immediately
Theorem 3.2.

We now prove the Theorems. As it is very similar to the proof ofthe same result for convex domains given in Section 2 of
[BCD98], we will refer to that paper for many details. Precisely, we will only give the mains articulations and the proof of Lemmas
where the differences due to the fact that the weightsF are defined with vector fields instead of coordinates systemsare relevant.

We still use the previous notations for the defining functionρ of Ω, the pointp0 ∈ ∂Ω, the neighborhoodV of p0 andW a
neighborhood ofp0 relatively compact inV.

In Section 3.3 of [CD08] it is shown that there exists a(z,ε)-adapted coordinate system(ξi)i used, in particular, to define
“polydiscs” centered at the pointzby

Pε(z) = P(z,ε) = {q= (ξi)i such that|ξi | ≤ cτ(z,vi ,ε)} ,
wherevi = Li(z), 1≤ i ≤ n, (Li)1≤i≤n being the(z,ε)-extremal basis, andc a sufficiently small constant (depending onΩ). Moreover,
the set of these polydiscs are associated to a pseudo-distance. With these notations we have

Lemma 3.1. For z∈V ∩Ω and v∈ Cn, v 6= 0, if w ∈ Pε(z) we haveτ(w,v,ε) ≃ τ(z,v,ε).

Proof. Let Lz (resp.Lw) the vector field belonging toE1 such thatLz(z) = v (resp.Lw(w) = v). Let (Li)1≤i≤n be the(z,ε)-extremal
basis and let us writeLz = ∑n

i=1biLi andLw = ∑n
i=1b′iLi , bi , b′i ∈ C. If (ξi)1≤i≤n is the(z,ε)-adapted coordinate system let us write

L j(.) = ∑i a
i
j(.)

∂
∂ξi

, with ai
j(z) = δ j

i so that

Lz(z) =
n

∑
i=1

bi
∂

∂ξi
andLw(w) =

n

∑
i=1

(

n

∑
j=1

b′ja
i
j(w)

)

∂
∂ξi

.

In [CD08] we proved (Proposition 3.6) that,ifw∈ Pε(z),
∣

∣ai
j(w)

∣

∣. F
1/2
j (z,ε)F−1/2

i (z,ε).

The basis(Li) being(z,ε)-extremal we have immediately thatF(Lz,z,ε) ≃ F(Lw,z,ε), and, using another time Proposition 3.6
of [CD08], thatF(Lw,z,ε) ≃ F(Lw,w,ε) finishing the proof of the Lemma. �

The proof of the Theorems is done in three steps.

First step: definition of a family of polydiscs.As the polydiscsPε(z) are associated to a pseudodistance, there exists a constant
M such that, forδ and ε sufficiently small, there exists pointszi , 1 ≤ i ≤ n(δ ,ε) belonging to the set{ρ =−δ} such that, if
Sδ ,ε(z) = Sε(z) = Pε(z)∩{ρ =−δ} andS∗δ ,ε(z) = S∗ε(z) = 2Pε(z)∩{ρ =−δ} then

(1) {Sε(zi)}i is a covering ofW∩{ρ =−δ};
(2) for all i, S∗ε(zi) is contained inV ∩{ρ =−δ};
(3) for all z∈ {ρ =−δ}, there exist at mostM indexi such thatr ∈ S∗ε(zi).

Let α ∈ ]0,1[ be a parameter that will be fixed later. Forρ = αk, k ≥ k0, let
(

zk
i

)

1≤i≤nk
be a family of points satisfying these

properties forδ = αk andε = αk/2. The family
⋃

k≥k0

{

zk
i , 1≤ i ≤ nk

}

will be denoted by(zi)i .
Forzclose enough to∂Ω andδ > 0 sufficiently small, letπδ (z) denote the point where the integral curve of∇ρ passing throughz

meets the set{ρ =−δ}. V being small enough,πδ is C ∞ in V and any finite number of derivatives ofπδ is bounded independently
of δ .

For all zj belonging to(zi)i , if −ρ(zj) = αk we setSj = Sαk/2
(zj), S∗j = S∗

αk/2
(zj ),

Q j =
{

w∈ Ω such thatαk ≥−ρ(w)≥ αk+1, πδ (w) ∈ Sj

}

,

and
Q∗

j =
{

w∈ Ω such thatαk−1 ≥−ρ(w)≥ αk+2, πδ (w) ∈ S∗j
}

.

We supposek0 chosen sufficiently large so that
⋃

j Q
∗
j ⊂V. Moreover, note that there exist at most 4M index j such thatz∈ Q∗

j .

Second step: some estimates related to the radiusτi .

Lemma 3.2. Let z∈V ∩Ω, v∈Cn, v 6= 0, and m an integer larger than the type of p0.

(1) If ε1 ≥ ε2,
(

ε1
ε2

)1/2

τ (z,v,ε2)& τ (z,v,ε1)&
(

ε1
ε2

)1/m

τ (z,v,ε2) .

(2) If v = ∑n
i=1wiLi(z), where(Li , 1≤ i ≤ n) is the(z,ε)-extremal basis, then

n

∑
i=1

|wi |k(z,vi ,ε)≃ k(z,v,ε) .

Lemma 3.3. If z= πδ (w), then

(1) if δ∂Ω(w)≤ δ∂Ω(z), τ(z,v)
(

δ∂ Ω(w)
δ∂ Ω(z)

)1/2

. τ(w,v) . τ(z,v)
(

δ∂ Ω(w)
δ∂ Ω(z)

)1/m

,
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(2) if δ∂Ω(w)≥ δ∂Ω(z), τ(z,v)
(

δ∂ Ω(w)
δ∂ Ω(z)

)1/m

. τ(w,v) . τ(z,v)
(

δ∂ Ω(w)
δ∂ Ω(z)

)1/2

.

Proof. We only need to prove 1., and, by Lemma 3.2 (1), it is enough to prove that

τ (z,v,δ∂ Ω(z)/2)≃ τ (w,v,δ∂ Ω(z)/2) .

This follows the fact that, ifLz = ∑i aiL0
i andLw = ∑i biL0

i are so thatLz(z) = Lw(w) = v, thenLz = Lw+O(δ∂Ω(z)), and, thus
F (Lz,z,δ∂ Ω(z)/2) = F (Lw,z,δ∂ Ω(z)/2)+O(1) andF (Lw,w,δ∂ Ω(z)/2) = F (Lw,z,δ∂ Ω(z)/2)+O(1). �

Lemma 3.4. If (vi)1≤i≤n is a (zj ,δ∂ Ω(zj )/2)-extremal basis then, for w∈ S∗j , supu,v
|Θ(w)(u,v)|

k(zj ,u)k(zj ,v)
≃ ∑n

l=1
Θ(w)(vl ,vl )

k(zj ,vl )
2 .

Proof. The proof is exactly the same as in [BCD98]. It follows Lemma 3.2 (2) and Cauchy-Schwarz inequality. �

Lemma 3.5. Let w be a point in Q∗j and(w̃i)i be the coordinates ofπ−ρ(zj )(w) in the(zj ,δ∂ Ω(zj )/2)-adapted coordinate system
(

zi
j

)

i
.

Then
∣

∣

∣

∣

∣

∂ w̃r

∂zl
j

(w)

∣

∣

∣

∣

∣

.
τ(zj ,vr)

τ(zj vl )
, r ≤ n−1, l ≤ n,

where(vi)1≤i≤n is (zj ,δ∂ Ω(zj )/2)-extremal, and
∣

∣

∣

∣

∣

∂ℑm(w̃n)

∂zl
j

∣

∣

∣

∣

∣

.
δ∂Ω(zj)

τ(zj ,vl )
,

the constants depending onΩ andα.

Proof. As in [BCD98], the proof is reduced to the case whereρ(w) = ρ(zj), then one consider a(w,δ∂ Ω(zj )/2)-extremal basis and
uses Lemma 3.1. �

Third step: proof of Theorem 4.1 and Theorem 3.2.Let ϕ0 be aC ∞ function supported in[−2,2] and identically equal to 1 in[−1,1],
0≤ ϕ0 ≤ 1. LetΨ = Ψα be aC 1 function supported in

[

α2,α−1
]

equal to 1 on[α,1], 0≤ Ψ ≤ 1.
With the notations of Lemma 3.5 we define, forw∈ Q∗

j ,

ϕ(w) = Ψα

(

δ∂Ω(w)
δ∂Ω(zj )

)

ϕ0

(

|ℑm(w̃n)|

τ(zj ,vn)

) n

∏
i=2

ϕ0

(

|w̃i |

τ(zj ,vi)

)

.

Applying Stokes’s formula to the form(−ρ)2/mϕΘ∧ηl , whereηl = in−1dzn
j
∧n−1

r=1
r 6=l

dzr
j ∧dzr

j , on Ω, using the previous Lemmas

and a convenient functionΨα (see [BCD98, CD97]), for allα > 0, the calculus made p. 404-408 in [BCD98] leads to the following
estimate

∫

Qj

δ∂Ω(w)‖Θ(w)‖k dV(w) ≤ [β (α)+O(diam(Qj )/α + εC(α)]

∫

Q∗
j

δ∂Ω(w)‖Θ(w)‖k dV(w)

+C(ε)C(α)
∫

Q∗
j

δ∂Ω(w)‖Θ(w)‖E dV(w),

with limα→0 β (α) = 0.
To finish the proof of the Theorems choose pointspi , 0≤ i ≤ N such that the neighborhoodV0(pi) is a covering of∂Ω. Then

choosingα small enough so thatβ (α)MN is small, thenε small enough so thatεC(α)MN is small and finallyk0 large enough so
thatO(diam(Qj )/α is small, we get aδ0 > 0 such that

∫

W∩{δ∂ Ω(w)≤δ0}
δ∂Ω(w)‖Θ(w)‖k dV(w) .

∫

V
δ∂Ω(w)‖Θ(w)‖E dV(w)

and
∫

Ω∩{δ∂ Ω(w)≤δ0}
δ∂Ω(w)‖Θ(w)‖k dV(w).

∫

Ω
δ∂Ω(w)‖Θ(w)‖E dV(w)

which proves the Theorems. �

4. NON ISOTROPIC ESTIMATES FOR THEd-OPERATOR FOR GEOMETRICALLY SEPARATED DOMAINS

Theorem 4.1. Let Ω be a pseudo-convex domain inCn which is geometrically separated at a boundary point p0. Then there exist
two neighborhoods of p0, W ⋐V such that there exists a constant C> 0 such that, for any smooth closed(1,1)-form Θ in V , there
exists a smooth solution w of the equation dw= Θ satisfying the following estimate

∫

W
‖w‖k dV ≤C

∫

W
δ∂Ω(z)‖Θ‖k dV.

The proof of this result is quite standard and we will just adapt the proof made in Section 3 of [BCD98].
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Proof. We choose forV a neighborhood contained in the neighborhoodV(p0) defined in section 3 and sufficiently small so that there
exists a neighborhoodW ⋐V of p0 and a pointP∈V such that there exists an open setU ⊂ Ω containing(W∩Ω)∪{P} which is
starshaped with respect toP. Solving the equationdw= Θ in U , we can assume, without loss of generality, that the supportof Θ
does not containP. By translation, we can also assume thatP is the origin inCn.

Now, for z∈W∩Ω, Mt : z 7→ tzbeing the homotopy between 0 andz, Poincaré’s formula

w=

∫ 1

0
M∗

t (izt (Θ))dt,

whereizt (Θ) denotes the inner contraction ofΘ with the fieldZt =
z
t andM∗

t the pull-back operator, gives a solutionw of the equation
dw= Θ in W∩Ω.

To finish the proof, we have to estimate this solution, and, for this, following the calculus made in [BCD98] p. 409, we onlyhave
to verify the following Lemma:

Lemma. There exists a constantα > 0 such that, for0≤ t ≤ 1 and v∈ C∗,

τ (tz, tv,δ∂Ω(tz)/2)≥ α
(

δ∂Ω(tz)
δ∂Ω(z)

)1/m

τ (z,v,δ∂Ω(z)/2) .

Proof of the Lemma.By definition of the polydiscs, there exists a constantK (depending only onc) such thatz∈PKδ∂ Ω(tz)(tz). Then,
by Lemma 3.1,τ (tz, tv,Kδ∂Ω(tz))≃ τ (z, tv,Kδ∂Ω(tz)), and thusτ (tz, tv,δ∂Ω(tz)/2)≃K τ (z, tv,δ∂Ω(tz))≥ τ (z,v,δ∂Ω(tz)), because
t ≤ 1, and the Lemma follows Lemma 3.2. �

�

By a standard regularization procedure applied to Theorem 4.1 and classical topological arguments (see [Sko76] for details), the
following global result is easily deduced:

Theorem 4.2. Let Ω be a bounded pseudo-convex domain inCn which is geometrically separated at every point of it’s boundary.
There exists a constant C> 0 such that, ifΘ is a (1,1)-closed positive current inΩ whose cohomology class in H2(Ω,C) is 0, there
exists a solution, smooth ifΘ is smooth, of the equation dw= Θ in Ω satisfying

|||w|||k ≤C|||Θ|||k.

Here, the|||.|||k norm of a(1,1)- currentΘ with measure coefficients is defined using the coveringVi defined before the statement
of Theorem 3.2:

|||Θ|||k =

∫

Ω
d

(

sup
i;u,v∈C∗

χi
|〈Θ;u,v〉|

ki(z,u)ki(z,v)
δ∂Ω(z)

)

,

with k0(z,u) = k0(z,v) = 1, andχi is the characteristic function ofVi.

5. CHARACTERIZATION OF THE ZERO-SETS OF THE FUNCTIONS OF THENEVANLINNA CLASS FOR LINEALLY CONVEX

DOMAINS OF FINITE TYPE

It is a well-known fact that ifX is the zero-set of a functionf of the Nevanlinna classN(Ω), then it satisfies the Blaschke
condition: ifXk are the irreducible components ofX andnk the multiplicity of f onXk, then

∑
k

nk

∫

Xk

δ∂Ω dµk <+∞,

whereµk is the Euclidean measure on the regular part ofXk. Classically the data{Xk,nk} is called a divisor.
If Θ is the(1,1)-positive current classically associated to the divisor{Xk,nk}, with our notations, this condition is

∫

Ω
δ∂Ω ‖Θ‖E <+∞.

For more details we refer to [BCD98].
To prove Theorem 1.1,Ω satisfying automatically some topological condition, by astandard regularization process, it is sufficient

to prove that there exists a constantC > 0 such that ifΘ is a(1,1)-closed positive current,C ∞ in Ω̄, there exists a functionu in Ω̄
solution of the equationi∂ ∂̄ u= Θ satisfying the estimate

∫

∂Ω
|u| dσ ≤C

∫

Ω
δ∂Ω ‖Θ‖E .

For details see [BCD98] and [Sko76].
As usual, the main part of the proof is done in two steps: resolution of thed-equation and, then, resolution of the∂̄ -equation. The

second step is done in section 2. For the first one we use the results of Sections 3 and 4. As this two Sections are written for general
geometrically separated domains and in a local context, we give some precisions (see also [Con02]).
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5.1. Non isotropic estimates on closed positive currents in lineally convex domains. Ω being lineally convex of finite type it
is completely geometrically separated ([CD08]). On the other hand, the proof of the Corollary at the beginning of Section 7.1 of
[CD08] shows that the radiusτ(z,v,ε) defined for general geometrically separated domains are equivalents to the ones defined by
M. Conrad in [Con02] (and used in section 2)

Then, the norm‖Θ(z)‖ν
k used in Theorem 3.2 is equivalent to the norm‖Θ(z)‖k defined with the radiusτi of [Con02] (and is

independent ofν). Thus, Theorem 3.2 means that there exists a constantC1 such that
∫

Ω
δ∂Ω(z)‖Θ(z)‖k dV ≤C1

∫

Ω
δ∂Ω(z)‖Θ(z)‖E dV.

5.2. Resolution of thed equation in lineally convex domains.As Ω is lineally convex we haveH2(Ω,C) = 0 (see for example
[Con02]). Thus, by Theorem 4.2 there exists a smooth formw such thatdw= Θ in Ω and

∫

Ω ‖w(z)‖k ≤C2
∫

Ω δ∂Ω(z)‖Θ(z)‖k dV.

6. REMARKS

The method of resolution of the equation̄∂u= f presented in section 2 can be used to obtain various other estimates.
For example, the estimates obtained for convex domains of finite type in [Cum01a, DFF99, Fis04, Hef04, Ale05, Ale06] can be

proved for lineally convex domains using our method (see also [DF06]).
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