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ESTIMATES FOR SOLUTIONS OF THE 0_-EQUATION AND APPLICATION TO THE CHARACTERIZATION OF
THE ZERO VARIETIES OF THE FUNCTIONS OF THE NEVANLINNA CLASS F OR LINEALLY CONVEX
DOMAINS OF FINITE TYPE

PHILIPPE CHARPENTIER, YVES DUPAIN & MODI MOUNKAILA

ABSTRACT. In the late ten years, the resolution of the equaflar= f with sharp estimates has been intensively studied for codemains
of finite type inC" by many authors. Generally they used kernels constructéd heiomorphic support function satisfying “good” global
estimates. In this paper, we consider the case of lineallyeodomains. Unfortunately, the method used to obtainajlebtimates for the
support function cannot be carried out in that case. Thenseealkernel that does not gives directly a solution ofdkeqjuation but only a
representation formula which allows us to end the resalutitthe equation using Kohnls? theory.

As an application we give the characterization of the zet® aithe functions of the Nevanlinna class for lineally cexdomains of finite

type.

1. INTRODUCTION

The general notion of extremal basis and the class of “gedca#ly separated” domains has been introduced in [CDO8f. F
such domains it is proved that if there exist “good” plurisalmonic functions, in which case the domains are calledhfdetely
geometrically separated”, then sharp estimates on thenBer@gnd Szego projections and on the classical invariagtisas can be
obtained.

Moreover, using the description of the complex geometnjrafdily convex domains of finite type initiated in [Con02]catine
construction of a local support function described in [DF®3s shown, already in [CDQ8], that every lineally conveéamain of
finite type is completely geometrically separated.

The present paper is a continuation of the study of complakyais in such domains. We are now interested in the probfeheo
characterization of the zero sets of functions in the Nemaalclass. The main result obtained concerns the classes#lly convex
domains of finite type and generalizes the results obtaimétki case of convex domains ([BCD98, Cum01b, DMO01]):

Theorem 1.1. Let Q be a bounded lineally convex domain of finite typ&ihwith smooth boundary. Then a divisor@can be
defined by a function of the Nevanlinna clas€df and only if it satisfies the Blaschke condition.

The general scheme of the proof is identical to the one us#tkiconvex case and consists in three steps. First, for therale
case of geometrically separated domains, we prove somdiavial conditions” on closed positivél, 1)-currents® and then we
solve the equatiodw = © with good estimates. The third step, which solvesdkhequation withL! estimates on the boundary, is
only done in the case of lineally convex domains of finite type

Theorem 1.2. LetQ be a bounded lineally convex domain of finite typ€fhwith smooth boundary. Let f be(8,q)-form in Q,
1< q<n-1, whose coefficients are measure and whiaf+iosed. Then if| f[[x < +oo (see section 211, formul@.3) there exists
a solution of the equatiod,u = f, in the sense dBka76} in L1(9Q).

2. SOLUTIONS FOR THEJ-EQUATION FOR LINEALLY CONVEX DOMAINS OF FINITE TYPE
First of all, we recall the definition of lineally convex doma

Definition 2.1. A domainQ in C", with smooth boundary is said to be lineally convex at a ppiat?Q if there exists a neighborhood
W of p such that, for all poinz e 9QNW,

(z+ TN (DNW) =0,
whereT%is the holomorphic tangent spaced@ at the pointz

Furthermore, we always suppose tl4 is of finite type at every point a#Q NW. ShrinkingW if necessary, we may assume
that there exists & defining functionp for Q and a numben > 0 such thatdp(z) # 0 at every point oV and the level sets
{ze W such thap(z) = n}, —no < n < no, are lineally convex of finite type.

As we want to obtain global results, we need these propetiegery boundary point. Thus, in all our work, by “lineallgrvex
domain” we mean a bounded smooth domain having a (globabidgffunction satisfying the previous hypothesis at eveinpof
0Q.

In sectior. Z.ll we define a punctual anisotropic norm for foifrs, related to the geometry of the domain (formiilal2.2)). With
this notation, the main goal of this Section is to prove tHe¥aing theorem:

2000Mathematics Subject ClassificatioB2F17, 32T25, 32T40.
Key words and phrasedineally convex, finite typeg-equation, Nevanlinna class.

1



2 P. CHARPENTIER, Y. DUPAIN & M. MOUNKAILA

Theorem 2.1. LetQ be a smooth bounded lineally convex domain of finite tyg@&"inThen there exists a constant€0 such that,
for any smoottd-closed(0,q)-form f,1 < q < n—1, onQ there exists a smooth solution u of the equation= f such that

| Ju@ldo@ <c [ 1@V

We can already notice that, by a very standard regularizatiocedure (se¢ [Ska76] for example) usibb (5) of sedfidnl.
Theoreni LR is a consequence of Thedrerh 2.1.

Except for the case of finite type domainsGR where such an estimate was proved by D. C. Chang, A. Nagel aktl Gtein
(ICNS92]) for thed-Neumann problem, this kind of result was always provedgisitplicit kernels solving th@-equation. The first
result was obtained, independently, by H. Skoda and G. MkHidaor strictly pseudo-convex domains ([SkolZ6, Hen75]jitefward,
some generalizations to special pseudo-convex domainsite fype (in dimensiom > 3) were obtained by several authors. For
example, the case of complex ellipsoids was obtained by AaBo and Ph. Charpentief ([BC82]), and, probably the motthbie
result, the case of convex domains of finite type by J. Bruha, Gharpentier & Y. Dupain, A. Cumenge and K. Diederich & E.
Mazzilli ((BCD98,[Cum01b, DMOL]).

Here, we consider the more general case of lineally convenadits of finite type. Our starting point is similar to the orsed in
[Cum01b] and[[DMOL]. We try to construct a kernel solving thequation following the method described in the classiealgy of
B. Berndtsson and M. Anderssdn [BA82]. Such kernelis caiestd using two forms(z {) andQ(z, ¢) satisfying some conditions.
In particularQ(z ¢) is supposed to be holomorphicn In many works using these constructions, the foeasdQ (or only Q)
are constructed using a holomorphic support function ferdbmain. In the case of lineally convex domains of finite tgpeh
support functions have been constructed by K. Diederichlaid Fornaess in [DF03]. Let us denoteSy= 5 Q%(z, ) (z — &) this
support function. If we want to us® to definesand/orQ, a problem appears immediately: some precise global esinedS, are
necessary since this function appears in the denomindttire kernels, and Diederich and Fornaess result gives onaf estimates
(i.e. when the two pointgand{ are close and close to the boundary of the domain). This erolblas been noticed previously in
the case of convex domains by W. Alexandrelin [Ale01] whereadification of the support function is done. Unfortunatéiys
modification cannot apply for lineally convex domains, thewexity being strongly used to solve a division problentwvestimates.
Another way to construct a kernel without support functiotroduced by A. Cumenge for convex domains’in [CunmOZlbjpisge
the Bergman kernel with the estimates obtained in [MdN94jeSe needed estimates on the Bergman kernel have beenegbtain
for lineally convex domains in [CD08] but, once again, thetlme cannot be carried out for lineally convex domains fershme
reason.

Thus we start with the method of Berndtsson and Anderssdn@itonstructed witts, but the formQ being holomorphic in
zonly when the two pointg and{ are close (and close to the boundary). Then the construgtes not give a kernel solving the
d-equation but a representation formula of the followingrioif f is a(0, g)-form smooth inQ, there exist kernelk(z, ¢), Ki(z ¢)

andP(z ¢) such that
f(z):é(/gf( /\KZZ) /af ) AKi(2.2) +/ O APEZY).

In this formula one important point is that, by constructitime kernelP is ¢ (Q X Q). If f is d-closed then the forng =

Jo T({) AP(z,Q) is alsod-closed, and, by the regularity & for all integerr, the Sobolev nornig||,r of orderr is controlled

by G ||f|\L1(Q). Then, using Kohn's theory[([Koh73]), it is pgssible to solthe equatiodv = g with an estimate of the form
[Vlwr <G [ f]lL1(q)- Finally, to obtain a solution of the equatidn = f with the desired estimate it suffices to estimate the integra
Jo T(¢) ANK(z ¢) which can be done, as we will see, using only the local eséimat the support functio® given in [DF03].

2.1. Geometry and local support function.

2.1.1. Geometry of lineally convex domains of finite typelapting the construction made by J. McNeal for convex domai
([McN94)) to the case of lineally convex domains of finite ¢ygM. Conrad defined, in_[Con02], the geometry of these dosnain
and, in particular, the notion of extremal basis in this eah{note that in his construction the basis are not maximghiinimal, see
[Hef04,INPTQ9] for more details). Here we will only recalkthesults which are useful for our purpose. A more detailgubsition
is given in [DFQ®].

For ¢ close todQ ande < g, & small, define, for all unitary vectar,

1({,v,€) =sup{csuchthatp ({+Av)—p({)| <&, VA €C,|A|<c}.

Note that, ifv is tangent to the level set @f passing througlf, T (,v,€) > €2 (with uniform constant irf, v and¢) and thatQ
being of finite type< 2m, T(Z,v, &) < g¥2™,

Let ¢ ande be fixed. Then, an orthonormal basig, vz, ..., Vvy) is called({, €)-extremal(or e-extrema) or simplyextrema) if v;
is the complex normal (tp) at {, and, fori > 1, v; belongs to the orthogonal space of the vector space geddmat®,,...,Vi_1)
and minimizeg (¢, v, €) in that space. In association to this extremal basis, wetdeno

1({,vi,€) =1 ((,¢).

Note that there may exist many, €)-extremal bases but they all give the same geometry we mecall
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With these notations, one defines polydisés({) by
n
APR:({) = {z: {+ z AkVk such thatjAy| < coATk(Z,e)} ,
k=1

¢o depending o, P:({) being the corresponding polydisc with= 1 and we also define

d({,z) =inf{e suchthaze P:({)}.
The fundamental result here is ththis a pseudo-distance which means that,> O, there exist constant$a) andC(a) such that
(2.1) c(a)P:({) C Pae({) C C(a)P:({) andP(q)e({) C aPe({) C Pe(a)e(4)-

We insist on the fact that this pseudodistance is well defametlis independent of the choice of the extremal bases.
We will make use of the following properties:

(1) Letw= (w,...,w,) be an orthonormal system of coordinates centeré&d @&hen

01"+ Plp(0)| _ e
OWIOWE | i T(¢w, )" P

,ja+B|>1

: +B
(2) Letv be a unit vector. Lea;B(Z) = d‘i\i—m"ﬁ (C+AV)jn_o Then
als(Q)[T(¢,v.8)7F ~ &,
1<|a+B[<2m
(3) If (v1,...,vn) is a((, €)-extremal basis ang= S/ a;jvj # 0, then

1 n
ye 2008

=1

(4) If vis a unit vector then:
(@) z={+Ave Ps({) implies|A| < T(,v,9),
(b) z=Z +Avwith |A| < 1(Z,v,8) impliesz € CP5({).
(5) 11({,€) = &, and, forj > L andA > 1,AY"tj(Z, ) < 1j(L,Ae) SAY?T(L, €).

Remark.Every lineally convex domain of finite type is completely gegtrically separated and the pseudo-distance defined$ere i
equivalent to the one defined in [CD08] using tangent comypéetor fields (see Section 7.1 6f [CD08] for some details).

With these notations, we define a punctual anisotropic ripfifor (0, q)-forms with functions coefficient§ by

(f;v1,...,vg) (2]
(2.2) (@)= sup |

e Siak(zv)
wherek(z,v) = T(z%?gid(;)(z))' 9q(2) being the distance afto the boundary of2. Note that this definition generalizes the definition
given in [CDO08] for (0, 1)-forms. Moreover, in the coordinate system associated t@a¥{z))-extremal basis, we havgZ ||, ~

Mminici % and, iff = 5, adZ,

3

Ti (2,90(2))
%a(2)
If fisa(0,q)-form with measure coefficients we define iffd||x norm by
(fivi,....vq)|
(2.3) f k:/d sup‘— ,
IEllhe= / SUP ST k()

where|(f;va,...,vq)| is the total variation of the measu{é;va, ..., vq).

fll, ~su min
£l supiay| mi

2.1.2. The holomorphic support functiorin [DEO3] the following result is proved:

Theorem 2.2(K. Diederich & J. E. Fornaess) etQ be a bounded lineally convex domainGA of finite type2m with* boundary.

Then there exist a neighborhoo@\df the boundary of2 and, for anye > 0 small enough a functiong®, {) € € (C",Wp) which is

a holomorphic polynomial of degrén in z for any{ € W, fixed, such that&{, ) = 0, satisfying the following precise properties:
Let M, K> 0 be chosen sufficiently large ard> 0 sufficiently small. Choose la family of affine unitary transformations on

W translating{ to 0 and rotating the complex normakrio p at { to the vector(1,0,...,0). Then there exists, ong/Va family of

holomorphic polynomials A A;(0) = 0, such that, ii®, is defined bybgl(z)l =27 (1-A;(2), qbgl(z)k =z,k=2,...,n,then

1 9pz(0)

al g&a &

2m )
(2.4) S(lz0®7(8),0) =& +KE—e 5 Mg
(Ig0®7(8),0) = &1+ KEf ,Zz J ‘a%j
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wherep; () = p (Iz0®¢(&)) — p({) and

-1 forj=2mod4 .

1 for j=0mod4
oj=
0 otherwise

Moreover, there exist & d(g) > 0 and ¢> 0 such that, if i3 is the unit real exterior normal tp at , for (wy,w,) € C2andt a
unit vector in the holomorphic tangent spaceptat ¢, for |w| < d, the following estimate holds

n J .
’Pz,tH w2l
J:

(2.5) OeSp (¢ +wing +wat, ) < [p (L +wing +Wat) — ()] h (Z +wing +wat) — eczz
where h is a positive function bounded away frﬁ,rﬁ’zj t(W) = PZJ (Z +win; +w2t), with

1 0jp(z) a5 7\B
alpl ooz 2= (79

Pl(2) =
jalTBI=]

and, for any polynomial P= 5 a,32%7°, ||P|| = ¥ |aqg|-

Remark. In the above Theorem the functi@ is globally defined for{ € Wo, and [2.4) is independent of the choicelpf In
particular, as it is stated in [DED3], if we restri¢to a small open set Mg, the functiond,, handA,; can be chose#™ in that set
(with respect to the two variablésandz).

2.2. Kopelman formulas. With the notations used for the holomorphic support funclg we choosdr < d such thanZ(z)| <
1071if |z— | < Rand, reducingj if necessary, we may suppose tdgh () < no implies{ € Wp.

Let us define twe™ functionsyi(z {) = X (|z— {|) andx2(2) = X (850(2)) (Whered,q denotes the distance to the boundary of
Q) wherey andy are#™ functions, 0< X, ¥ < 1, such thaf =1 on[0,R/2] andX =0 on[R +[and} = 1 on[0, /2] and} =0
on [No,+[. Then we define

X(z,¢) = X1(z. O)X2(4)

and
S20) =Xz )%~ 1L-x20)z-f = 3 Az (@-).

Now we define the two formsandQ used in[[BA82] in the construction of the Kopelman formula by
n p—
s(z{)=% (¢—7)d(¢—2)
3 (&%)

and ]
Az ) = ﬁmzq 20)d(Z—2),

whereKg is a large constant chosen so that

1
(2.6) te(p(0)+ o 520)) < 25,
0
Notice thatleS< xOeS < —Cp((), by (2.8), so it suffices to tak&, > 2C . Remark also that, i € Q, (2.8) impliesZJeS(z,{) <
Oforze Q.
We point out also tha® is not holomorphic irz and thats satisfies

iz— 7 =|(sz— )| <C|z— |,z € Q.

1

Following the construction done in [BA82], witB(&) we obtain two kernels

s
= PR S(z) A (dQ A (dg" ¥
@7 K20 =03 (oY (st 1) FOLITLT
and
—_c! (n) ; n
28) P(2) =Ci6" (2 S20) +1) (6Q

giving the following Kopelman formula:

For all (0,q)-form f, with#’2(Q) coefficients, we have, forzQ,
@9) @)= [ fOAK@O+(-1™E [ 1()AK 20+ (-7 [ 910 AK2@ )~ [ 1(Q)APE )

where K (resp. K, resp. K, resp. P) is the component of K of be-degi@g) in z and(n,n—q— 1) in { (resp.(0,q— 1) in z and
(n,n—q)in ¢, resp.(0,q) inzand(n,n—qg—1) in ¢, resp.(0,q) in zand(n,n—q) in {).
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Moreover, by definition o6, G¥ (S(z,{) + 1) = %, and, for{ € 9Q, K%z ) = 0 so that the first integral in the
Kopelman formula disappears, andifs d-closed [IZ?)) becgmes
(2.10) (2= (1778 | 1(0) Ak @Q) -
with

andgis d-closed.
To be able to estimate the kern&l$ andP, we need a fundamental estimate ’fp(() + KioS(z, Q)|
Lemma 2.1. There exists Ksuch that, forl{ € PL(2) = Py-i,(2) \ P,-i-1,(2), we have:
(M) |p(0)+ &Sz 0| 2278 20) €Qx
) |S(E.2)| 227 (20) € 0Q x Q.

Proof. Clearly (2) is a special case of (1) (becads$e {) ~ d({,z)). Let us prove (1).
First note that, by[(215), it = { +win; +Wat,

e (p(0) g0 ) <x(2.0) apla)+ 50(0)] ~(1-x(2 0P 3 [P el

and then, ifz— {| > &, De(p(Z) + K—l()S(z,Z)) < —co (&), and it is enough to prove the Lemma fok & small enough.

Let us denote’ = 2--1¢ and let(wa, ..., wn) be ang’-extremal basis af. Let us writez={ + 3" ; Aiwi = { +Aqwy +vq =
{ + A1wy + |[v1]| v. Remark that, by(216), the result is trivial|§({)| = €'. Let us supposep({)| < €.

Let 0 < kg < 1 be a real number which will be fixed later.

Suppose first that/i > 2, |Ai| < koTi({,€’). Then|}\1| > ¢ (property[Gl) of sectiom.l), and, as

mo opz (0 p(2)
M¥aj 5 200 0) M? g, (Aw)*,
2 \ngj ‘95“ 22 \a\ aWa w=0
1=0
by (@) of sectiom 2.1]1, we have
ZJ Z) a| < 12e!
}ZZM dwo’ W= o( W S ke

Using formulal(2.%), this gives
M(1-A(2)  KAZ(1-A(2)®
+
Ko Ko

M (1-A2)
Ko

— Cj_k%é’/

PO+ 82| 2 |p<z>+
0

> ‘p<z>+ ‘—Cze’ (KG+e),

the last inequality following the fact thak;| < € (property (@) of sectioh2.1.1). A#\;(z)| < 107, it follows that

PO+ So(20)| 2
0

if ko andgy are chosen sufficiently small.
We now fix&p. As De(p(Z) + %SO(Z,Z)) <0, we have

1
\p<z>+K—os<z,z>

and the inequalityz— Z|2 = |\vl||2 > 1(Z,v,€)? > € (properties(B) and{5) of sectin 2.1.1) proves the Lemnihancase.
Suppose then there exists 2 such thafAi| > koti({,€'). By (@) of sectiof2.1]1, we havbs || ~ 1({,v,€’), and by [[2) of

sectior 2111, we geteing tangent t@ = p({) at{)

als ()| 1@ ve)™ P =

2<|a+B|<m 1<|a+B|<m

x(z,z>\p<z>+Kioso<z,z>\ LA x@0) - 7P

8l (Q)| TG ve) P = ¢

and [2.5) implies
De&(za Z) S CP(Z) - 018/,

and we conclude by the same argumentmn |°. O
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Lemma 2.2. If g > 1, all the derivatives, in z, of &, ) are uniformly bounded iR x Q.

Proof. RecallP(z,{) = cn% (dQ)". If 850(Z) > Mo/, this is clear by[[ZI6). Supposhq ({) < Mo/2. If [z— | < R/
KES(Z@HP(Z)

thenQ is holomorphic inz and the component dtlQ)" of be-degre€0,q) in z (recall we supposg > 1) is identically 0 which
impliesP = 0. If |z— {| > R/2, the preceding Lemmas, gi\{r%S(z,Z) +p(Z)’ > (R)®™ (because, for unitary, T(zv,&) < £¥2m),
and the Lemma follows easily. O

Lemma 2.3. For all positive integer s there exists a constarisCsuch that, if g= [, f({) AP(z () is thed-closed form of(2.10)
there exists a solutionso the equatiovs = g satisfying the estimate

IVslls < C() [ fllL2()
where||.| s denotes the Sobolev norm of index €in

Proof. This is an immediate consequence of the preceding Lemméanddgults on the WeighteﬁNeumann problem obtained by
J. J. Kohn in[[Koh78]. O

This last Lemma shows that to obtain sharp estimates fotisolaf theg—equation in lineally convex domains of finite type, like
the one stated in TheordmP.1, it is enough to prove an estiamathe integral

PRGNSR
Q

2.3. Proof of Theorem[Z2.1. By formulas [2.¥) and (219), we have

Ki(z) = nil C{(P(Z)kJrls/\ (05Q)”*Q/\ (az{g)kw—n/\ (028)”"“1

of (2.10). This will be done in the next Section.

k+1
e 2= 2P0 (S0 +e(0))
A priory, formula [2.9) is only valid foz € Q. But, as noted by H. Skoda in [Skd76], the form
/Q () AKYZ Q)
is continuous irQ if the kernelk?! satisfies a condition of uniform integrability:
(2.11) / KMz g)avig) =0 ().
QNP (
uniformly for z satisfyingdyq (z) < € ande small enough
Under these hypothesié € P:(2)), Q(z,{) = Z.lei (z,¢)d (& — z) is holomorphic inzandK? is reduced to
p(Z)”’qHS/\ (0#2) nfq/\ (aﬁ)qfl

Kz {)=c

n—g+1

2- 2 (S0 +p())
To prove [2.111), we use the coordinate systém. .., {») associated to thi, d;q (z))-extremal basis and the following estimates:
Lemma 2.4. For z close tadQ, € small and{ € P:(z), we have:

Q) ’0(.( )‘ S 559 Zs ((1]]) of schoﬂEl)
) 1Rz I +1Qi(¢,2)| S 557 (seelDFOE));

3) ‘?Q' z4) ’ (see[DFOG])

N r.(zs

A straightforward calculus shows that

(dZ—Q)niq _ (Flz))”ql (Z/ |—| /\le/\dZJ

=(ig,...in—q) k=1 Gi el jed
I=(j1sin—q)
1o\ / ap({) 9Q,(z.0)
i(—) Qi (2.0) (20 A gz, A\ dZ;.
P(Z) |:( z )koe{l..Z.n q} dZJ 0 Sklgn*q aZJk é\l J/E\J J
J:(jl ..... jn,q) k#ko

where Z' means that thg (resp.j;) are all different.
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—q+1
Suppose] € P? = P:(2) \ P,,(2). Then, by Lemm&211z— {|* (K—l()S(z,Z) +p(Z))n o > gh=atl|z_ 7| and, by Lemma
24,
K'z,0)| < 5 (p({) +e)e™
- (izsin-q) HE;?Tmef”*q+lIZA*ZFq71
(Jl!"'!jnfq)
23 1
(15 e) Tt TicTi 2= 2247
(Jl ----- jn—q)

|
J

A

1=(i

J=

becaus@,q(z) < € and using[(ll) of sectidn 2.7.1.
TheT; being supposed ordered increasingly, it is easy to see that

n—q

' 1 ' 1
S STh-gra(z8) [ 1(z ),
/Pg |Z* Z|2q71 . Pg |Z* Z|2q71+£2q71 n—ag+ ( )IE! 1 (

and we obtain
L IK{@ 0| aV(2) £ T qa(z8) =0 (1),
Pe

and, if we denot®. = P.(z) =P (z,27'¢) \ P (z, 27(i+1)€)’

Kz Q)| dv :w/ Ki(z,¢)|dv <°°o e2-)"™ —o(g¥m),
J IKealavie =5 [ kol avie) £ 3 of(e2 ")) =0 (=)
which ends the proof of (2.11).

To finish the proof of Theore 2.1, by Fubini’'s Theorem, weéhvprove that

[ K2 QA1) do@ S 11,
and, by Lemm@&Z2]1, it is enough to see that,farear the boundary anglsmall enough (to have the reduced fornkdj,
‘ KYz ) A f(2)] da@) < ||F()|lx.
Jrren ) KO 1(0)] 602 1@l
To see it, let us deno®e= 3, ({), Q¥({) = P:({) andQL({) = Py, ({) \ Pi-1,({), i > 1, and let us estimate

/ K227 ()| dota
20NQL (¢

using the coordinate system associated to(th,é' )-extremal basis. By the properties of the nojm, it is enough to prove
N

the estimate when the formis (in the extremal coordinate syster)= (dZ) , With |I| = g. Then, denoting = (iy,...,iq) and

J=(j1,--+in-q), UI={1,...,n},KL(z,{) A f({) is a sum of expressions of the for%ﬁ, i=1,2,with

n—g+1
D(.2) = [z ¢/ (Kiosu,o +p<z>>

and
"99Q, () - _
Wi = ({m— ddi A d¢ d
b= (Gn=zm)ple) [0 i /\1(“5)& Z
L|=g—1
and, if1¢1,
IR/ I (OPN aQ'k A (42 1 dZ dz
We = (Gn—2m) = Q%(z,z)lgkgniq /:\1 (dgi nd2)) é\L Z.
ksko [L|=g-1

Now, remarking that
do(z i R i
we get, using property{5) of sectibn 2J1.1,
Ly oo B 1110 dot@ 5 G2 min L(e.2e) pld)
L({)noQ ~

o min 0008 o i Ti(8:05a(d))
and, becauseé I,

~ 2ig je 2ig 2g jel g el 280(0)

1 (6,2¢) _ . Ti(Z:8a(0))
A f(Z)‘ do(2) S i = S N 800 (C)
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and the proof is complete.

3. NONISOTROPIC ESTIMATES OF CLOSED POSITIVE CURRENTS ON GEOWIRICALLY SEPARATED DOMAINS

In this SectionQ is a pseudo-convex domain @' with 4 boundary which is geometrically separated at a ppint Q. To
state the main result of this Section we fix some notations
We denote byp a defining function o2 andN = Tp ‘2 ZI o7 2dz the unit normal defined in a neighborhoddof dQ. Recall

(see [[CDO08]) that the hypothesis made®@mneans that there exists a constint- 0, a neighborhood =V (py) C U of pg and
a (n— 1)-dimensional complex vector spaE# of (1,0)-vector fieldsz in V, tangent top (i.e. L(p) =0 inV for L € E®) such
that, at every poinp of V N Q and for every 0< 6 < & there exists &K, p, d))-extremal (o p, &)-extremal) basis whose elements
belong toE. We will denote byE! the complex vector space generatec@handN.

ForL € E',0< e < & andzc VNQ, in [CDO8] we defined the weigli(L,z ¢) as follows:

If L=L;+a,N, the weight is defined by

2/|1Z|

2
ool

g2’

£(9p)(2)

F(L,ze) = c

ZLem(L)
whereM is an integer larger than the typg4, (L) denotes the set of listd 2, ... LX), of lengthk < M, LI € {L.,L;}, and
2(0p)(2) = LL...Lx2 (<ap, [LH,L"} >) (2).

Remark.To keep the same notations aslin [CDO08], the normal is dermted in opposite of the preceding Section where it was
denoted by ;.

Now we denoter (L,z,¢) = F (L,z s)’l/z. If vis any non zero vector it", andz € V N Q, there exists a unique vector field
L =L, in E! such that (z) = v. Then we denote

050(2)
1(zVv,€)’

1(zv,€) =1(L,z¢) andk(z,v,€) =

where d;q(2) is the distance fronz to the boundary of2. Whene = 9;q(z) we denoter (z,v) = T(zVv,9q(2)) andk(zv) =
k(zV,890(2)).

To simplify the exposition, we will also use the followingteinology. For each poirgc V N Q and each & & < &, if (i), 1<i<n
is a basis oC" such thatn = N(2) and(Li);<j-, 1 (Li € E?) is a(z &)-extremal basis such that(z) = v; we will say that(v;), 1<i<n
is a(z d)-extremal basis.

Suppose now tha is a%™ (1,1)-form defined inv N Q. Then, following [BCD98], we define, farc VN Q,

_ 1©(2) (uV)|
|0@l =IO = sup ;=

u,veC*
e 0@ (uy)
2) (u,v
1©0@)|g = sup ——r——,
® uvees ullivi
where||.|| denotes the euclidean norm.
Similarly, with the above notations, we extend the notatidefined in formulag(22) and (2.3) f@, q)-forms to forms defined
in a geometrically separated domain.
The aim of the Section is to prove the following result:

Theorem 3.1. Let Q be a pseudo-convex domain@" which is geometrically separated at a boundary poigt Phen there exist
two neighborhoodsV and W V of p and a constant C- 0 such that, if© is a smooth positive clos€d, 1)-current defined in V
then

|, 32@10@lav(@ <C [ 3@ 0@ V(2.

If Q is a bounded pseudo-convex domain which is geometricafigreged at every point of it's boundary, we choose a finite
number of pointg;, 1 <i <N, in dQ such that the set of the neighborho®ls=V (p;) is a covering? of 9Q, Vo = Q\ Ui>1 Vi,
and we define . _
v o_ |
16@)l =max|©(2).

where,[0(2)[ = [©(2)[[{ if i > 1 and|0@)[[g = |O()||e.
With this notation, the local result immediately implieslatzpl one:

Theorem 3.2. If Q is a pseudo-convex domain@! which is geometrically separated at every point of it's bdairy, a covering?
of dQ being chosen, there exists a constant O such that

| a@0@I V@ <C [ &a(@ 0@V

for all smooth closed positivill, 1)-current® in Q.
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In fact the two statements are equivalent. [In [CDO08] it isvewthat if Q is geometrically separated gy € dQ then there
exists a bounded pseudo-convex doniaiwith 4 boundary contained i which is geometrically separated at every point of it's
boundary and whose boundary contains a neighborhogg iof the boundary of2. Thus, Theorer 311 fad® follows immediately
Theoreni 3.

We now prove the Theorems. As it is very similar to the proofhef same result for convex domains given in Section 2 of
[BCD98], we will refer to that paper for many details. Pretyswe will only give the mains articulations and the probfemmas
where the differences due to the fact that the weifhése defined with vector fields instead of coordinates systsmselevant.

We still use the previous notations for the defining functmf Q, the pointpg € Q, the neighborhood of pg andW a
neighborhood ofy, relatively compact itv.

In Section 3.3 of[[CDO8] it is shown that there existgzae)-adapted coordinate syste(d;); used, in particular, to define
“polydiscs” centered at the poirtby

P:(2) = P(z, €) = {g= (&); suchthat|§| <ct(zVi,€)},
wherev; =Li(2), 1<i<n, (Li); i<, being the(z €)-extremal baS|s, andla sufficiently small constant (depending@h Moreover,
the set of these polydiscs are associated to a pseudo-@istafith these notations we have
Lemma 3.1. Forze VNQ and ve C", v#£ 0, if w € P:(z) we haver(w,v, &) ~ 1(z,v,€).
Proof. LetL, (resp.Lw) the vector field belonging t&; such that ,(z) = v (resp.Lw(w) = V). Let (Li);-;, be the(z ¢)-extremal
basis and let us write; = 31, biLj andLy = ${L; biLi, bi, b € C. If (&), is the(z €)-adapted coordinate system let us write

Li(.) =yial(. )az , with &, (z) = &' so that

Zbl andLy(w Z(Zb ) di

In [CDO8] we proved (Proposition 3.6) thatyife P:(z),
i 1 —1
alw)| S FzeR Vze).
The basigL;) being(z, ¢)-extremal we have immediately thatL,,z €) ~ F(Lw,z €), and, using another time Proposition 3.6
of [CDQ8], thatF (Lw,z €) ~ F(Lw,w, £) finishing the proof of the Lemma. O
The proof of the Theorems is done in three steps.

First step: definition of a family of polydiscés the polydisc$:(z) are associated to a pseudodistance, there exists a constan
M such that, ford and ¢ sufficiently small, there exists poings, 1 <i < n(9d,¢) belonging to the sefp = —d} such that, if
S5.6(2) = S(2) = P(2N{p = -6} andS; (2) = S(2) = 2P(2) N {p = O} then
(1) {S:(z)}; is acoveringoWn{p = —6}
(2) foralli, Si(z) is contained iV N{p = —d};
(3) forallze {p = —9d}, there exist at mos¥l indexi such thatr € Si(z).

Let a €]0,1] be a parameter that will be fixed later. For= a¥, k > ko, let (;k) 1<i<n, be a family of points satisfying these

properties fod = a* ande = a*/2. The familyUyy, {2, 1 <i < n} will be denoted by(z);.

Forzclose enough taQ andd > 0 sufficiently small, letzs(z) denote the point where the integral curveétgf passing through
meets the sefp = —d}. V being small enoughys is € in V and any finite number of derivatives of is bounded independently
of .

For allzj belonging to(z);, if —p(zj) = a* we setS; = S akio(Zi) S = S*k/z(zj)

Qj = {we Q such thar* > —p(w) > a***, mi5(w) € sj},

and
Q= {We Q such thao*™1 > —p(w) > a2, m5(w) € S’f}

We supposéo chosen sufficiently large so thigh Qj C V. Moreover, note that there exist at modt 4ndex j such that € Qj.
Second step: some estimates related to the raglius

Lemma 3.2. Letze VNQ, ve C", v# 0, and m an integer larger than the type of. p

1/2 tm
(1) If & > &, (%) T(zV,&) 2 1(zv,&1) 2 (%) T(zV,&).

(2) Ifv=y3,wLi(z), where(Li, 1 <i < n) is the(z €)-extremal basis, then
n
|Wi|k(Z,Vi,€) = k(Z,V,S) .
2
Lemma 3.3. If z= ri5(w), then

1/ l/m
(1) it 8a(w) < 80 (2), T2v) (229) " S w) S 7(zv) (229) ™
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- Saw)\ Y™ Sa(w) \ 72
(2) it a(w) = 50(2), Tz V) (T2 ) S TWv) S T(2V) (3209) .
Proof. We only need to prove 1., and, by Lemmal3.2 (1), it is enoughdoepthat
T(ZV,%0(2)/2) ~ T (W,V, %(2)/2).

This follows the fact that, it ; = 3;aL? andLy = 3;biL? are so that,(z) = Ly(w) = v, thenL, = Ly + O(&q(2)), and, thus

F (Ly,2 %0(@/2) = F (Lw,Z 3a(@)/2) + O(1) andF (Ly, W, 30(2)/2) = F (Lw, 2 %0(@/2) + 0(1). 0
Lemma 3.4. If (Vi) is (2, %a(7)/2)-extremal basis then, for @ S, sup,, ¢ ZJ< ~5n, k o V' V')
Proof. The proof is exactly the same as|in [BCD98]. It follows Lenima @) and Cauchy—Schwarz mequality. O

Lemma 3.5. Letw be a pointin Qand(W;); be the coordinates of ;) (W) in the(z;, %¢(#)/2)-adapted coordinate syste(rz‘j)_.
|
Then

%(W) < T(ZJ’er), r<n—1l<n,
07, (zj\)
where(Vi)1 i<, is (2, %a(z)/2)-extremal, and
o0m(Wn) 0ya(z))
07 (zj,v)

the constants depending éhanda.

Proof. As in [BCD9€], the proof is reduced to the case whefe) = p(z;), then one consider @v, %a(z)/2)-extremal basis and
uses Lemmpa3l1. O

Third step: proof of Theorem4.1 and Theofen] 3.2t ¢o be a¢™ function supported if—2,2] and identically equal to 1ip-1,1],
0< ¢ < 1. LetW = W, be a¢* function supported ifa?, a 1] equal to 1 orfa,1], 0< W < 1.
With the notations of Lemn{a3.5 we define, foee Qf,

o0 =e (g ) o (e ) 1% ()

Applying Stokes’s formula to the forrf-p) Moo AN, wheren, =i ldz“/\[‘ idzr /\dzr on Q, using the previous Lemmas

and a convenient functioW, (see[BCD98, CD97]), for allr > 0, the calculus made p. 404-408)in [BCD98] leads to the falgw
estimate

/Q_ o (W) [[OW) [ dV(W) < [B(G)+O<dia”‘QJ>/a+£C(a)]/*5aQ(W)H9(W)||de(W)

(@) [, ralwlIOw e dv(w

with limg_0B(a) =0.

To finish the proof of the Theorems choose pointsO < i < N such that the neighborho®&(pi) is a covering ofdQ. Then
choosinga small enough so thg(a)MN is small, there small enough so tha&C(a)MN is small and finallykg large enough so
thatO(diam(Qj)/a is small, we get @&, > 0 such that

oW VW) < [ dal dv(w
Lo sy W O ) [O(W) £ V(W)

and
800 (W) [0k aV(w) 5 [ & dv(w
/Qﬂ{%(vv)s%} oo (W) [©W)]lk 90 (W) [[O(W) g dV(w)

which proves the Theorems. O

4. NON ISOTROPIC ESTIMATES FOR THE-OPERATOR FOR GEOMETRICALLY SEPARATED DOMAINS

Theorem 4.1. Let Q be a pseudo-convex domain@® which is geometrically separated at a boundary poigt Phen there exist
two neighborhoods of pW &€ V such that there exists a constant(0 such that, for any smooth clos¢tl 1)-form® in V, there
exists a smooth solution w of the equation€® satisfying the following estimate

[ wilav=c [ so@]elav
w W

The proof of this result is quite standard and we will justgtdbe proof made in Section 3 of [BCD98].
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Proof. We choose fo¥ a neighborhood contained in the neighborhddgy) defined in sectionl3 and sufficiently small so that there
exists a neighborhod¥ € V of pp and a poinP €V such that there exists an openget. Q containing(W N Q) U {P} which is
starshaped with respect B Solving the equatiodw= © in U, we can assume, without loss of generality, that the supidt
does not contai®. By translation, we can also assume tRas the origin inC".

Now, forze WNQ, M; : z— tzbeing the homotopy between 0 andPoincaré’s formula

1
w= M (i2(@))dt,

wherei (©) denotes the inner contraction®fwith the fieldZ; = § andM;" the pull-back operator, gives a solutiarof the equation
dw=0inWnQ.

To finish the proof, we have to estimate this solution, andiHis, following the calculus made in [BCDO8] p. 409, we ohlgve
to verify the following Lemma:

Lemma. There exists a constant > 0 such that, fold <t < 1 and ve C*,

%a(t2)
%a(2)
Proof of the LemmaBYy definition of the polydiscs, there exists a constarttlepending only oe) such that € P55, t2) (tz). Then,
by Lemmd3L1 (tz,tv,Kdyq(t2)) ~ T(z,tv,KIq(t2)), and thus (tz,tv, 9yq(t2)/2) ~k T (z,tV, 9q(t2)) > T(z,V, J3q(t2)), because
t <1, and the Lemma follows Lemma3.2. O

Ym
T(tz,tv,050(t2)/2) > o ( ) 17(z2,v,030(2)/2).

O

By a standard regularization procedure applied to Thebrdhardd classical topological arguments ($ee [Sko76] faaitigt the
following global result is easily deduced:

Theorem 4.2. Let Q be a bounded pseudo-convex domairfhwhich is geometrically separated at every point of it's bdary.
There exists a constant€ 0 such that, if© is a (1, 1)-closed positive current iR whose conhomology class iR, C) is 0, there
exists a solution, smooth@ is smooth, of the equation dw® in Q satisfying

Il < Cli©f-

Here, the|. ||k norm of a(1,1)- current® with measure coefficients is defined using the covevirdefined before the statement

of Theoreni 3.R:
[(©;u, V)|
© :/ d|l sup Xi————————9%0a(2) |,
||| |||k o <i;u’V€E():* Xlki(z, U)K(Z,V) dQ( )
with ko(z,u) = ko(z,v) = 1, andy; is the characteristic function &f.

5. CHARACTERIZATION OF THE ZERGSETS OF THE FUNCTIONS OF THENEVANLINNA CLASS FOR LINEALLY CONVEX
DOMAINS OF FINITE TYPE

It is a well-known fact that ifX is the zero-set of a functiofi of the Nevanlinna clasbl(Q), then it satisfies the Blaschke
condition: if X, are the irreducible componentsXfandny the multiplicity of f on Xy, then

an/ Opq dik < +oo,
Jx,

whereyy is the Euclidean measure on the regular paXofClassically the datéXy, nk} is called a divisor.
If ©is the(1,1)-positive current classically associated to the diviey, nc}, with our notations, this condition is

[ s ll®le <+

For more details we refer to [BCDO8].

To prove Theoreiin Il X satisfying automatically some topological condition, kstandard regularization process, it is sufficient
to prove that there exists a const&nt- 0 such that if® is a(1,1)-closed positive curren%™™ in Q, there exists a functionin Q
solution of the equatioiddu = O satisfying the estimate

[ ludo<c [ salele:
a0 Q
For details see [BCD98] and [Ska76]. _

As usual, the main part of the proof is done in two steps: tag&mi of thed-equation and, then, resolution of theequation. The
second step is done in sectldn 2. For the first one we use thiksre$ Sectiong13 arld 4. As this two Sections are written &ovegal
geometrically separated domains and in a local context,ivespme precisions (see also [Coh02]).
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5.1. Non isotropic estimates on closed positive currents in lir@ly convex domains. Q being lineally convex of finite type it
is completely geometrically separated ([CD08]). On thesotiand, the proof of the Corollary at the beginning of Secldl of
[CD08] shows that the radiug(z,v, ) defined for general geometrically separated domains areaequots to the ones defined by
M. Conrad in[[Con02] (and used in sectign 2)

Then, the norm|©(2)||; used in Theorern 3.2 is equivalent to the ndf®(z)||, defined with the radius; of [Con02] (and is
independent of). Thus, Theorem 312 means that there exists a conGiasuch that

[ @@ 10@) v <Ci [ &o@ 0@V

5.2. Resolution of thed equation in lineally convex domains.As Q is lineally convex we havel?(Q,C) = 0 (see for example
[Con02]). Thus, by Theorem 4.2 there exists a smooth fersach thadw= 0 in Q and [, [[W(2)||, < Cz Jq %0 (2) |O(2)||dV.

6. REMARKS

The method of resolution of the equatiau = f presented in sectidd 2 can be used to obtain various otlieragss.
For example, the estimates obtained for convex domainsité type in [CumO01&, DFF99, Fis04, Hef04, Ale05, Ale06] can b
proved for lineally convex domains using our method (see [$06]).
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