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Abstract

We describe a time-resolved monitoring technique for logemeous
media. Our approach is based on the spatial variations oftiss-coherence
of diffuse waves acquired at fixed positions but at differdeties. The tech-
nique applies to all kind of waves, provided that waveforias be acquired
with a sampling frequency much larger than the wave frequena locate
and characterize a weak change that occurred between sivecasqui-
sitions, we use a maximum likelihood approach combined witliffusive
propagation model. We characterize this technique, cal@@dADIFF, with
the aid of numerical simulations. In several illustrativeamples, we show
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that the change can be located with a precision of a few wagtie and that
its effective scattering cross-section can be retrieved investigate how
the accuracy and precision of the method depends on the mwhbeurce-

receiver pairs, on the time window used to compute the aros®lation

and on the errors in the propagation model. Applicationslmfound in

non-destructive testing, seismology, radar and sonatitota

1 Introduction

Waves constitute one of the primary tools to detect and éotmahporal changes.
If the waves do not interact with any other obstacle than éinget, conventional
imaging technigues based on geometrical consideratigig.afpcontrolled pulse
emitted into the medium is scattered by the target and theseate recorded with
areceiver. These techniques can be improved using seeerraes and detectors,
and extended to locating several targets at the same timéngsas the typical
propagation time in the medium is much smaller than the exgagf mean free
time, i.e. the average time between two scattering evergsam® in the single
scattering regime. In this case, the precision for detgaimd locating a change
is limited by the Fresnel zong\L, with L the typical propagation distance in the
medium and\ the wavelength. Applications in every day life abound: theyer
high-stake fields like ultrasonic medical imaging, nontdegive testing, seismic
exploration, radar aircraft location or sonar.

This simple picture does not apply in heterogeneous media as polycrys-
tals, concrete, or volcanoes. Imaging these materialsimadestructive way is an
important issue for miscellaneous applications like manmig temporal changes
or the assessment of ageing and damage. In heterogeneoiss nagdtheory
is not relevant because the scattering mean free time is mmettier than the
typical record duration. A pulse emitted into the mediumesignces numerous
scattering events and the output signal recorded at laggeraie from the source
displays complex details that depend on the interactiohwdsn the wave and
each of the scatterers. Beyond a distance called the treansgan free patli*,
the memory of the initial direction of propagation is lost. this regime, the av-
erage energy distribution in the medium evolves as a ddfugirocess and it is
relevant to describe wave propagation with probabilities.

The problem of locating an isolated change in a multipletscag sample
has received some attention in the past, particularly ircepThe space and time
correlations of intensity in a speckle pattern probed by @anmore receivers al-



low one to observe the diffusion of scatterdrg [B0, 3]. Onahe hand, diffusive
wave spectroscopy|[5] and its variants have become stamolalsifor investigat-
ing collective changes in the medium. On the other hand pusvauthors[[18]
have shown that a local perturbation within a collection cdtgerers (the back-
ground) essentially acts as a dipole source of intensitgnbity variations enable
the detection and location of a crack from observationsangmission[[11], 31],
or more generally to locate an object with known charadies§8,[30]. The weak
sensitivity of the method has been illustrated by numestadiies [3}1]. Indeed,
a large amount of ensemble or frequency averaging (typid4élD realizations)
is required to distinguish the intensity fluctuation caubgdhe defect from the
background speckle pattern. From a theoretical point af\viee weak sensitivity
of methods based on intensity variations can be traced lpetlietcancellation of
scattering diagrams that dominate the decorrelation oewaamns, a cancellation
which is imposed by the optical theorem. This renders tephes based on inten-
sity variations almost inapplicable to solid media becarsgemble averaging is
impractical. These points will be further illustrated belo
In acoustics, one can commonly record a large number of sigmigh per-

fect temporal and spatial precision, which is advantageougpared to optics. A
pulse emitted into a heterogeneous medium gives rise totioregrecords with a
pronouncedoda, a term which refers to the arrivals following the ballighalse.
Several techniques use the coda to retrieve informatiorherevolution of the
medium. In seismology, the monitoring of temporal changethe crust was
initiated in the mid-80’s, using repeating small earthcpsafZ]]. Later on the
method was applied to volcanoes and revealed temporal ekarigelocity prior
to eruptions[[2]3] or measure the effect of permanent danm@dje [Recent de-
velopments of this technique have been popularized undetettm coda-wave
interferometry (CWI) [2B[A9]. The correlation of wavefasrimspired other tech-
niques, like diffuse acoustic wave spectroscopy (DAWE) F&cently DAWS has
been used in damage monitoririg][L7], 29] but a large rangehef atpplications
are possible[[37]. For a broad review of applications of CiWgeophysics, we
refer to [22]. In a number of previous experiments, chandesaveforms were
characterized by a stretching of the coda and interpreteéerins of travel time
variations. Such an approach allows the detection of weak@#s, but gives little
information concerning the location of the chanfig [Z3,[Ih /4] In many appli-
cations, waveforms changes result in decorrelation ofitjeats with or without
additional stretching. This renders the interpretatiora dbcal change in terms
of travel time fluctuations problematic. Also based on thacept of correla-
tion, techniques have been developed to recover the Griarcgon in an open
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medium based on the cross correlation of noise sighg[s [B2BB,[1R], These
noise-based Green’s functions can in turn be used in a geaissage interferom-
etry technique with applications in volcanology and fautimitoring [2%,[3B[K].
Recently, Aubry and Derod¢][2] proposed an alternativertiegte based on the
singular value decomposition of the propagator, but thehrieque is limited to a
sufficiently strong extra scatterer.

In this article, we report on a different approach to locateemk isolated
change. Our technique, called LOCADIFF, uses the cormelatcomputed along
time windows in the late part of the records for several pafrsources and re-
ceivers. We use a numerical model to compute the most lilaitipn of the weak
change, in terms of probability. The purpose of this ariik® introduce the prin-
ciples of this technique and discuss its properties. Algfiotine technique applies
to waves of all kind, use elastic and acoustic waves fortilai®ns, because their
frequency range allows an easily accessible experimes¢éalkxperimental tests
and results have been already published separately in fahd will not be
detailed here. To introduce this work, we observe in a finitiereince numer-
ical simulation the correlation loss induced by a weak cledogtween impulse
responses (Sectidh 2). Using the theory of multiple sdattidBQ], we derive an
expression of the decorrelation induced by a weak changedtidd[B. We then
present the inversion technique, based on the maximumhdad principle in
Section[# and its properties are thereafter investigatedeXjglore the implemen-
tation of boundary conditions in Sectifjn 5. Finally, we dissthe accuracy of the
technique and possible improvements in Sedfjon 6.

2 Observations of correlation loss after a weak change

Under the denomination “weak change”, we understand a thange of impedance
contrast caused by either the apparition of a defect, ora kdtange in a phys-
ical quantity, which modifies the effective value of the seahg cross-section if
one describes the medium in the multiple scattering frameh % weak change
between two sets of acquisitions is made by removing a sscaéerer from a
numerical model of a multiple scattering medium.

It is already known that a weak change can be detected int@gogtmedium
because it slightly modifies the Green’s functions. The amai modifica-
tion is usually quantified by measuring the cross-correfatietween waveforms
recorded at different time§ JR1]. We illustrate the signalgessing with the aid
of numerical simulations of the wave equation in a mediumtaiomg a large
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number of identical scatterers.

2.1 Numerical simulations of wave propagation

As a first investigation, we perform 2D numerical experinsenitacoustic wave
propagation in heterogeneous mefli&Jsing a finite difference scheme, we solve
the wave equation with absorbing boundary conditions; threedsion of the sim-
ulation grid is50Ao x 50\, with a spatial discretization stey /30, where\, is the
central wavelength. Synthetic data are computed on a laeay of 9 receivers
located at the center of the medium and 10 sources are rapdistibuted over
the grid. Sources and receivers are kept fixed throughouetperiments (see
Fig.[1). To mimic a multiple scattering medium, 800 emptyitias of diameter
Ao/3 are randomly distributed over the grid. In the frequencydbaininterest the
average scattering cross-section was numerically estored>. = 1.6, along
with the transport cross sectidft = 1.1),. Table[ll summarizes the physical
properties of the simulated medium, including the numbescatterers (with den-
sity n), the transport mean free path = L, the diffusion constanb = <

n>*’ 2
and the Thouless time, = f—;, whereR? is the mean squared distance between
sources and receivers. Note that these quantities areag@dlunder the “inde-
pendent scattering approximation”, which assumes thas¢héering events are

all uncorrelated.

| Parameter | notation| value |
Number of scatterers 800
Transport mean free path  ¢* 2.8\
ke 18
Diffusion constant D LAN/ T,
Thouless time ™ 68 T
Coda decay time (leakage) 7, 240 Ty

Table 1: Physical parameters of the simulations in norradlimits.

The signak(t) emitted by each source is a pulse with central frequeiend
a Gaussian envelope (100% bandwitdh at -6dB). Using saunaerecord with

The code named ACEL has been developed by M. Tan-
ter, Institut Langevin, Paris France. More details in
http://ww. institut-langevin.espci.fr/Mckael-Tanter, 143
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Figure 1: Distribution of sources, receivers, scattereteé numerical simulation.
The removed scatterer is indicated with a black circle.
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Figure 2: Normalized waveformig(t) obtained at receiver 1, for source number
1 (top) and 3 (bottom). Inset: zoom into the late waveformée black solid
(resp gray broken) line corresponds to the record acquieéat® (resp. after) the
change. For illustration purpose, the valuelgfwas set tol us. The distance
between receiver 1 and sources 1 and 3 are respectiély* and9.0 ¢*.



receiver; the signalh;;(t) during 300 oscillations of periodl. Typical wave-
formsh;;(t) are plotted in Fig[]2. The long tail of the record in Hiy. 2 esponds
to arrival of partial waves that have been scattered setierak. Notice that the
ballistic arrival is not distinguishable in the wavefornigsmure[2. A long-lasting
signal and the lack of ballistic arrival constitute evidesithat we are in a strongly
scattering regime, in agreement with our estimates of #resprort mean free path.
During the first run of the simulatioriy) x 9 impulse responsés; are recorded
and stored. On a second run, one scatterer is removed arfteaset of impulse
responses;; is evaluated. Both;;(t) andh;;(t) display signals lasting a large
number of ballistic times.

2.2 Detection of a weak change

The details of the complex waveforms shown in Figyre 2 aréligensitive to
the positions of the scatterers. Each waveform can be uoderas a fingerprint
of the medium. As our goal is to detect a single scatterensokal, we need to
exploit the information contained in both the amplitude ahdse of the signals.
A comparison between the recortlg(t) and h;;(t) reveals that for short times
up to 100 7, =~ 307*, no difference is visible in the signals. We observe small
differences between the waveforms at later times that ae¢ystue to the change
in the medium. Figur€]2 (bottom) shows a comparison of thesfeaxns between
hs1(t) andhy, (t) in the time windowt € [210 Tp, 220 Tp]. The observed decor-
relation is too large to be attributed to numerical noiserehs thus evidence that
the waveforms are sensitive to the removal of only one seatte

The differences between the waveforimsandh;; are quantified by the decor-
relation, or correlation loss, betweér; and#;;. The decorrelation is computed
on a time window of duratioB7" centered or using the formula:

o1 O () L (u)du

\/ " i 2dufHTh’ u’)Qdu’.

1)

The typical width of the time windowl" is of order57,. Experimentally, en-
larging T’ partly eliminates the effect of noise and reduces the fltictng of the

correlation coefficient. However, using a large valueforesults in considering
simultaneously paths with very different lengths. We addithis important point

in Section 3.p.



2.3 Spatial dependence of the decorrelation

In Figure[2, it is noticeable that the differences betwggnand? , (top), are
much smaller than the differences betwegn and #;, (bottom), even in the
late signal. The decorrelations computed over the intédal 7;,, 220 T;| (t =
215Tp) are K 1(t) = 5% and K3, (t) = 27%, respectively. Consequently, the
amount of decorrelation depends on the positions of thececamd receiver with
respect to the local change, a property which holds evenrinlate time windows
in the signal. For a given configuration of source-receiaryy we obtain a set
of observed decorrelations, which is characteristic ofrétative locations of the
sources and receivers to the change in the multiple scagtenedium. We will
now demonstrate the possibility to locate the change anth&t its cross-section
from the knowledge of the source and receiver positions hactorresponding
decorrelation coefficients. To do so, we develop a theaketitodel to predict
the decorrelation coefficient of waves induced by the aolditf a change in a
heterogeneous medium, in the diffusive regime. We recdhémnext section the
necessary elements from multiple scattering theory.

3 Wave scattering theory

We assume that the medium can be represented as a uniforgrbachkl with
embedded inclusions. Only the scalar case is considered Hére scattering
properties of an inclusion will be described by #tsmatrix, defined in operator

notation as[[26], 10]:
G = Go+ GoT Gy (2)

whereGj is the retarded free space Green’s function @ads the Green'’s func-
tion in the presence of the scatterer. For a non absorbirntgseq energy conser-
vation implies the following optical theorem:

ST (w)

- ko = o(w), 3)

whereos is the scatterer cross-section.

3.1 Correlations between two slightly different media

We want to predict the decorrelation of waveforms in a medwinere a weak
change occurs. Although we will employ a statistical apphdaased on ensemble

8



averages, in general we have access to only one realizdtiba tandom process.
Therefore we introduce the following estimator of the crosgelation function
based on the observation of a single diffuse signal:

t+T
It 7)= %/tT VAt 4+ 7/2)r (' — 7/2)dt, 4)

wherev) is the scalar field. The superscriprefers to the medium in presence
of change while the superscriptrefers to the medium without it. We have in-
troduced an analog of the Wigner function which is most carem to analyze
non-stationary signals. The empirical cross-correlatan be decomposed into
internal and external frequenciesand(?, respectively:

1 o o ~ .
L, )= ) /_OO dQ /_OO dwl'(Q, w) exp[—i(QU + wT)] (5)
where the frequency-domain cross-correlation reads:
[(Q, w) = sinc(QT) Y (w + Q/2) (w — Q/2)*. (6)

The frequency) < w describes the slow envelope of diffuse waves with central
frequencyw. Equation [[B) shows that basic quantity to be computed is

(G*(w+ Q/2)GH(w — Q/2)"), (7)

where (G is the retarded Green’s function. We will denote Rythe 7-matrix
of the change which is assumed to appear at the postijorin diagrammatic
notations, such as the one employed in Fidlire 3;/thmatrices are represented
by crosses. The transport of energy in the scattering medudescribed by
the ladder propagatak, which is defined by the diagrammatic self-consistent
equation shown in Figurg §128, 1].

We use the field-field correlation function in the diffusersd

T(w, Q, s, X, 1) = /dr1 /drg Py(w, Q, s, r1)Le(w, Q, 11, Xo, T2)Py(w, Q, 19, T).
(8)
Quantities labelled with ™ are implicitely evaluated atenfrequencyv and outer
frequencyQ. L. is the correlation between between the wavefields recorded b
fore and after the change occurel (s, r;) and Py(rs, r) describe the ballistic
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Figure 3: The Bethe-Salpeter equation defining the so-aédiégder operator..
The solid line and dashed line represent the retarded ens@wdéraged Green’s
function and its complex conjugate, respectively. Theatbtine connecting the
two vertices indicates that they represent the same seatter

propagation from the source to the first scattering everlfierm the last scatter-
ing event to the detector, respectively:

~ e_R/Z .

Py(ry, r5) = ——— e 9

o(r1, I2) (47rR)2e (9)

whereR = |ry—ry| andc = 0,ko(w) is the group velocity at the frequeney The
ladder propagator with the extra-scatteferis related to the ladder propagator
without the extra-scatterdr as follows [18]:

X T2

'1 2

Figure 4: The diagram of the ladder operator with an extréeea. The extra

scatterer is sandwiched between two ladder operators. fdatewe have ne-

glected the possibility that ensemble averaged Green&iturs connect the extra
scatterer with the source and/or the receiver which assunatst is located at

least one mean free path away from all sources and recelvarating the change
if it occurs next to the source or the receiver is still pokesibut would require to

slightly modify the theory.

Ee(s, Xg, ) = E(s, r)+ /dr1 /drgﬂ(s, rl)j(rl, Xq, rg)ﬂ(rg, r). (20)

In Equation [I0), also represented by the diagram depictédgure[4, the first
term represents the scattering paths that do not see thgehahile the second
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term describes the paths that visit the change once. As waaeegime of
weak interaction between the field and the scatterer, higidar terms can be
neglected. Note that this is consistent with the fact thahgarms are neglected
in the ladder approximation adopted in this work. We defireedperator/ that
connects the two ladders by

j(rla X0, rQ) = /drll /drIQ é(rlv rll),id(rllv ré)é(rév rQ)é(rh rQ)*v (11)

whereG denotes the ensemble averaged Green'’s function. For aguaitierer in
the mesoscopic regime, as the variations of the envelopgl@se we evaluate/
to the lowest order of the small quantity(kq¢) < 1 [BQ]

1676

87T7€0 (1"1 - X0)5(3) (Xo - 1“2)- (12)

j(rla X0, r2)

Inserting expressioif (JL2) into equatigh (8) one obtains:

S Xp, I /dr1/dr2P0 S, I'1 (I’l, I'Q)PQ(I‘Q, I')

1027, - ~
/dr1/dr2po s, 11)L(r1, Xo) oy k?L(Xo, o) Po(ra, ), (13)
where the first term is the diffuse intensity in the mediumhwiit extra scatterer
and the second integral is an interference term caused l@xtreescatterer. In the
slowly-varying envelope approximation, the integrals barevaluated to give:

~ 2 - 2 - 1027, -
F(Su Xp, I’ ) L(S I') - 7L<S7 XO)F]{:ZL(XOu I'). (14)
In the diffusive regime, the propagator of the wave intgnisithe multiple scat-

tering medium P, is the solution of the following diffusion equation
(—iQ - vag) ]':’d(rb ry) = 5@ (r1 —ry), (15)

whereD is the diffusivity. The laddef. is related taP, byL(rl, ry) = 4”Pd(r1, rs).
Using these notations the correlation function betweerefiahds before and after
the change can be rewritten as:

icTy

f(s, Xg, ) = 4—Pd(s r)+ Pd(s Xg)—— T

ye Py(xq, ). (16)
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In order to obtain the correlation function in the time domave double invert the
Fourier transform over the variablesand(2. We further assume that the signal
has been filtered in a narrow frequency baadin which the scattering properties
vary little. Upon integration ovex and application of the optical theoref (3),
the correlation function for a unit point-source normatiz®y the bandwidt\w
reads:

t
[(s, xg, r, t) = Py(s, r, t) — C?J/ du Py(s, xg, u)Py(xq, r, t —u). (17)
0

We have therefore obtained the theoretical decorreldtion,, t) = 5 Q(s, xo, r, t),
where

fg du Py(s, xo, u)Py(xq, r, t —u)
t) = .
Q(Sa Xo, T, ) Pd(S, r, t)

The negative sign i (17) comes from the optical theoremr{gneonservation)
and ensures that the cross-coherence is less than one. &soreant point scat-
terer,o can be substituted witk? /. The derivation presented in this section does
not depend on the form of Equatign [15) as long the envelopmisgly varying,
which means that solutions to a more accurate transportiequaan be substi-
tuted toP;.

(18)

3.2 Computation of the decorrelation formula

We observe that the decorrelatidn](18) can be computed ifuthetion P, is
known. In the general case where the diffusivitydepends on the position, the
function P, can only be numerically estimated, provided that the spdépen-
dence ofD is known. In practice, the decorrelation coefficient candssonably
rapidly computed if one assumes that the valu®a$ approximately uniform in
the medium. We investigate the acceptable amount of spatration of D in
Section4.b.

If the medium is absorbing, the same issue arises. In medraaminiform
absorption timex !, the absorption affects the numeratoipin (I8) by a factor
exp|—ku — k(t — u)] = exp[—~t] and the denominator by a factexp|—«t]|.
Therefore, uniform absorption effects cancel out in themadized decorrelation
function, which is a genuine advantage of the present tgcieniln the case where
absorption is non-uniform, it will affect differently,(s, x,) and P;(x, r) and
the observed decorrelation pattern may be partly ascrib#tetspatial variations
of absorption. Consider a medium with constant diffusivityand absorption:.
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The solution of the diffusion equatiop {15) in an infinitelimensional medium is

1 (ro — rl)Q} .

P t) = ——5 —Kt —
a(r1, T2, 1) (47 Dt)d/? exp{ K 1Dt

(19)
In the case of a 3-D infinite medium, a usual Laplace transfatoulation gives
the exact result:

1 1 1 R*— (s+71)?
Q(s, x, 1, t) = D (g + ;) exp [4—1%} ) (20)

where we have introduce the notations ||s—x||, r = ||[r—x|| andR = ||s —r||.
We observe thaf) is a function with elliptic contour lines multiplied by sirgp
poles located at andr. Of course, ifr = s, we recover the formula derived in
Ref. [28] for an infinite medium. This formula is generallytrapplicable under
this form because the transducers are usually located attfece of the system.
However, if the boundary conditions are sufficiently simples formula [2PD) can
be used as a building block to derive more complicated smistias shown in
Sectionb.

In formula (1Y) we neglect two constraints. First, we asstimaethe change
occurs at a minimum distance of the order of one mean freefpaththe source
and the receiver. Second, we neglect the finite velocity efwlave, in other
words, the contribution for times,t — u < R/c in the integral [3J7) should be
removed. The contribution of short times< R/cin (I7) is negligible as soon as
ct > R > (*. The computation of the decorrelation coefficieais(t) must be
done withT larger than a few oscillation periods of the wave. Using fola{20),
we can estimate the correction due to this averaging as ddanaf 7'/t. To do
so, we compute the average pf](20) on the intefwval 7', ¢t + 7] and divide by
the value of@) att. We obtain a curve of relative correction as a functio gt
which is independent of any other parameters and which ajied on Figurg]5.
In most applications, the correction will be typically lehan 10%.

3.3 Intensity variations vs field correlations

As recalled in the introduction, a number of investigationsthe monitoring of
complex media have focused on the detection of intensitgtirans induced by lo-
cal changes of the scattering properties. We will show tntte diffusive regime,
intensity variations are much less sensitive to local ckaran field correla-
tions. To do so, we calculate the perturbation of the laddgpggator induced by
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Figure 5: Deviation of the average €fon the time intervalt — T', ¢ + T'] with
repect ta)(¢). The correction grows more rapidly for large values of thrgriarent
in the exponential of (20), denoted by A in this Figure.

an extra-scatterer following the approach developed ereeice [18]. In addition
to the diagram depicted in Figu[g 4, two other diagrams dmut& to intensity
variations: 1) a diagram with a single cross on the lower &nd 2) a diagram
with one cross on each line which are connected by a dottedlimthe diffusive
regime and for a non-absorbing change, we obtain the inyepsiturbation to
lowest-order in the small parameteftk,/ in the form:

4 * +oo
SLl(s, x, r; t) ET: / de /// d3qd®q
487T R3xR3

L(q ;Q)e “(a-d)L(g; Qe e (21)
In the Fourier domain, the ladder propagator in the diffasegime writes:
~ 47
L(q; ) = (22)

(2m)302 (q20/3 —i1Q/c)
After integration over the wavenumbeqsq’ and the frequenc{?, we obtain:

ocC

1 . _
6Le(S, X, I; t) = W

e AP L (V,Q(s, x, 1)), (23)
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After calculation of the partial derivatives, we obtain flodowing formula for
the ladder perturbation induced by an extra scatterer:

SL1(s, x. :1) = oc*(r —x) - (s — x) <r3 + 53 N (r + 3)3) o~ (r+5)2/4Dt
A873/2 DT/245/ 22 52 rs 2Dt
(24)

The intensity variation exhibits a characteristic pattetith positive and nega-
tive lobes, depending on the cosine of the angle betweerptivees and receiver
as seen from the additional scatterer. Even more imporsathtel temporal de-
pendence—°/2 which is faster than the temporal decay of the ladder prapaga
between the source and receiver. As a consequence, théwsns the local
change decays liké/t in sharp contrast to the field correlation which goes to a
constant at large record time. This property supports tleeofigield correlation
functions to monitor temporal changes in evolving media.

4 The inversion procedure

4.1 Maximum likelihood of the position

In Section[B, we have obtained an expression for the expeleeairelation as a
function of the position of the change. The principle of theersion procedure
is to compare a theoretical model to the experimental date. change is found
at the position where numerical and experimental decdroelanatch best. The
mismatch is measured by a standard least-squares cosbfui¢t). The inver-
sion procedure consists in finding the positioand the cross-sectianminimiz-
ing the functiony?. Such a technique is also often called a maximum likelihood
method. Let us chose a set of sourse$l < i < n,) and a set of receivers
r; (1 <j <n,), and callN the number of source-receiver pairs (in this case,
N = n,n,). There is no restriction on their positions, and in patacsource and
receiver can be located at the same position. We describec¢haique at fixed
timet in the signal.

The most restrictive assumption of our approach is thatgleirhange affects
the experimental values of the decorrelation. The LOCAD€Ersion procedure
consists in retrieving the most likely position of this ciganby introducing the

cost function:
e(x) =Y (K1) — Ki(x, 1))/, (25)

/[:7j
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Figure 6: The functior);;(x) in a infinite medium in dimension 3 with constant
diffusivity and absorption computed with formula}20). Theaction is plotted in
the plan containing the source, the receiver and the chargevalue along the
axis (logarithmic) is the sensitivity to a change at the posiin (x,y). The two
peaks correspond to the positions of the source and theveecdihez-scale is
logarithmic and arbitrary.

whereK7?(t) denotes the experimental measurements of the decorretattthe
coefficientsk;;(x, t) are the theoretical decorrelations assuming that the éhang
is located ak. The typical fluctuations on the measured decorrelatiomgacap-
sulated in the parameter

To find the value of the scattering cross-seciQralso unknown, we remark
thate(x) is, as a function of, a polynomial of degree two. There is therefore a
minimum depending or at

~ 22, K (0)Qi(x, 1)
e > Qui(x, 1)

We reintroduce the value @f,; into the expressior[ (25) and get the optimized
error function

Uopt<X> (26)

wiee (S, KR0Qu(x, 1)
eon(x) = > szeit) B ( €2y Qi(x, 1)? ) @7

4,J

which does not depend ananymore. The most likely position of the change is
the positionx, of the minimum ofeq,. The value of the cross-sectiondsy(xo)
obtained from Equatior (R6).
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To give an interpretation to the valuesagk), it is customary to normalize it

in the following way
elX
Xo(x) = —(f) (28)

wheref = N — 4 is the number of degrees of freedom, since four model param-
eters — the cross-section and the cartesian coordinatbse change — are to be
estimated. The quantity? (x) has the following interpretations. 4 (x) > 1, it
is very unlikely that the point, is actually located at. If x2(x) ~ 1 the pointx
is a good candidate fot,. If x%(x¢) < 1, there is a large area wheyé(x) < 1
which means that the inversion could not locate precisactiange probably be-
cause the value afis too large. A large value efmeans either that the quality of
measurements is poor or thatas been overestimated. It is possible to y&ex)
to obtain the probability density that the change has octat¢he pointk, which
we define as:
1 1 1
) = exp | -3¢ 0] = e |- @9)
whereC is a normalization constant such thiap(x)dx = 1 (see the appendix for
a derivation of this formula).

4.2 Precision versus number of source-receiver pairs

To investigate the precision of the inversion proceduresddpmg on the param-
eters of the likelihood maximization, we use a numericalrapph. We compute
the best achievable precision regardless of all experiahelfficulties that po-
tentially degrade the accuracy of the location. We use aal isket-up made of
one source andV receivers regularly distributed on a circle (see figdre 8 W
introduce a change at the center of the circle by adding desswatterer with
cross-sectiomr. For each pair of receiver, we compute synthetic data thrayg
plication of the formula[(30). The Thouless timg is defined ag.?/D. As a
measure of the precision, the lengtis introduced, which we compute using the
probability density function[(29) as follows? = [(x — x¢)*p(x)dx.

In the vicinity of the change, we infer that the contribusaf the terms i (x)
are comparable and we deduce thak e. Thus, the precision with which the
measurements are made directly influences the precisidnwiiich the change
is located. We will not study the dependence afith respect ta and we chose
a valuee = 0.01 throughout the numerical study. Note that a uniform proba-
bility distribution corresponds to a complete absence fifrmation concerning
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Figure 7: Density of probability for the position of the moygiscatterer.
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Figure 8: Description of the numerical setup used for ingasing the accuracy
of the inversion procedure. The example is shown with= 5. The other param-
eters of the numerical simulations aré.:= 10, D = 1, ¢ = 1. The changex,

is located at the center of the circle and is used in Se¢tiBricistudy the opti-
mal spatial precision of the inversion. The change locatqubant x; is used to
study the robustness of the inversion procedure againsureaent errors on the
determination ofD in Section 4.)5.

the location of the change, and gives the value L. The typical behaviour of
the precisiony as a function of the number of source-receiver pairs is degic
in Figure[®. In the configuration described above, each persga comparable
contribution toe(x) so thate(x) is approximately proportional t&. Therefore in
the ideal case described in our example, we find hatN /2.

Note that the precision cannot be made arbitrarily smallizyaasingV at
will, because it is not possible to find an arbitrary numbesairce-receiver pairs
providingindependent data. The valuéV entering into the scaling lawoc N ~1/2
is the number of independent decorrelation measuremeypgcally, in the diffu-
sive regime, two measurements locategpart can be considered as independent.

4.3 Precision versus record time

The dependence of the precisiénvith respect to record time is shown on Fig-
ure[IP foroc =1,D =1,c =1, L = 10 ande = 0.01 (the units are dimensionless
in the numerical simulation). The precision exhibits a mmam at a time of or-
dert,.;, = 7p. For a given source-receiver pair, the record time is the timat has
elapsed after the arrival of the ballistic wave. Shortlgathe ballistic arrival, the
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Figure 9: Spatial precision at the record time 7p, as a function of the number

of receivers, wherep, is the Thouless time. The typical setup for the numerical

experiment is depicted in Figufg 8. The dots corresponddwdiues of the pre-

cision for N = 5, 10, 20, 40 and80. The double logarithmic scale provides clear
evidence of the relatiof ~ N~1/2,
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Figure 10: Spatial precision obtained for the setup of Fed@irfor the values
N =5, 10, 20, 40 and80 and for record times varying from10~27p to 1037p.
The time scale is logarithmic. A minimum of the precisionasifid att ~ 7.

waves that reach the receiver have followed “snake-likehparound the direct
ray. For early record times, the only records sensitive ¢éoctiange are those for
which the change is located along the segment joining thees@and the receiver.
For larger record times, the diffuse waves arriving at tleeinger have explored
a larger volume of the system. This qualitatively explairs/Ww decreases with
the record timeg. At very late times, the formuld (R0O) reveals that the deslarr
tion for each source receiver pair saturates, as the expiah&actor tends tal.
The asymptotic spatial sensitivity to the change is algelwaly. After reaching
a minimum,$ increases because the variationgdfwith respect tax decreases.
The minimum foré is found approximately at timey, the Thouless time, after
which the whole system has been explored by the diffuse wandsyetQ still
exhibits large spatial variations.
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Figure 11: Optimal precisiofi as a function of the cross-section of the change
obtained for the setup of Figufg 8. Other parameters of thalstions areD = 1,
c=1,N =10,e = 0.01.

4.4 Precision versus cross-section

The scattering cross-sectionof the change also influences the precision of the
technique. We observe that the precisiodecreases as increases. Note that
wheno is very small,d goes to a value- L, meaning that it is not possible to
detect the change. When~ L2, the cross-section is equivalent to the area of
the system, and locating a change has no physical signigcanthis limit. In
Figure[I1 we plot the variations of at the optimal time = 7 as o varies
from 10~*L? to L. The other parameters of the calculations Are- 1, ¢ = 1,

e = 0.01, N = 10. We observe that the spatial precisibdecreases by a factor 2
as the cross-section increases froin? to 1.
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4.5 Sensitivity to the value of the diffusivity D

Our inversion procedure depends heavily upon our abilitgstimate the diffu-
sivity of the waves in the heterogeneous medium. Althoughatsorption time
7 does not enter into the final formulg]20), let us remark thairacticeD and
7 cannot be measured independently. The diffusivitys the crucial physical
parameter which enters into the formula for the intensigpgagatorP; and con-
trols the accuracy of the energy propagation model of theumedit is therefore
important to quantify the impact of errors in the diffusyib on the accuracy of
our method. Even if we use an incorrect value for the diffigiour inversion
procedure still provides an answer for the position of theng/e. The main issue
is to quantify to what extent the inferred position differerh the exact location
of the target. To address this point, we plot the spatialipi@t and the absolute
error of the inversion for a wide range of values/®bn a specific example.

We use the approach described in Secfioh 4.2. First, a dyntdata set is
computed with a valu® for the diffusivity. This synthetic data set is then inverte
for the location of the target using a different diffusivify. The change is located
at the positionx; indicated on Figurg]8. The other physical parametees 10,

o =1, N =10, e = 0.01 andt have been adjusted to provide the smallest spatial
precisiony. We call{ the distance between the change located by the inversion and
4 is the spatial precision. The results of the simulation @pldyed in Figurg¢ 12.

It is rather remarkable that an error éhas large as a factor @fyields a location

of the change within one half of the spatial precision. s $pecific but realistic
example, the inversion procedure is therefore very robgainat errors on the
determination ofD. This constitutes a major advantage of our method. Based
on these results, we infer that spatial variation®oivithin a factor of2 will not
affect the results dramatically.

5 Boundary conditions

The inversion procedure presented in secfion 4 relies orkiloevledge of the
function P,, the diffusion kernel, which depends on the boundary comustof

the system. For simplicity, we studied the LOCADIFF techugign an infinite
medium without taking into account the effect of boundanekich may not be
realistic in applications. An abundant literature is datkd to solving the diffu-
sion equation in a wide range of situatiofis [7]. In many cad@sactical interest,
sophisticated techniques are required to provide an egadian or a numerical
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Figure 12: Effect of errors on the value of the diffusivifyyon the relocation ac-
curacy of the target. Synthetic data were calculated Witk 1 and inverted with
modified values of the diffusivity)’ ranging from 0.2 to 8. The other parameters
of the simulation arez = 1, L = 10, N = 10, ¢ = 0.01 and the change is lo-
cated at the positior; (see Figur¢]8)¢ is the distance between and the point
wherex?(x) is minimum. In the simulated configuration, the inversioogadure
remains accurate eveni¥’ differs from D by a factor2.
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approximation up to a required accuracy. In the infinite medithe decorrela-
tion (I8) can be computed numerically. In the presence ohbaries, it is more
difficult to compute the Green’s function because transteti invariance is lost.
However, if the boundaries are flat, it is possible to comtstifuie Green'’s function
from the solution without boundaries using symmetry argotsieln the general
case, one has to solve the diffusion equation for the gegro&the system, which
is a problem of applied mathematics in itself.
In the simple case of a single planar boundary, the solufifrof the diffu-

sion equation of the semi-infinite medium, can be deduceh fRy°, using the
technique of images:

PP(s, v, t) = a(Py(s, r, t) + BPy(s', 1, t)) (30)

wheres’ is the image of with respect to the boundary (see Figlrg 13) gnd a
characteristic coefficient depending on the nature of thantary condition. For
instance if the boundary is absorbintg= —1 and if it is fully reflecting, we have
£ = 1. The normalization coefficient is, in the case of constant diffusivity

_ 1"‘6 1_ﬁ dB,s
ol = > + 5 erf (\/m) (32)

whered ¢ is the distance from the source to the boundary. Notecthstindeter-
mined in the case where the conditiohs= —1 anddp s = 0 are met simultane-
ously. The solution to the diffusion equation in presencéhefboundary can be

Iy

F():l r

Figure 13: Schematic representation of a boundary comditio Z;,. The image
of the source is noteds’ and the arbitrary point is. The solid line is the solution
in the infinite medium.

plugged into the decorrelation expressipn (18) leadingtw ferms (figurg 14).
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Note that in the case where there are more boundaries, @lfimtany images
must be taken into account in the formula. Other techniqiseslaad to infinite
series.

o o,
.S S S .S
X ‘N )
2
(o GB
r r
[ [
r r
iy iy

Figure 14: In presence of a single straight boundary, th@relation func-

tion (I8) involves four terms, coming from the product of tfamula of the

form ([B0). We use the images of the souscand the receiver: Thanks to the
symmetry of the diffusion equation, there is no need to ohie the image of the
pointx.

6 Discussion

In this section, we discuss issues related to the practsmlofithe LOCADIFF
technique as well as possible improvements. We first notafttiee interval be-
tween the records df;; andh;; is large, the medium may also have experienced a
global change, for instance a dilation due to a temperataege. In this case, the
computation of the decorrelation may be refined by taking adcount a global
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relative velocity change, wheree yields the maximum value of the correlation

J hig (L +m)u) hij(w)du |
\/f hl-j(u)Qdufh;j(u/)zdu/

where the integrals are performed along the whole redoid [13

Another issue concerns the possible improvements on tieesion procedure.
Under the form presented in this article, the LOCADIFF teghe only uses a
small time window in the signals, and it would be of great iiegt to take into
account several time windows simultaneously. This woutvjole more indepen-
dent data for the inversion procedure and may reduce thet ef@oise.

Finally, we point out that the kernel used in the inversiogasputed from
the solution to the diffusion equation. In some simple gewie® like the infi-
nite medium, the solution is analytic and simple to complit¢he shape of the
medium is irregular, with possibly more complicated bougdaonditions, the
kernels can only be approximated numerically. Alterndyiveur approach could
benefit from recent developpements in the implementatidineofadiative transfer
equation.

(32)

7 Conclusion

In this article, we have shown that it is possible to use tlgh lgensitivity of
diffuse waves to detect, characterize and locate a wealgehara strongly scat-
tering medium. Our technique uses the correlation of waneaecorded before
and after the change. Based on a maximume-likelihood apprcatd a simple
diffusion model, we demonstrate the possibility to reteid¢hie position of the
change along with its scattering cross-section. We haweial®gstigated the op-
timal values of the parameters that enter in the inversiocguure, based on a
simple setup where sources and receivers are arranged mheastirrounding the
change. Three features have been identified: 1) We foundhibatrecision scales
with the inverse square root of the number of sensors. 2) @ttenique provides
the best results when the correlation window is centeredhermhouless time of
the system. 3) We demonstrated that the technique is notsesrsitive to errors
in the measurement of the diffusivity.

Several aspects are still to be investigated. First, we hasamed that a sin-
gle change occurs in the medium, an assumption which is phpbao restrictive
in some applications. In a straightforward generalizabbour technique to
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changes, the dimension of the parameter space scaleglikéich in turn con-
siderably increases the computation time. An alternativge for the inversion
has to be found. Second, we have made the assumption of adigeiohange. An
extended change may not necessarily be equivalent to acttotieof point-like
changes. Again, an alternative approach to the inversdgmmotill be needed.
We are currently investigating these two issues.

Using 2D finite difference wave simulations, we have denrast that LO-
CADIFF efficiently locates a weak change in a multiple secatteenvironment.
In a separate papdr J15], experiments have also been c@udwith ultrasound in
concrete. The change was a hole drilled in the sample, andQGADIFF tech-
nique successfully retrieved its actual position. Othealiaptions in geophysics
and material sciences can be envisaged.
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A Derivation using Bayesian inversion

We shortly derive here the density of probability densjtg)(Rsing a Bayesian
inference. In this calculation, we suppose that there isaangé at an unknown
positionx. The values of the measuremehty are accurate up to an error order
such that they are distributed around the numerical valyéx, t) according to a
standard error function.

1 (Kz’j(xv t) - KZ?)Q
exp | —
\V2me P 2¢?

Each pair(i, ) provides an independent information. The Bayesian ingarsi
consists in finding the probability density ®knowing the values ok}, namely
to computep(x|{ K7 }). Let us callp,(x) the probability density for the position

of the change when source-receiver pairs have been taken into account. Before
measurement, the probability of the location of the chaagmiform in the whole
medium, so we havey(x) = + (V is the volume). Suppose we kngw_;(x)

and let us compute the joint probability &fand K, using Bayes’ formula. We

P(EG[x) = (33)
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use the two relations:

p(x, KK K y) = pa(X)p(KG)) (34)
p(x, KK K ) = p(KG %) pn-1(x) (35)

n

Integrating [B§) ovek we can compute(K") as

([ matoax) piacz) = [ ot wzim azgax @)
\% \%
The integral ofp,,(x) is equal tol so we conclude that, using {35),

__ P(EPX)pna(x)

Jy (R ) p—1 (x)dx
Therefore we have a recurrence scheme yielding the distibwf probabil-
ity pn(x):

Pn(x) (37)

N
_ P(K"
pN(X> — H]r\zf_l p( n ‘X> (38)
J ey (G x)dx
which gives Equation (29) after replacing the probabiitiéth expression (33).
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