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Abstract

We describe a time-resolved monitoring technique for heterogeneous
media. Our approach is based on the spatial variations of thecross-coherence
of diffuse waves acquired at fixed positions but at differentdates. The tech-
nique applies to all kind of waves, provided that waveforms can be acquired
with a sampling frequency much larger than the wave frequency. To locate
and characterize a weak change that occurred between successive acqui-
sitions, we use a maximum likelihood approach combined witha diffusive
propagation model. We characterize this technique, calledLOCADIFF, with
the aid of numerical simulations. In several illustrative examples, we show
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that the change can be located with a precision of a few wavelengths and that
its effective scattering cross-section can be retrieved. We investigate how
the accuracy and precision of the method depends on the number of source-
receiver pairs, on the time window used to compute the cross-correlation
and on the errors in the propagation model. Applications canbe found in
non-destructive testing, seismology, radar and sonar location.

1 Introduction

Waves constitute one of the primary tools to detect and locate temporal changes.
If the waves do not interact with any other obstacle than the target, conventional
imaging techniques based on geometrical considerations apply. A controlled pulse
emitted into the medium is scattered by the target and the echos are recorded with
a receiver. These techniques can be improved using several sources and detectors,
and extended to locating several targets at the same time. Aslong as the typical
propagation time in the medium is much smaller than the scattering mean free
time, i.e. the average time between two scattering events, we are in the single
scattering regime. In this case, the precision for detecting and locating a change
is limited by the Fresnel zone

√
λL, withL the typical propagation distance in the

medium andλ the wavelength. Applications in every day life abound: theycover
high-stake fields like ultrasonic medical imaging, non-destructive testing, seismic
exploration, radar aircraft location or sonar.

This simple picture does not apply in heterogeneous media such as polycrys-
tals, concrete, or volcanoes. Imaging these materials in a non-destructive way is an
important issue for miscellaneous applications like monitoring temporal changes
or the assessment of ageing and damage. In heterogeneous media, ray theory
is not relevant because the scattering mean free time is muchsmaller than the
typical record duration. A pulse emitted into the medium experiences numerous
scattering events and the output signal recorded at large distance from the source
displays complex details that depend on the interactions between the wave and
each of the scatterers. Beyond a distance called the transport mean free pathℓ⋆,
the memory of the initial direction of propagation is lost. In this regime, the av-
erage energy distribution in the medium evolves as a diffusion process and it is
relevant to describe wave propagation with probabilities.

The problem of locating an isolated change in a multiple scattering sample
has received some attention in the past, particularly in optics. The space and time
correlations of intensity in a speckle pattern probed by oneor more receivers al-
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low one to observe the diffusion of scatterers [20, 3]. On theone hand, diffusive
wave spectroscopy [5] and its variants have become standardtools for investigat-
ing collective changes in the medium. On the other hand previous authors [18]
have shown that a local perturbation within a collection of scatterers (the back-
ground) essentially acts as a dipole source of intensity. Intensity variations enable
the detection and location of a crack from observations in transmission [11, 31],
or more generally to locate an object with known characteristics [8, 30]. The weak
sensitivity of the method has been illustrated by numericalstudies [31]. Indeed,
a large amount of ensemble or frequency averaging (typically 100 realizations)
is required to distinguish the intensity fluctuation causedby the defect from the
background speckle pattern. From a theoretical point of view, the weak sensitivity
of methods based on intensity variations can be traced back to the cancellation of
scattering diagrams that dominate the decorrelation of waveforms, a cancellation
which is imposed by the optical theorem. This renders techniques based on inten-
sity variations almost inapplicable to solid media becauseensemble averaging is
impractical. These points will be further illustrated below.

In acoustics, one can commonly record a large number of signals with per-
fect temporal and spatial precision, which is advantageouscompared to optics. A
pulse emitted into a heterogeneous medium gives rise to longtime records with a
pronouncedcoda, a term which refers to the arrivals following the ballisticpulse.
Several techniques use the coda to retrieve information on the evolution of the
medium. In seismology, the monitoring of temporal changes in the crust was
initiated in the mid-80’s, using repeating small earthquakes [21]. Later on the
method was applied to volcanoes and revealed temporal changes of velocity prior
to eruptions [23] or measure the effect of permanent damage [24]. Recent de-
velopments of this technique have been popularized under the term coda-wave
interferometry (CWI) [28, 19]. The correlation of waveforms inspired other tech-
niques, like diffuse acoustic wave spectroscopy (DAWS) [6]. Recently DAWS has
been used in damage monitoring [17, 29] but a large range of other applications
are possible [27]. For a broad review of applications of CWI in geophysics, we
refer to [22]. In a number of previous experiments, changes of waveforms were
characterized by a stretching of the coda and interpreted interms of travel time
variations. Such an approach allows the detection of weak changes, but gives little
information concerning the location of the change [23, 16, 13, 4] In many appli-
cations, waveforms changes result in decorrelation of the signals with or without
additional stretching. This renders the interpretation ofa local change in terms
of travel time fluctuations problematic. Also based on the concept of correla-
tion, techniques have been developed to recover the Green’sfunction in an open
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medium based on the cross correlation of noise signals [9, 14, 32, 33, 12], These
noise-based Green’s functions can in turn be used in a passive image interferom-
etry technique with applications in volcanology and fault monitoring [25, 34, 4].
Recently, Aubry and Derode [2] proposed an alternative technique based on the
singular value decomposition of the propagator, but this technique is limited to a
sufficiently strong extra scatterer.

In this article, we report on a different approach to locate aweak isolated
change. Our technique, called LOCADIFF, uses the correlations computed along
time windows in the late part of the records for several pairsof sources and re-
ceivers. We use a numerical model to compute the most likely position of the weak
change, in terms of probability. The purpose of this articleis to introduce the prin-
ciples of this technique and discuss its properties. Although the technique applies
to waves of all kind, use elastic and acoustic waves for illustrations, because their
frequency range allows an easily accessible experimental use. Experimental tests
and results have been already published separately in Ref. [15] and will not be
detailed here. To introduce this work, we observe in a finite difference numer-
ical simulation the correlation loss induced by a weak change between impulse
responses (Section 2). Using the theory of multiple scattering [30], we derive an
expression of the decorrelation induced by a weak change in Section 3. We then
present the inversion technique, based on the maximum likelihood principle in
Section 4 and its properties are thereafter investigated. We explore the implemen-
tation of boundary conditions in Section 5. Finally, we discuss the accuracy of the
technique and possible improvements in Section 6.

2 Observations of correlation loss after a weak change

Under the denomination “weak change”, we understand any local change of impedance
contrast caused by either the apparition of a defect, or a local change in a phys-
ical quantity, which modifies the effective value of the scattering cross-section if
one describes the medium in the multiple scattering frame. Such a weak change
between two sets of acquisitions is made by removing a singlescatterer from a
numerical model of a multiple scattering medium.

It is already known that a weak change can be detected in a scattering medium
because it slightly modifies the Green’s functions. The amount of modifica-
tion is usually quantified by measuring the cross-correlation between waveforms
recorded at different times [21]. We illustrate the signal processing with the aid
of numerical simulations of the wave equation in a medium containing a large
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number of identical scatterers.

2.1 Numerical simulations of wave propagation

As a first investigation, we perform 2D numerical experiments of acoustic wave
propagation in heterogeneous media1. Using a finite difference scheme, we solve
the wave equation with absorbing boundary conditions; the dimension of the sim-
ulation grid is50λ0×50λ0, with a spatial discretization stepλ0/30, whereλ0 is the
central wavelength. Synthetic data are computed on a lineararray of 9 receivers
located at the center of the medium and 10 sources are randomly distributed over
the grid. Sources and receivers are kept fixed throughout theexperiments (see
Fig. 1). To mimic a multiple scattering medium, 800 empty cavities of diameter
λ0/3 are randomly distributed over the grid. In the frequency band of interest the
average scattering cross-section was numerically estimated asΣ = 1.6λ0, along
with the transport cross sectionΣ⋆ = 1.1λ0. Table 1 summarizes the physical
properties of the simulated medium, including the number ofscatterers (with den-
sity n), the transport mean free pathℓ⋆ = 1

nΣ⋆
, the diffusion constantD = cℓ⋆

2

and the Thouless timeτD = R2

6D
, whereR2 is the mean squared distance between

sources and receivers. Note that these quantities are evaluated under the “inde-
pendent scattering approximation”, which assumes that thescattering events are
all uncorrelated.

Parameter notation value

Number of scatterers 800
Transport mean free path ℓ⋆ 2.8λ0

kℓ⋆ 18
Diffusion constant D 1.4 λ20/T0

Thouless time τD 68 T0
Coda decay time (leakage) τσ 240 T0

Table 1: Physical parameters of the simulations in normalized units.

The signale(t) emitted by each source is a pulse with central frequencyf0 and
a Gaussian envelope (100% bandwitdh at -6dB). Using sourcei we record with

1The code named ACEL has been developed by M. Tan-
ter, Institut Langevin, Paris France. More details in
http://www.institut-langevin.espci.fr/Mickael-Tanter,143
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Figure 1: Distribution of sources, receivers, scatterers in the numerical simulation.
The removed scatterer is indicated with a black circle.
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Figure 2: Normalized waveformsh(t) obtained at receiver 1, for source number
1 (top) and 3 (bottom). Inset: zoom into the late waveforms. The black solid
(resp gray broken) line corresponds to the record acquired before (resp. after) the
change. For illustration purpose, the value ofT0 was set to1µs. The distance
between receiver 1 and sources 1 and 3 are respectively10.0 ℓ⋆ and9.0 ℓ⋆.
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receiverj the signalhij(t) during 300 oscillations of periodT0. Typical wave-
formshij(t) are plotted in Fig. 2. The long tail of the record in Fig. 2 corresponds
to arrival of partial waves that have been scattered severaltimes. Notice that the
ballistic arrival is not distinguishable in the waveforms of Figure 2. A long-lasting
signal and the lack of ballistic arrival constitute evidences that we are in a strongly
scattering regime, in agreement with our estimates of the transport mean free path.
During the first run of the simulation,10 × 9 impulse responseshij are recorded
and stored. On a second run, one scatterer is removed and another set of impulse
responsesh′ij is evaluated. Bothhij(t) andh′ij(t) display signals lasting a large
number of ballistic times.

2.2 Detection of a weak change

The details of the complex waveforms shown in Figure 2 are highly sensitive to
the positions of the scatterers. Each waveform can be understood as a fingerprint
of the medium. As our goal is to detect a single scatterer’s removal, we need to
exploit the information contained in both the amplitude andphase of the signals.
A comparison between the recordshij(t) andh′ij(t) reveals that for short times
up to 100 T0 ≈ 30τ ∗, no difference is visible in the signals. We observe small
differences between the waveforms at later times that are solely due to the change
in the medium. Figure 2 (bottom) shows a comparison of the waveforms between
h3,1(t) andh′3,1(t) in the time windowt ∈ [210 T0, 220 T0]. The observed decor-
relation is too large to be attributed to numerical noise, there is thus evidence that
the waveforms are sensitive to the removal of only one scatterer.

The differences between the waveformshij andh′ij are quantified by the decor-
relation, or correlation loss, betweenhij andh′ij. The decorrelation is computed
on a time window of duration2T centered ont using the formula:

Kij(t) = 1−
∫ t+T

t−T
hij(u) h

′

ij(u)du
√

∫ t+T

t−T
hij(u)2du

∫ t+T

t−T
h′ij(u

′)2du′
. (1)

The typical width of the time windowT is of order5T0. Experimentally, en-
largingT partly eliminates the effect of noise and reduces the fluctuations of the
correlation coefficient. However, using a large value forT results in considering
simultaneously paths with very different lengths. We address this important point
in Section 3.2.
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2.3 Spatial dependence of the decorrelation

In Figure 2, it is noticeable that the differences betweenh1,1 andh′1,1 (top), are
much smaller than the differences betweenh3,1 andh′3,1 (bottom), even in the
late signal. The decorrelations computed over the interval[210 T0, 220 T0] (t =
215 T0) areK1,1(t) = 5% andK3,1(t) = 27%, respectively. Consequently, the
amount of decorrelation depends on the positions of the source and receiver with
respect to the local change, a property which holds even in very late time windows
in the signal. For a given configuration of source-receiver pairs, we obtain a set
of observed decorrelations, which is characteristic of therelative locations of the
sources and receivers to the change in the multiple scattering medium. We will
now demonstrate the possibility to locate the change and estimate its cross-section
from the knowledge of the source and receiver positions and the corresponding
decorrelation coefficients. To do so, we develop a theoretical model to predict
the decorrelation coefficient of waves induced by the addition of a change in a
heterogeneous medium, in the diffusive regime. We recall inthe next section the
necessary elements from multiple scattering theory.

3 Wave scattering theory

We assume that the medium can be represented as a uniform background with
embedded inclusions. Only the scalar case is considered here. The scattering
properties of an inclusion will be described by itsT matrix, defined in operator
notation as [26, 10]:

G1 = G0 +G0T G0 (2)

whereG0 is the retarded free space Green’s function andG1 is the Green’s func-
tion in the presence of the scatterer. For a non absorbing scatterer, energy conser-
vation implies the following optical theorem:

− ℑT (ω)

k0
= σ(ω), (3)

whereσ is the scatterer cross-section.

3.1 Correlations between two slightly different media

We want to predict the decorrelation of waveforms in a mediumwhere a weak
change occurs. Although we will employ a statistical approach based on ensemble
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averages, in general we have access to only one realization of the random process.
Therefore we introduce the following estimator of the cross-correlation function
based on the observation of a single diffuse signal:

Γ(t, τ) =
1

2T

∫ t+T

t−T

ψ2(t′ + τ/2)ψ1(t′ − τ/2)dt′, (4)

whereψ is the scalar field. The superscript2 refers to the medium in presence
of change while the superscript1 refers to the medium without it. We have in-
troduced an analog of the Wigner function which is most convenient to analyze
non-stationary signals. The empirical cross-correlationcan be decomposed into
internal and external frequenciesω andΩ, respectively:

Γ(t, τ) =
1

(2π)2

∫

∞

−∞

dΩ

∫

∞

−∞

dωΓ̃(Ω, ω) exp[−i(Ωt + ωτ)] (5)

where the frequency-domain cross-correlation reads:

Γ̃(Ω, ω) = sinc(ΩT )ψ2(ω + Ω/2)ψ1(ω − Ω/2)∗. (6)

The frequencyΩ ≪ ω describes the slow envelope of diffuse waves with central
frequencyω. Equation (6) shows that basic quantity to be computed is

〈

G2(ω + Ω/2)G1(ω − Ω/2)∗
〉

, (7)

whereG is the retarded Green’s function. We will denote byT0 the T -matrix
of the change which is assumed to appear at the positionx0. In diagrammatic
notations, such as the one employed in Figure 3, theT matrices are represented
by crosses. The transport of energy in the scattering mediumis described by
the ladder propagatorL, which is defined by the diagrammatic self-consistent
equation shown in Figure 3 [26, 1].

We use the field-field correlation function in the diffuse signal

Γ̃(ω, Ω, s, x0, r) =

∫

dr1

∫

dr2 P̃0(ω, Ω, s, r1)L̃e(ω, Ω, r1, x0, r2)P̃0(ω, Ω, r2, r).

(8)
Quantities labelled with ˜ are implicitely evaluated at inner frequencyω and outer
frequencyΩ. Le is the correlation between between the wavefields recorded be-
fore and after the change occured.P̃0(s, r1) andP̃0(r2, r) describe the ballistic
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Figure 3: The Bethe-Salpeter equation defining the so-called ladder operatorL.
The solid line and dashed line represent the retarded ensemble averaged Green’s
function and its complex conjugate, respectively. The dotted line connecting the
two vertices indicates that they represent the same scatterer.

propagation from the source to the first scattering event, and from the last scatter-
ing event to the detector, respectively:

P̃0(r1, r2) =
e−R/ℓ

(4πR)2
eiΩR/c (9)

whereR = |r2−r1| andc = ∂ωk0(ω) is the group velocity at the frequencyω. The
ladder propagator with the extra-scattererLe is related to the ladder propagator
without the extra-scattererL as follows [18]:
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Figure 4: The diagram of the ladder operator with an extra scatterer. The extra
scatterer is sandwiched between two ladder operators. Notethat we have ne-
glected the possibility that ensemble averaged Green’s functions connect the extra
scatterer with the source and/or the receiver which assumesthat it is located at
least one mean free path away from all sources and receivers.Locating the change
if it occurs next to the source or the receiver is still possible, but would require to
slightly modify the theory.

L̃e(s, x0, r) = L̃(s, r) +

∫

dr1

∫

dr2L̃(s, r1)J̃(r1, x0, r2)L̃(r2, r). (10)

In Equation (10), also represented by the diagram depicted in Figure 4, the first
term represents the scattering paths that do not see the change, while the second
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term describes the paths that visit the change once. As we arein a regime of
weak interaction between the field and the scatterer, higher-order terms can be
neglected. Note that this is consistent with the fact that such terms are neglected
in the ladder approximation adopted in this work. We define the operatorJ that
connects the two ladders by

J̃(r1, x0, r2) =

∫

dr′1

∫

dr′2 G̃(r1, r
′

1)T̃ (r′1, r
′

2)G̃(r
′

2, r2)G̃(r1, r2)
∗, (11)

whereG denotes the ensemble averaged Green’s function. For a pointscatterer in
the mesoscopic regime, as the variations of the envelope areslow, we evaluateJ
to the lowest order of the small quantity1/(k0ℓ) ≪ 1 [30]

J̃(r1, x0, r2) ≃ − iℓ2T0

8πk0
δ(3)(r1 − x0)δ

(3)(x0 − r2). (12)

Inserting expression (12) into equation (8) one obtains:

Γ̃(s, x0, r) =

∫

dr1

∫

dr2P̃0(s, r1)L̃(r1, r2)P̃0(r2, r)

−
∫

dr1

∫

dr2P̃0(s, r1)L̃(r1, x0)
iℓ2T0

8πk
L̃(x0, r2)P̃0(r2, r), (13)

where the first term is the diffuse intensity in the medium without extra scatterer
and the second integral is an interference term caused by theextra scatterer. In the
slowly-varying envelope approximation, the integrals canbe evaluated to give:

Γ̃(s, x0, r) =
ℓ2

4π2
L̃(s, r)− ℓ2

4π2
L̃(s, x0)

iℓ2T0

8πk0
L̃(x0, r). (14)

In the diffusive regime, the propagator of the wave intensity in the multiple scat-
tering medium,P̃d, is the solution of the following diffusion equation

(

−iΩ−D∇2
r2

)

P̃d(r1, r2) = δ(3)(r1 − r2), (15)

whereD is the diffusivity. The ladderL is related toPd by L̃(r1, r2) = 4πc
ℓ2
P̃d(r1, r2).

Using these notations the correlation function between wavefields before and after
the change can be rewritten as:

Γ̃(s, x0, r) =
c

4π
P̃d(s, r) +

c

4π
P̃d(s, x0)

icT0

2k0
P̃d(x0, r). (16)
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In order to obtain the correlation function in the time domain, we double invert the
Fourier transform over the variablesω andΩ. We further assume that the signal
has been filtered in a narrow frequency band∆ω in which the scattering properties
vary little. Upon integration overω and application of the optical theorem (3),
the correlation function for a unit point-source normalized by the bandwidth∆ω
reads:

Γ(s, x0, r, t) = Pd(s, r, t)−
cσ

2

∫ t

0

duPd(s, x0, u)Pd(x0, r, t− u). (17)

We have therefore obtained the theoretical decorrelationK(x0, t) =
cσ
2
Q(s, x0, r, t),

where

Q(s, x0, r, t) =

∫ t

0
duPd(s, x0, u)Pd(x0, r, t− u)

Pd(s, r, t)
. (18)

The negative sign in (17) comes from the optical theorem (energy conservation)
and ensures that the cross-coherence is less than one. For a resonant point scat-
terer,σ can be substituted withλ20/π. The derivation presented in this section does
not depend on the form of Equation (15) as long the envelope isslowly varying,
which means that solutions to a more accurate transport equation can be substi-
tuted toPd.

3.2 Computation of the decorrelation formula

We observe that the decorrelation (18) can be computed if thefunction Pd is
known. In the general case where the diffusivityD depends on the position, the
functionPd can only be numerically estimated, provided that the spatial depen-
dence ofD is known. In practice, the decorrelation coefficient can be reasonably
rapidly computed if one assumes that the value ofD is approximately uniform in
the medium. We investigate the acceptable amount of spatialvariation ofD in
Section 4.5.

If the medium is absorbing, the same issue arises. In media with a uniform
absorption timeκ−1, the absorption affects the numerator ofQ in (18) by a factor
exp[−κu − κ(t − u)] = exp[−κt] and the denominator by a factorexp[−κt].
Therefore, uniform absorption effects cancel out in the normalized decorrelation
function, which is a genuine advantage of the present technique. In the case where
absorption is non-uniform, it will affect differentlyPd(s, x0) andPd(x0, r) and
the observed decorrelation pattern may be partly ascribed to the spatial variations
of absorption. Consider a medium with constant diffusivityD and absorptionκ.

12



The solution of the diffusion equation (15) in an infinited-dimensional medium is

Pd(r1, r2, t) =
1

(4πDt)d/2
exp

[

−κt− (r2 − r1)
2

4Dt

]

. (19)

In the case of a 3-D infinite medium, a usual Laplace transformcalculation gives
the exact result:

Q(s, x, r, t) =
1

4πD

(

1

s
+

1

r

)

exp

[

R2 − (s+ r)2

4Dt

]

. (20)

where we have introduce the notationss = ‖s−x‖, r = ‖r−x‖ andR = ‖s−r‖.
We observe thatQ is a function with elliptic contour lines multiplied by simple
poles located ats andr. Of course, ifr = s, we recover the formula derived in
Ref. [28] for an infinite medium. This formula is generally not applicable under
this form because the transducers are usually located at thesurface of the system.
However, if the boundary conditions are sufficiently simple, the formula (20) can
be used as a building block to derive more complicated solutions, as shown in
Section 5.

In formula (17) we neglect two constraints. First, we assumethat the change
occurs at a minimum distance of the order of one mean free pathfrom the source
and the receiver. Second, we neglect the finite velocity of the wave, in other
words, the contribution for timesu, t − u < R/c in the integral (17) should be
removed. The contribution of short timesu < R/c in (17) is negligible as soon as
ct ≫ R > ℓ⋆. The computation of the decorrelation coefficientsKij(t) must be
done withT larger than a few oscillation periods of the wave. Using formula (20),
we can estimate the correction due to this averaging as a function of T/t. To do
so, we compute the average of (20) on the interval[t − T, t + T ] and divide by
the value ofQ at t. We obtain a curve of relative correction as a function ofT/t
which is independent of any other parameters and which is displayed on Figure 5.
In most applications, the correction will be typically lessthan 10%.

3.3 Intensity variations vs field correlations

As recalled in the introduction, a number of investigationson the monitoring of
complex media have focused on the detection of intensity variations induced by lo-
cal changes of the scattering properties. We will show that in the diffusive regime,
intensity variations are much less sensitive to local changes than field correla-
tions. To do so, we calculate the perturbation of the ladder propagator induced by
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Figure 5: Deviation of the average ofQ on the time interval[t − T, t + T ] with
repect toQ(t). The correction grows more rapidly for large values of the argument
in the exponential of (20), denoted by A in this Figure.

an extra-scatterer following the approach developed in reference [18]. In addition
to the diagram depicted in Figure 4, two other diagrams contribute to intensity
variations: 1) a diagram with a single cross on the lower lineand 2) a diagram
with one cross on each line which are connected by a dotted line. In the diffusive
regime and for a non-absorbing change, we obtain the intensity perturbation to
lowest-order in the small parameter1/k0ℓ in the form:

δLI
e(s, x, r; t) =

ℓ4T0T ⋆
0

48π2

∫ +∞

−∞

dΩ

2π

∫∫∫

R3
×R3

d3
q d3

q
′

L̃(q; Ω)eiq·(r−x)(q · q′)L̃(q′; Ω)eiq
′
·(x−s)e−iΩt. (21)

In the Fourier domain, the ladder propagator in the diffusion regime writes:

L̃(q; Ω) =
4π

(2π)3ℓ2 (q2ℓ/3− iΩ/c)
. (22)

After integration over the wavenumbersq, q′ and the frequencyΩ, we obtain:

δLI
e(s, x, r; t) =

σc

6π1/2(Dt)3/2
e−R2/4Dt∇s · (∇rQ(s, x, r)) . (23)
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After calculation of the partial derivatives, we obtain thefollowing formula for
the ladder perturbation induced by an extra scatterer:

δLI
e(s, x, r; t) =

σc2(r− x) · (s− x)

48π3/2D7/2t5/2r2s2

(

r3 + s3

rs
+

(r + s)3

2Dt

)

e−(r+s)2/4Dt

(24)
The intensity variation exhibits a characteristic patternwith positive and nega-
tive lobes, depending on the cosine of the angle between the source and receiver
as seen from the additional scatterer. Even more important is the temporal de-
pendencet−5/2 which is faster than the temporal decay of the ladder propagator
between the source and receiver. As a consequence, the sensitivity to the local
change decays like1/t in sharp contrast to the field correlation which goes to a
constant at large record time. This property supports the use of field correlation
functions to monitor temporal changes in evolving media.

4 The inversion procedure

4.1 Maximum likelihood of the position

In Section 3, we have obtained an expression for the expecteddecorrelation as a
function of the position of the change. The principle of the inversion procedure
is to compare a theoretical model to the experimental data. The change is found
at the position where numerical and experimental decorrelation match best. The
mismatch is measured by a standard least-squares cost function (χ2). The inver-
sion procedure consists in finding the positionx and the cross-sectionσ minimiz-
ing the functionχ2. Such a technique is also often called a maximum likelihood
method. Let us chose a set of sourcessi (1 ≤ i ≤ ns) and a set of receivers
rj (1 ≤ j ≤ nr), and callN the number of source-receiver pairs (in this case,
N = nrns). There is no restriction on their positions, and in particular source and
receiver can be located at the same position. We describe thetechnique at fixed
time t in the signal.

The most restrictive assumption of our approach is that a single change affects
the experimental values of the decorrelation. The LOCADIFFinversion procedure
consists in retrieving the most likely position of this change by introducing the
cost function:

e(x) =
∑

i,j

(

Km
ij (t) −Kij(x, t))

2/ǫ2, (25)

15



Figure 6: The functionQij(x) in a infinite medium in dimension 3 with constant
diffusivity and absorption computed with formula (20). Thefunction is plotted in
the plan containing the source, the receiver and the change.The value along thez
axis (logarithmic) is the sensitivity to a change at the position in (x, y). The two
peaks correspond to the positions of the source and the receiver. Thez-scale is
logarithmic and arbitrary.

whereKm
ij (t) denotes the experimental measurements of the decorrelation and the

coefficientsKij(x, t) are the theoretical decorrelations assuming that the change
is located atx. The typical fluctuations on the measured decorrelations are encap-
sulated in the parameterǫ.

To find the value of the scattering cross-sectionσ, also unknown, we remark
thate(x) is, as a function ofσ, a polynomial of degree two. There is therefore a
minimum depending onx at

σopt(x) =
2

c

∑

i,j K
m
ij (t)Qij(x, t)

∑

i,j Qij(x, t)2
. (26)

We reintroduce the value ofσopt into the expression (25) and get the optimized
error function

eopt(x) =
∑

i,j

Km
ij (t)

2

ǫ2
−

(

∑

i,j K
m
ij (t)Qij(x, t)

)2

ǫ2
∑

i,j Qij(x, t)2
(27)

which does not depend onσ anymore. The most likely position of the change is
the positionx0 of the minimum ofeopt. The value of the cross-section isσopt(x0)
obtained from Equation (26).
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To give an interpretation to the values ofe(x), it is customary to normalize it
in the following way

χ2
n(x) =

e(x)

f
(28)

wheref = N − 4 is the number of degrees of freedom, since four model param-
eters — the cross-section and the cartesian coordinates of the change — are to be
estimated. The quantityχ2

n(x) has the following interpretations. Ifχ2
n(x) ≫ 1, it

is very unlikely that the pointx0 is actually located atx. If χ2
n(x) ≃ 1 the pointx

is a good candidate forx0. If χ2
n(x0) ≪ 1, there is a large area whereχ2

n(x) < 1
which means that the inversion could not locate precisely the change probably be-
cause the value ofǫ is too large. A large value ofǫ means either that the quality of
measurements is poor or thatǫ has been overestimated. It is possible to useχ2

n(x)
to obtain the probability density that the change has occured at the pointx, which
we define as:

p(x) =
1

C
exp

[

−1

2
fχ2

n(x)

]

=
1

C
exp

[

−e(x)
2

]

(29)

whereC is a normalization constant such that
∫

p(x)dx = 1 (see the appendix for
a derivation of this formula).

4.2 Precision versus number of source-receiver pairs

To investigate the precision of the inversion procedure depending on the param-
eters of the likelihood maximization, we use a numerical approach. We compute
the best achievable precision regardless of all experimental difficulties that po-
tentially degrade the accuracy of the location. We use an ideal set-up made of
one source andN receivers regularly distributed on a circle (see figure 8). We
introduce a change at the center of the circle by adding a single scatterer with
cross-sectionσ. For each pair of receiver, we compute synthetic data through ap-
plication of the formula (20). The Thouless timeτD is defined asL2/D. As a
measure of the precision, the lengthδ is introduced, which we compute using the
probability density function (29) as follows:δ2 =

∫

(x− x0)
2p(x)dx.

In the vicinity of the change, we infer that the contributions of the terms ine(x)
are comparable and we deduce thatδ ∝ ǫ. Thus, the precision with which the
measurements are made directly influences the precision with which the change
is located. We will not study the dependence ofδ with respect toǫ and we chose
a valueǫ = 0.01 throughout the numerical study. Note that a uniform proba-
bility distribution corresponds to a complete absence of information concerning
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Figure 7: Density of probability for the position of the moving scatterer.
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Figure 8: Description of the numerical setup used for investigating the accuracy
of the inversion procedure. The example is shown withN = 5. The other param-
eters of the numerical simulations are :L = 10, D = 1, c = 1. The changex0

is located at the center of the circle and is used in Section 4.2 to study the opti-
mal spatial precision of the inversion. The change located at point x1 is used to
study the robustness of the inversion procedure against measurement errors on the
determination ofD in Section 4.5.

the location of the change, and gives the valueδ ≃ L. The typical behaviour of
the precisionδ as a function of the number of source-receiver pairs is depicted
in Figure 9. In the configuration described above, each pair gives a comparable
contribution toe(x) so thate(x) is approximately proportional toN . Therefore in
the ideal case described in our example, we find thatδ ∝ N−1/2.

Note that the precision cannot be made arbitrarily small by increasingN at
will, because it is not possible to find an arbitrary number ofsource-receiver pairs
providingindependent data. The valueN entering into the scaling lawδ ∝ N−1/2

is the number of independent decorrelation measurements. Typically, in the diffu-
sive regime, two measurements locatedλ apart can be considered as independent.

4.3 Precision versus record time

The dependence of the precisionδ with respect to record time is shown on Fig-
ure 10 forσ = 1,D = 1, c = 1, L = 10 andǫ = 0.01 (the units are dimensionless
in the numerical simulation). The precision exhibits a minimum at a time of or-
dertmin = τD. For a given source-receiver pair, the record time is the time that has
elapsed after the arrival of the ballistic wave. Shortly after the ballistic arrival, the
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Figure 9: Spatial precision at the record timet = τD, as a function of the number
of receivers, whereτD is the Thouless time. The typical setup for the numerical
experiment is depicted in Figure 8. The dots correspond to the values of the pre-
cision forN = 5, 10, 20, 40 and80. The double logarithmic scale provides clear
evidence of the relationδ ∼ N−1/2.
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Figure 10: Spatial precision obtained for the setup of Figure 8 for the values
N = 5, 10, 20, 40 and80 and for record times varying from2.10−2τD to 103τD.
The time scale is logarithmic. A minimum of the precision is found att ≃ τD.

waves that reach the receiver have followed “snake-like” paths around the direct
ray. For early record times, the only records sensitive to the change are those for
which the change is located along the segment joining the source and the receiver.
For larger record times, the diffuse waves arriving at the receiver have explored
a larger volume of the system. This qualitatively explains why δ decreases with
the record timet. At very late times, the formula (20) reveals that the decorrela-
tion for each source receiver pair saturates, as the exponential factor tends to1.
The asymptotic spatial sensitivity to the change is algebraic only. After reaching
a minimum,δ increases because the variations ofχ2

n with respect tox decreases.
The minimum forδ is found approximately at timeτD, the Thouless time, after
which the whole system has been explored by the diffuse wavesand yetQ still
exhibits large spatial variations.
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Figure 11: Optimal precisionδ as a function of the cross-section of the changeσ
obtained for the setup of Figure 8. Other parameters of the simulations areD = 1,
c = 1,N = 10, ǫ = 0.01.

4.4 Precision versus cross-section

The scattering cross-sectionσ of the change also influences the precision of the
technique. We observe that the precisionδ decreases asσ increases. Note that
whenσ is very small,δ goes to a value∼ L, meaning that it is not possible to
detect the change. Whenσ ≃ L2, the cross-section is equivalent to the area of
the system, and locating a change has no physical significance in this limit. In
Figure 11 we plot the variations ofδ at the optimal timet = τD as σ varies
from 10−4L2 to L2. The other parameters of the calculations areD = 1, c = 1,
ǫ = 0.01,N = 10. We observe that the spatial precisionδ decreases by a factor 2
as the cross-section increases from10−2 to 1.
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4.5 Sensitivity to the value of the diffusivityD

Our inversion procedure depends heavily upon our ability toestimate the diffu-
sivity of the waves in the heterogeneous medium. Although the absorption time
τ does not enter into the final formula (20), let us remark that in practiceD and
τ cannot be measured independently. The diffusivityD is the crucial physical
parameter which enters into the formula for the intensity propagatorPd and con-
trols the accuracy of the energy propagation model of the medium. It is therefore
important to quantify the impact of errors in the diffusivity D on the accuracy of
our method. Even if we use an incorrect value for the diffusivity, our inversion
procedure still provides an answer for the position of the change. The main issue
is to quantify to what extent the inferred position differs from the exact location
of the target. To address this point, we plot the spatial precision and the absolute
error of the inversion for a wide range of values ofD on a specific example.

We use the approach described in Section 4.2. First, a synthetic data set is
computed with a valueD for the diffusivity. This synthetic data set is then inverted
for the location of the target using a different diffusivityD′. The change is located
at the positionx1 indicated on Figure 8. The other physical parametersL = 10,
σ = 1,N = 10, ǫ = 0.01 andt have been adjusted to provide the smallest spatial
precisionδ. We callξ the distance between the change located by the inversion and
δ is the spatial precision. The results of the simulation are displayed in Figure 12.
It is rather remarkable that an error onD as large as a factor of2 yields a location
of the change within one half of the spatial precision. In this specific but realistic
example, the inversion procedure is therefore very robust against errors on the
determination ofD. This constitutes a major advantage of our method. Based
on these results, we infer that spatial variations ofD within a factor of2 will not
affect the results dramatically.

5 Boundary conditions

The inversion procedure presented in section 4 relies on theknowledge of the
functionPd, the diffusion kernel, which depends on the boundary conditions of
the system. For simplicity, we studied the LOCADIFF technique in an infinite
medium without taking into account the effect of boundaries, which may not be
realistic in applications. An abundant literature is dedicated to solving the diffu-
sion equation in a wide range of situations [7]. In many casesof practical interest,
sophisticated techniques are required to provide an exact solution or a numerical
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Figure 12: Effect of errors on the value of the diffusivityD on the relocation ac-
curacy of the target. Synthetic data were calculated withD = 1 and inverted with
modified values of the diffusivityD′ ranging from 0.2 to 8. The other parameters
of the simulation areσ = 1, L = 10, N = 10, ǫ = 0.01 and the change is lo-
cated at the positionx1 (see Figure 8).ξ is the distance betweenx1 and the point
whereχ2(x) is minimum. In the simulated configuration, the inversion procedure
remains accurate even ifD′ differs fromD by a factor2.
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approximation up to a required accuracy. In the infinite medium, the decorrela-
tion (18) can be computed numerically. In the presence of boundaries, it is more
difficult to compute the Green’s function because translational invariance is lost.
However, if the boundaries are flat, it is possible to construct the Green’s function
from the solution without boundaries using symmetry arguments. In the general
case, one has to solve the diffusion equation for the geometry of the system, which
is a problem of applied mathematics in itself.

In the simple case of a single planar boundary, the solutionPB
d of the diffu-

sion equation of the semi-infinite medium, can be deduced from P∞

d , using the
technique of images:

PB
d (s, r, t) = α (Pd(s, r, t) + βPd(s

′, r, t)) (30)

wheres′ is the image ofs with respect to the boundary (see Figure 13) andβ is a
characteristic coefficient depending on the nature of the boundary condition. For
instance if the boundary is absorbing,β = −1 and if it is fully reflecting, we have
β = 1. The normalization coefficientα is, in the case of constant diffusivity

α−1 =
1 + β

2
+

1− β

2
erf

(

dB,s√
4Dt

)

(31)

wheredB,s is the distance from the source to the boundary. Note thatα is undeter-
mined in the case where the conditionsβ = −1 anddB,s = 0 are met simultane-
ously. The solution to the diffusion equation in presence ofthe boundary can be
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Figure 13: Schematic representation of a boundary condition for Pd. The image
of the sources is noteds′ and the arbitrary point isr. The solid line is the solution
in the infinite medium.

plugged into the decorrelation expression (18) leading to four terms (figure 14).
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Note that in the case where there are more boundaries, infinitely many images
must be taken into account in the formula. Other techniques also lead to infinite
series.
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Figure 14: In presence of a single straight boundary, the decorrelation func-
tion (18) involves four terms, coming from the product of twoformula of the
form (30). We use the images of the sources and the receiverr: Thanks to the
symmetry of the diffusion equation, there is no need to introduce the image of the
pointx.

6 Discussion

In this section, we discuss issues related to the practical use of the LOCADIFF
technique as well as possible improvements. We first note that if the interval be-
tween the records ofhij andh′ij is large, the medium may also have experienced a
global change, for instance a dilation due to a temperature change. In this case, the
computation of the decorrelation may be refined by taking into account a global
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relative velocity changeη, whereǫ yields the maximum value of the correlation
∫

hij((1 + η)u) h′ij(u)du
√

∫

hij(u)2du
∫

h′ij(u
′)2du′

. (32)

where the integrals are performed along the whole record [13].
Another issue concerns the possible improvements on the inversion procedure.

Under the form presented in this article, the LOCADIFF technique only uses a
small time window in the signals, and it would be of great interest to take into
account several time windows simultaneously. This would provide more indepen-
dent data for the inversion procedure and may reduce the effect of noise.

Finally, we point out that the kernel used in the inversion iscomputed from
the solution to the diffusion equation. In some simple geometries, like the infi-
nite medium, the solution is analytic and simple to compute.If the shape of the
medium is irregular, with possibly more complicated boundary conditions, the
kernels can only be approximated numerically. Alternatively, our approach could
benefit from recent developpements in the implementation ofthe radiative transfer
equation.

7 Conclusion

In this article, we have shown that it is possible to use the high sensitivity of
diffuse waves to detect, characterize and locate a weak change in a strongly scat-
tering medium. Our technique uses the correlation of waveforms recorded before
and after the change. Based on a maximum-likelihood approach, and a simple
diffusion model, we demonstrate the possibility to retrieve the position of the
change along with its scattering cross-section. We have also investigated the op-
timal values of the parameters that enter in the inversion procedure, based on a
simple setup where sources and receivers are arranged on a circle surrounding the
change. Three features have been identified: 1) We found thatthe precision scales
with the inverse square root of the number of sensors. 2) The technique provides
the best results when the correlation window is centered on the Thouless time of
the system. 3) We demonstrated that the technique is not verysensitive to errors
in the measurement of the diffusivity.

Several aspects are still to be investigated. First, we haveassumed that a sin-
gle change occurs in the medium, an assumption which is probably too restrictive
in some applications. In a straightforward generalizationof our technique ton
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changes, the dimension of the parameter space scales like4n which in turn con-
siderably increases the computation time. An alternative route for the inversion
has to be found. Second, we have made the assumption of a point-like change. An
extended change may not necessarily be equivalent to a collection of point-like
changes. Again, an alternative approach to the inverse problem will be needed.
We are currently investigating these two issues.

Using 2D finite difference wave simulations, we have demonstrated that LO-
CADIFF efficiently locates a weak change in a multiple scattering environment.
In a separate paper [15], experiments have also been conducted with ultrasound in
concrete. The change was a hole drilled in the sample, and theLOCADIFF tech-
nique successfully retrieved its actual position. Other applications in geophysics
and material sciences can be envisaged.

Acknowledgments

The authors thanks N. Tremblay and C. Sens-Schönfelder fordiscussions. This
work was supported by the ANR JC08313906SISDIF grant.

A Derivation using Bayesian inversion

We shortly derive here the density of probability density (29) using a Bayesian
inference. In this calculation, we suppose that there is a change at an unknown
positionx. The values of the measurementsKm

ij are accurate up to an error orderǫ
such that they are distributed around the numerical valueKij(x, t) according to a
standard error function.

p(Km
ij |x) =

1√
2πǫ

exp

[

−
(Kij(x, t)−Km

ij )
2

2ǫ2

]

. (33)

Each pair(i, j) provides an independent information. The Bayesian inversion
consists in finding the probability density ofx knowing the values ofKm

ij , namely
to computep(x|{Km

ij }). Let us callpn(x) the probability density for the position
of the change whenn source-receiver pairs have been taken into account. Before
measurement, the probability of the location of the change is uniform in the whole
medium, so we havep0(x) = 1

V
(V is the volume). Suppose we knowpn−1(x)

and let us compute the joint probability ofx andKn using Bayes’ formula. We
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use the two relations:

p(x, Km
n |Km

1 , . . . K
m
n−1) = pn(x)p(K

m
n ) (34)

p(x, Km
n |Km

1 , . . . K
m
n−1) = p(Km

n |x)pn−1(x) (35)

Integrating (34) overx we can computep(Km
n ) as

(
∫

V

pn(x)dx

)

p(Km
n ) =

∫

V

p(x, Km
n |Km

1 , . . .K
m
n−1)dx (36)

The integral ofpn(x) is equal to1 so we conclude that, using (35),

pn(x) =
p(Km

n |x)pn−1(x)
∫

V
p(Km

n |x)pn−1(x)dx
. (37)

Therefore we have a recurrence scheme yielding the distribution of probabil-
ity pN(x):

pN(x) =

∏N
n=1 p(K

m
n |x)

∫
∏N

n=1 p(K
m
n |x)dx

(38)

which gives Equation (29) after replacing the probabilities with expression (33).
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