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Let {X n } n≥0 be a V -geometrically ergodic Markov chain. Given some real-valued functional

Consider an M -estimator α n , that is as a measurable function of the observations satisfying M n ( α n ) ≤ min α∈A M n (α) + c n with {c n } n≥1 some sequence of real numbers going to zero. Under some standard regularity and moment assumptions, close to those of the i.i.d. case, the estimator α n satisfies a Berry-Esseen theorem uniformly with respect to the underlying probability distribution of the Markov chain.

I Introduction

Let (E, E) be a measurable space with E a countably generated σ-field, and let {X n } n≥0 be a Markov chain with state space E and transition kernels {Q θ (x, •) : x ∈ E} where θ is a parameter in some general set Θ. The initial distribution of the chain, i.e. the probability distribution of X 0 , is denoted by µ and may or may not depend on θ. Although {X n } n≥0 does not need to be the canonical version, we use the standard notation P θ,µ to refer to the probability distribution of {X n } n≥0 (and E θ,µ for the expectation w.r.t. P θ,µ ). We consider that {X n } n≥0 is a V -geometrically ergodic Markov chain, where V : E →[1, +∞) is some fixed unbounded function. This class of Markov chains is large enough to cover interesting applications (see [START_REF] Meyn | Markov chains and stochastic stability[END_REF]§16.4

, §16.5]).

The parameter of interest is α 0 = α 0 (θ) ⊂ A, where α 0 (•) is a function of the parameter θ and A is an open interval of R. To estimate α 0 , let us introduce the statistic

M n (α) := 1 n n k=1 F (α, X k-1 , X k ), (1) 
where F is a real-valued measurable functional on A × E 2 . We define an M-estimator1 to be a random variable α n depending on the observations (X 0 , . . . , X n ) such that

M n ( α n ) ≤ min α∈A M n (α) + c n ,
where {c n } n≥1 is a sequence of non-negative real numbers going to zero to be specified later.

Assume that for all θ ∈ Θ M θ (α) := lim

n→∞ E θ,µ [M n (α)]
is well defined everywhere on A and does not depend on µ. In addition, assume that there exists a unique "true" value α 0 of the parameter of interest, that is M θ (α 0 ) < M θ (α), ∀α = α 0 . We want to prove the following uniform Berry-Esseen bound for α n sup θ∈Θ

sup u∈R P θ,µ √ n τ (θ) ( α n -α 0 ) ≤ u -Γ(u) = O 1 √ n , (BE)
where Γ denotes the standard normal distribution function, and τ (θ) is some positive real number defined in Theorem 3.

To derive (BE), we use Pfanzagl's approach [START_REF] Pfanzagl | The Berry-Esseen bound for minimum contrast estimates[END_REF]. Besides technical assumptions, this approach relies on several ingredients. First, we need the uniform consistency condition:

(UC) ∀d > 0, sup θ∈Θ P θ,µ | α n -α 0 | ≥ d = O(1/ √ n).
Second, consider the following two convergence properties: if S n (α 0 ) = n k=1 ξ(α 0 , X k-1 , X k ) with ξ(α 0 , X k-1 , X k ) centered, (a) the sequence E θ,µ [S 2 n (α 0 )]/n n≥1 converges to a real number σ 2 (θ);

(b) there exists a positive constant B(ξ) such that for any n ≥ 1

sup θ∈Θ sup u∈R P θ,µ S n (α 0 ) σ(θ) √ n ≤ u -Γ(u) ≤ B(ξ) √ n .
The properties (a) and (b) will be required for certain ξ(α 0 , x, y) defined as linear combinations of some functionals related to F . To obtain (a) and (b) for such ξ(α 0 , x, y)'s with V -geometrically ergodic Markov chains, a natural moment (or V -domination) condition is used: there exist positive constants C ξ and m such that

∀(x, y) ∈ E 2 , ∀α ∈ A, |ξ(α, x, y)| m ≤ C ξ (V (x) + V (y)). (2) 
The paper is organized as follows. In Section II, an extended version of Pfanzagl's theorem [Pfa71, Th 1] is stated for any sequence of observations, not necessarily markovian. Section III is devoted to a Berry-Esseen bound for the additive functional n k=1 ξ(α 0 , X k-1 , X k ) of a V -geometrically ergodic Markov chain {X n } n≥0 with ξ satisfying Inequality (2). In Subsection III.2, we prove that the properties (a) and (b) are fulfilled when Inequality (2) holds with the (almost expected) order m, namely: m > 2 ⇒ (a), and m > 3 ⇒ (b). These results follow from the weak spectral method based on the theorem of Keller and Liverani [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF]. This approach, introduced in [HH04], is fully described in [START_REF] Hervé | The Nagaev-Guivarc'h method via the Keller-Liverani theorem[END_REF] in the Markov context (see also [START_REF] Gouëzel | Banach spaces adapted to Anosov systems[END_REF][START_REF] Gouëzel | Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps[END_REF] and other references given in [START_REF] Hervé | The Nagaev-Guivarc'h method via the Keller-Liverani theorem[END_REF]). It is important to notice that Pfanzagl's method requires the precise control of the constant B(ξ) in Property (b) as a function of the size of ξ. The present operator-type approach shows that B(ξ) depends only on the constant C ξ in Inequality (2). Thanks to these preliminary results, in Section IV we prove our main statement, that is:

(R) under some technical assumptions and the uniform consistency condition (UC), if two functionals F and F related to F (in the basic case F and F are the first and second order derivatives of F with respect to α) satisfy Inequality (2) for some m > 3 and constants C F , C F that do not depend on α, then α n satisfies property (BE).

To the best of our knowledge, the result (R) is new. It completes the central limit theorem for { α n } n≥1 proved in [START_REF] Dehay | On likelihood estimation for discretely observed Markov jump processes[END_REF] when Inequality (2) holds with m = 2. The domination condition (2) required by (R) is almost optimal in the sense that we impose m > 3 in place of the best possible value m = 3 obtained in the i.i.d. case. In Section V, our results are applied to the AR(1) process with ARCH (AutoRegressive Conditional Heteroscedastic) of order 1 errors.

The paper ends with a conclusion section.

Let us close the introduction with a brief review of previous related work in the literature. In [START_REF] Pfanzagl | The Berry-Esseen bound for minimum contrast estimates[END_REF], {X n } n∈N is a sequence of i.i.d. random variables and Pfanzagl proved a Berry-Esseen theorem for minimum contrast estimators (which are special instances of Mestimators) associated with functionals of the form F (α, X k ). In [START_REF] Pfanzagl | The Berry-Esseen bound for minimum contrast estimates[END_REF], the moment conditions on F := ∂F/∂α, F := ∂ 2 F/∂α 2 are the expected ones since the property (b) is fulfilled under the expected third moment condition [Fel71, Chap. XVI]. Using convexity arguments, Bentkus et al. [START_REF] Bentkus | A Berry-Esseen bounds for M -estimators[END_REF] proposed an alternative method for deriving Berry-Esseen bounds for M -estimators with i.i.d. data. In the Markov context, the method proposed by Pfanzagl is extended, first by Rao to cover the case of uniformly ergodic Markov chains [START_REF] Rao | On the rate of convergence of estimators for Markov processes[END_REF], second in [START_REF] Milhaud | Étude de l'estimateur du maximum de vraisemblance dans le cas d'un processus autorégressif : convergence, normalité asymptotique, vitesse de convergence[END_REF] to the case of the linear autoregressive model. However, their assumptions to get (BE) include much stronger moment conditions involving both the functional F and the Markov chain. Here, as already mentioned, the weak spectral method of [START_REF] Hervé | The Nagaev-Guivarc'h method via the Keller-Liverani theorem[END_REF] enables us to have an (almost) optimal treatment of (a) and (b), and hence an improved Berry-Esseen result (BE).

II The Pfanzagl method revisited

We state and prove a general result that allows to derive uniform Berry-Esseen bounds for M -estimators. This result is an extended version of Theorem 1 in [START_REF] Pfanzagl | The Berry-Esseen bound for minimum contrast estimates[END_REF] and is applied to our Markov context in Section IV.

II.1 The result

Consider a statistical model Ω, F, {P θ , θ ∈ Θ} , where Θ denotes some parameter space, and let {X n } n≥0 be any sequence of observations (not necessarily Markovian). Let us denote the expectation with respect to P θ by E θ .

For each n, let M n (α) be a measurable functional of the observations X 0 , . . . , X n and the parameter of interest α ∈ A where A is some open interval of R. Let {c n } n≥1 be a sequence of non-negative real numbers going to zero at some rate to be specified later. An M -estimator is a measurable function α n of the observations (X 0 , . . . , X n ) such that

M n ( α n ) ≤ min α∈A M n (α) + c n .
(3) This is the usual definition of minimum contrast estimators as soon as c n ≡ 0.

Assumptions. Suppose that for all n ≥ 1 and α ∈ A, there exist M n (α), M n (α) some measurable functions depending on X 0 , X 1 , ..., X n and on the parameter of interest such that the following properties hold true:

(A1) ∀θ ∈ Θ, there exists a unique α 0 = α 0 (θ) ∈ A such that M θ (α 0 ) = 0 where M θ (α) := lim n→∞ E θ [M n (α)] (the limit is assumed to be well defined for all (θ, α) ∈ Θ × A);

(A2) 0 < inf θ∈Θ m(θ) ≤ sup θ∈Θ m(θ) < ∞ where m(θ) := lim n→∞ E θ [M n (α 0 )
] (the limit is assumed to be well defined for all θ);

(A3) for every n ≥ 1, there exists r n > 0 independent of θ such that r n = o(n -1/2 ) and

sup θ∈Θ P θ |M n ( α n )| ≥ r n = O(n -1/2 );
(A4) for j = 1, 2, there exists a function σ j (•) such that 0 < inf θ∈Θ σ j (θ) ≤ sup θ∈Θ σ j (θ) < ∞ and there exists a positive constant B such that for all n ≥ 1 sup

θ∈Θ sup u∈R P θ √ n σ 1 (θ) M n (α 0 ) ≤ u -Γ(u) ≤ B √ n , sup θ∈Θ sup u∈R P θ √ n σ 2 (θ) M n (α 0 ) -m(θ) ≤ u -Γ(u) ≤ B √ n ; (A4') for n ≥ 1, |u| ≤ 2 √ ln n, and θ ∈ Θ, there is a positive number σ n,u (θ) such that |σ n,u (θ) -σ 1 (θ)| ≤ A |u| √ n , P θ √ n σ n,u (θ) M n (α 0 ) + u σ 1 (θ) √ n m(θ) M n (α 0 ) -m(θ) ≤ u -Γ(u) ≤ B √ n
with some positive constants A , B independent of n, u, θ;

(A5) for any (α, α ) ∈ A 2 , let R n (α, α ) be defined by the equation

M n (α ) = M n (α) + [M n (α) + R n (α, α )](α -α).
For each n, there exist ω n ≥ 0 and a real-valued measurable function W n depending on X 0 , . . . , X n , both independent of θ, such that ω n = o(1) and

∀(α, α ) ∈ A 2 , |R n (α, α )| ≤ |α -α | + ω n W n ,
and there is a constant c W > 0 such that

sup θ∈Θ P θ {c W ≤ W n } = O(n -1/2 ).
(A6) α n is assumed to be uniformly consistent, that is there exists γ n = o(1) such that

sup θ∈Θ P θ | α n -α 0 | ≥ d ≤ γ n ,
where d := inf θ∈Θ m(θ)/8c W with c W and m(θ) defined in (A5) and (A2) respectively.

Let us comment on these assumptions. Condition (A1) identifies the true value of the parameter. In Conditions (A1) and (A2), the expectations E θ [M n (α)] and E θ [M n (α 0 )] may depend on n, like for instance in the Markovian framework considered in the sequel when the initial distribution is not the stationary distribution. Condition (A3) ensures that the estimator (approximately) satisfies a kind of first order condition. Such a condition allows to take into account the numerical errors we are faced when computing α n . It may also be useful when the estimator of the parameter α 0 depends on some "nuisance" parameters (see the example in the second part of Section V). Conditions (A4) and (A4') are the uniform Berry-Esseen bounds for M n (α 0 ), M n (α 0 ) and for some of their linear combinations. The identity defining R n (α, α ) in Condition (A5) is guaranteed by a Taylor expansion when the criterion M n (α) is twice differentiable with respect to α. In this case M n and M n are nothing else but the first and second order derivatives of M n with respect to α. The reminder R n (α, α ) must satisfy a Lipschitz condition. For instance, when ω n = 0, this holds true if α → M n (α) is three times continuously differentiable with a bounded third order derivative. Condition (A6) is a standard consistency condition (e.g. see [START_REF] Bentkus | A Berry-Esseen bounds for M -estimators[END_REF]). General sufficient conditions for (A6) with γ n = O(n -1 ) have been proposed in the case of i.i.d. observations or uniformly ergodic Markov chains (see [START_REF] Michel | The accuracy of normal approximation[END_REF]Lemma 4] and [Rao73, Lemma 4.1] respectively). Such general arguments can easily be adapted to the geometrically ergodic Markov chain framework. In specific examples, like the one investigated in Section V, Condition (A6) can be checked by direct arguments.

The proof of Theorem 1, which adapts the arguments of [START_REF] Pfanzagl | The Berry-Esseen bound for minimum contrast estimates[END_REF], is given in Subsection II.2.

Theorem 1 Under Conditions (A1-A6), there exists a positive constant C such that ∀n ≥ 1, sup

θ∈Θ sup u∈R P θ √ n τ (θ) ( α n -α 0 ) ≤ u -Γ(u) ≤ C 1 √ n + √ nr n + ω n + γ n (4)
with τ (θ) := σ 1 (θ)/m(θ).

To obtain the classical order O(n -1/2 ) of the Berry-Esseen bound, one needs γ n = O(n -1/2 ), r n = O(n -1 ) and ω n = O(n -1/2 ). Note that this usually requires that the sequence {c n } n≥1 in (3) decreases at the rate n -3/2 . This is to be compared to the rate n -1 that is usually required to obtain the asymptotic normality of M -estimators (see [START_REF] Arcones | A remark on approximate M-estimators[END_REF]).

Remark 1 A close inspection of the proof of Theorem 1 below , shows that the constant C in inequality (4) can be tracked provided that the O(•) and o(•) rates in Assumptions (A3)-(A6) are more explicit. For the sake of brevity, we only consider the case where

c n = r n = ω n = 0, α(θ) = θ and (A3) is: for any n ≥ 1, |M n ( θ n )| = 0. The constants C in the various inequalities of Assumptions (A4)-(A6) are denoted by C 1 , C 2 in (A4), C 3 , C 4 in (A4'), C 5 in (A5
) and we choose γ n ≤ C 6 n -1/2 in (A6). Then, we can obtain from Propositions 1-2 that ∀n ≥ 1, sup

θ∈Θ P θ √ n τ (θ) ( α n -α 0 ) ≤ u -Γ(u) ≤ C √ n where C := 1 2 + 1 √ 2π + 2C 1 + 2C 2 + exp(-a 2 /2) a + C 5 + C 6 when |u| ≥ 2 √ ln n; or C := 2 1 √ 2π + 2C 1 + 4C 2 + 2 exp(-a 2 /2) a + 2C 5 + C 6 + C 4 + 16e -1 (C 3 +σ 2 c W ) σ 1 √ 2π when |u| < 2 √ ln n provided that n/ ln n ≥ max 8c W σ 2 , 4 /σ 1 ;
with a := inf θ∈Θ m(θ)/4σ 2 (θ) , σ := sup θ∈Θ σ 1 (θ)/m(θ), σ 1 = inf θ∈Θ σ 1 (θ).

II.2 Proof of Theorem 1.

The hypotheses of Theorem 1 are assumed to hold. For the sake of brevity, the sequence {r n } n≥1 in (A3) is supposed to be such that r n = o(n -1/2 ), and |M n ( α n )| ≤ r n for every n ≥ 1. In the general case, it suffices to work on the event {|M n ( α n )| ≤ r n } and to bound the probability of the event {|M n ( α n )| > r n } using (A3). From Conditions (A2) and (A4), 

τ (θ) := σ 1 (θ) m(θ) , m := inf θ∈Θ m(θ), m := sup θ∈Θ m(θ), σ j := inf θ∈Θ σ j (θ), σ j := sup θ∈Θ σ j (θ) (j = 1, 2) are well defined. Recall that 0 < m ≤ m < ∞ and 0 < σ j ≤ σ j < ∞.
P θ √ n τ (θ) ( α n -α 0 ) ≤ u -Γ(u) ≤ C √ n + γ n . (5) Proof. For |u| ≥ 2 √ ln n, it is easily checked that P θ √ n τ (θ) ( α n -α 0 ) ≤ u -Γ(u) ≤ P θ √ n τ (θ) α n -α 0 ≥ 2 √ ln n + Γ(-2 √ ln n). Now, Γ(-2 √ ln n) ≤ 1 2 √ ln n 1 √ 2π +∞ 2 √ ln n v e -v 2 2 dv = 1 2 √ ln n 1 √ 2π 1 n 2 .
Finally, the proof is complete if there exists C > 0 such that (see [MP71, Lem. 6])

∀n ≥ 1, sup θ∈Θ P θ √ n τ (θ) α n -α 0 > 2 √ ln n ≤ C √ n + γ n . ( 6 
)
It follows from (A5) and (A3) that

|M n (α 0 )|+r n ≥ | α n -α 0 | |M n (α 0 )+R n ( α n , α 0 )|. Then, √ n σ 1 (θ) α n -α 0 > 2 √ ln n m(θ) =⇒ √ n σ 1 (θ) M n (α 0 ) + r n > 2 √ ln n m(θ) M n (α 0 ) + R n ( α n , α 0 ) provided that M n ( α n ) = M n (α 0 ). Next, introducing the event 2|M n (α 0 ) + R n ( α n , α 0 )| > m(θ)
and its complement (which includes the event {M n ( α n ) = M n (α 0 )}), we obtain

P θ √ n τ (θ) α n -α 0 > 2 √ ln n ≤ P θ √ n σ 1 (θ) {|M n (α 0 )| + r n } > √ ln n + P θ 2|M n (α 0 ) + R n ( α n , α 0 )| ≤ m(θ) .
It is easily checked from (A4) and r n = o(n -1/2 ) that

sup θ∈Θ P θ √ n σ 1 (θ) {|M n (α 0 )| + r n } > √ ln n = O 1 √ n + 2 Γ - √ ln n + √ nr n σ 1 (θ) = O 1 √ n .
Finally, to obtain the bound (6), it remains to justify the use of the following bound:

sup θ∈Θ P θ 2|M n (α 0 ) + R n ( α n , α 0 )| ≤ m(θ) = O(n -1/2 ) + γ n . ( 7 
)
Using elementary inequalities and Assumption (A5),

P θ 2|M n (α 0 ) + R n ( α n , α 0 )| ≤ m(θ) ≤ P θ |M n (α 0 ) -m(θ)| ≥ m(θ)/4 + P θ {|R n ( α n , α 0 )| ≥ m(θ)/4} ≤ P θ |M n (α 0 ) -m(θ)| ≥ m(θ)/4 + P θ {[| α n -α 0 )| + ω n ]W n ≥ m(θ)/4} =: P 1,n,θ + P 2,n,θ .
It follows from (A4) that a := inf θ∈Θ m(θ)/4σ 2 (θ) is well defined and positive, and

sup θ∈Θ P 1,n,θ ≤ O n -1/2 + 2 Γ(-a √ n) = O n -/1/2 . (8) Now, let d(θ) := m(θ)/4c W with c W defined in (A5) and notice that d = inf θ ∈Θ d(θ )/2 in (A6). Use the event | α n -α 0 ≤ d(θ)
-ω n and its complement to write

P 2,n,θ ≤ P θ m(θ) 4 ≤ [| α n -α 0 | + ω n ] W n ≤ W n d(θ) + P θ | α n -α 0 | > d(θ) -ω n ≤ sup θ∈Θ P θ {c W ≤ W n } + sup θ∈Θ P θ | α n -α 0 | > d = O(n -1/2 ) + γ n ,
from (A5-A6) and provided that ω n ≤ d. Therefore, Inequality (7) holds true. Now, it remains to investigate the case |u| < 2 √ ln n.

Proposition 2 There exists a positive constant C such that, for any |u| < 2 √ ln n,

sup θ∈Θ P θ √ n τ (θ) ( α n -α 0 ) ≤ u -Γ(u) ≤ C 1 √ n + √ n r n + ω n + γ n . ( 9 
)
Proof. We just have to prove that (9) holds true for all n ≥ n 0 , for some n 0 ∈ N. Let us introduce some sets and derive their probability bounds:

-E n,θ := √ n | α n -α 0 |/τ (θ) ≤ 2 √ ln n . From (6), sup θ∈Θ P θ (E c n,θ ) = O(n -1/2 + γ n ).
-

A n := {0 ≤ W n ≤ c W }
where the r.v. W n and the constant c W are defined in (A5). Then

sup θ∈Θ P θ (A c n ) = O(n -1/2 ). -D n,θ := 2M n (α 0 ) > m(θ) . We have P θ {D c n,θ } ≤ P θ M n (α 0 ) -m(θ) ≥ m(θ)/2 ≤ P θ M n (α 0 ) -m(θ) ≥ m(θ)/4 . We know from (8) that sup θ∈Θ P θ (D c n,θ ) = O(n -1/2 ).
Then, we obtain from the previous estimates that the following set

B n,θ := E n,θ ∩ A n ∩ D n,θ .
is such that

sup θ∈Θ P θ (B c n,θ ) ≤ O(n -1/2 + γ n ). (10) Now, if D n,θ,u := { √ n( α n -α 0 )/τ (θ)
≤ u}, then we can write from (10)

P θ (D n,θ,u ) -Γ(u) ≤ P θ (D n,θ,u ∩ B n,θ ) -Γ(u) + O(n -1/2 + γ n ). (11) 
From (A2) and (A4), 0 < σ := sup θ∈Θ τ (θ) < ∞. Define the piecewise quadratic functions

g -(v) := c -+ b -v + a -v 2 , g + (v) := c + + b + v + a + v 2 where c ± := n[M n (α 0 ) ± r n ], b ± := τ (θ) √ n M n (α 0 ) ± sign(v)c W ω n , a ± := ±σ 2 c W ,
and sign(v) denotes the sign of v when v = 0 and sign(0) = 0. Notice that g -and g + are continuous on the whole real line. To bound the term

P θ (D n,θ,u ∩ B n,θ ) -Γ(u) in (11), let us introduce the events E ± n,θ,u := {g ± (u) ≥ 0}. ( 12 
)
It follows from Lemma A.2 in Appendix A that, for n large enough and |u| < 2 √ ln n,

P θ (E - n,θ,u ∩ B n,θ ) ≤ P θ (D n,θ,u ∩ B n,θ ) ≤ P θ (E + n,θ,u ∩ B n,θ ) so that P θ (D n,θ,u ∩ B n,θ ) -Γ(u) ≤ max P θ E - n,θ,u ∩ B n,θ -Γ(u) , P θ E + n,θ,u ∩ B n,θ -Γ(u) ≤ max P θ E - n,θ,u -Γ(u) , P θ E + n,θ,u -Γ(u) + P θ (B c n,θ ). (13)
Then, the proof of Proposition 2 is easily completed using (10) and the following estimate: there exists a constant C such that for n large enough and |u| < 2 √ ln n

sup θ∈Θ P θ E ± n,θ,u -Γ(u) ≤ C 1 √ n + √ nr n + ω n . ( 14 
)
Indeed, E ± n,θ,u = {g ± (u) ≥ 0} with g ± defined in (II.2). We can write

E ± n,θ,u = n[M n (α 0 ) ± r n ] + uτ (θ) √ n[M n (α 0 ) ± sign(u)c W ω n ] ± u 2 σ 2 c W ≥ 0 = √ n σ n,u (θ) M n (α 0 ) + u σ 1 (θ) √ n m(θ) M n (α 0 ) -m(θ) ≥ - a n (u, θ) + b n (u, θ) σ n,u (θ)
where the positive real number σ n,u (θ) is that of Condition (A4') and

a n (u, θ) = u σ 1 (θ) 1 ± sign(u)c W ω n m(θ) ± uσ 2 c W √ n , b n (u, θ) = ± √ nr n .
From the second statement of (A4') it follows that there exists a constant B such that we have, for n large enough and |u| < 2 √ ln n

sup θ∈Θ P θ (E ± n,θ,u ) -Γ a n (u, θ) + b n (u, θ) σ n,u (θ) ≤ B √ n .
Now, from σ 1 = inf θ∈Θ σ 1 (θ) > 0 and from the first property of σ n,u (θ) in (A4'), it follows that, for n large enough and |u| < 2 √ ln n, and for all θ ∈ Θ, we have σ n,u (θ) ≥ σ 1 /2, and

a n (u, θ) σ n,u (θ) -u ≤ |u| σ n,u (θ) σ n,u (θ) -σ 1 (θ) + c W ω n m(θ) + |u|σ 2 c W √ n ≤ 2|u| σ 1 A + σ 2 c W |u| √ n + c W m ω n ≤ C u 2 √ n + |u|ω n
where C is independent of n, u, θ. We obtain from estimates on the characteristic function of the standard Gaussian distribution reported in [Pfa71, p.89] that, for n large enough,

|u| < 2 √ ln n, and θ ∈ Θ, Γ a n (u, θ) σ n,u (θ) -Γ(u) ≤ C 1 1 √ n + ω n
for some C 1 > 0. We deduce from similar arguments that, for some constant C 2 ,

Γ a n (u, θ) σ n,u (θ) -Γ a n (u, θ) + b n (u, θ) σ n,u (θ) ≤ C 2 √ n r n .
Since C 1 , C 2 only depend on A , σ 1 , m, σ and c W , the proof of ( 14) is complete.

III A Berry-Esseen bound for an additive functional of geometrically ergodic Markov chains

The main focus of the paper is to apply the general Berry-Esseen result of Theorem 1 to the case of M -estimators as defined in the introduction when the observations come from a geometrically ergodic Markov chain. To check Conditions (A4) and (A4') in Theorem 1, we need the next probabilistic results based on a recent version of the Berry-Esseen theorem derived by [START_REF] Hervé | The Nagaev-Guivarc'h method via the Keller-Liverani theorem[END_REF] in the geometrically ergodic Markov chain setting.

III.1 The statistical model

Let (E, E) be a measurable space with a countably generated σ-field E and Θ be some general parameter space. Let {X n } n≥0 be a Markov chain with state space E, transition kernels {Q θ (x, •), x ∈ E}, θ ∈ Θ, and an initial distribution µ which may or may not depend on θ.

Throughout Section III, we assume that µ(V

) := sup θ∈Θ µ(V ) < ∞. Assumption (M). Let V : E →[1, +∞) be an unbounded function (independent of θ). For each θ ∈ Θ, there exists a Q θ -invariant probability distribution, denoted by π θ , such that (VG1) b 1 := sup θ∈Θ π θ (V ) < +∞ .
(VG2) For all γ ∈ (0, 1], there exist real numbers κ γ < 1 and C γ ≥ 0 such that we have, for any θ ∈ Θ, n ≥ 1 and x ∈ E,

sup |Q n θ f (x) -π θ (f )| , f : E → C measurable, |f | ≤ V γ ≤ C γ κ n γ V (x) γ .
Notice that (VG2) with γ = 1 implies the following property: for any measurable realvalued function f defined on E such that |f | ≤ DV for some constant D > 0,

∀n ≥ 1, sup θ∈Θ |E θ,µ [f (X n )] -π θ (f )| ≤ DC 1 κ n 1 µ(V ). (15) 
Moreover, Conditions (VG1) and (VG2) imply that, for any γ ∈ (0, 1] and θ ∈ Θ, Q θ is V γgeometrically ergodic, but it is worth noticing that the constants C γ and κ γ do not depend on θ. In the following remark, the properties (VG1) and (VG2) are related to the so-called drift condition w.r.t. the function V for each Q θ .

Remark 2 Assume that for each θ ∈ Θ, Q θ is aperiodic and ψ-irreducible w.r.t. a certain positive σ-finite measure ψ on E (which may depend on θ).

1. For γ = 1 and any fixed θ, the properties (VG1)-(VG2) follow from the drift condition :

Q θ V ≤ V +ς 1 S , with < 1, ς > 0 and S some set 2 satisfying the minorization condition Q θ (x, •) ≥ c ν(•) 1 S (x)
, where c > 0 and ν is a probability measure concentrated on S (see [START_REF] Meyn | Markov chains and stochastic stability[END_REF]Th. 16.0.1]). In addition, the constants C 1 and κ 1 can be bounded by a quantity involving , ς, c, the measure ν and the set S (see [START_REF] Meyn | Computable bounds for geometric convergence rates of Markov chains[END_REF]). To obtain the uniformity in θ, it suffices to check that all these elements do not depend on θ.

For any

γ ∈ (0, 1], we have π θ (V γ ) ≤ π θ (V ) and thus Condition (VG1) implies that sup θ∈Θ π θ (V γ ) < ∞. Furthermore, under the drift condition, it follows from Jensen's inequality that Q θ V γ ≤ γ V + ς γ 1 S .
Using again [START_REF] Meyn | Computable bounds for geometric convergence rates of Markov chains[END_REF] one obtains (VG2).

III.2 A preliminary uniform Berry-Esseen statement

Let α 0 = α 0 (θ) ∈ A be the parameter of interest for the statistical applications we have in mind (see Condition (A1) page 4), where θ is the parameter of the Markov chain model and A is an open interval of the real line. Let ξ(α, x, y) be a real-valued measurable function defined on A×E2 such that the random variable ξ(α, X k-1 , X k ) is (integrable and) centered with respect to the stationary distribution π θ , that is

E θ,π θ [ξ(α 0 , X 0 , X 1 )] = 0,
and let

S n (α) := n k=1 ξ(α, X k-1 , X k ).
We investigate the following uniform Berry-Esseen property

sup θ∈Θ sup u∈R P θ,µ S n (α 0 ) σ(θ) √ n ≤ u -Γ(u) = O 1 √ n
where σ 2 (θ) will be defined below as the asymptotic variance associated to the random variables ξ(α, X k-1 , X k ). When {X n } n≥0 are i.i.d. and ξ(α, X k-1 , X k ) ≡ ξ(α, X k ), this property follows from the Berry-Esseen theorem [START_REF] Feller | An introduction to probability theory and its applications[END_REF], provided that ξ(α, X 0 ) has finite third order moment, uniformly bounded in α, and a variance greater than some positive constant which does not depend on α.

In our Markov framework, the following moment (or V -domination) condition is natural for the functional ξ. In the sequel, this condition will be required for m 0 = 1, 2 or 3.

Condition (D m 0 ). There exist real constants

m > m 0 ≥ 1 and C ξ > 0 such that ∀α ∈ A, ∀(x, y) ∈ E 2 , ξ(α, x, y) m ≤ C ξ V (x) + V (y) . (D m 0 )
This domination condition implies that

E θ,π θ [ |ξ(α, X 0 , X 1 )| m ] = |ξ(α, x, y)| m Q θ (x, dy)dπ θ (x) ≤ C ξ (π θ (V )+π θ (Q θ V )) < ∞, ( 16 
)
and since m ≥ 1, observe that E θ,π θ [ |ξ(θ, X 0 , X 1 )| ] < ∞.
Proposition 3 Suppose that Assumption (M) holds true and that ξ is centered and satisfies Condition (D 1 ). Then, we have

sup θ∈Θ sup n≥1 E θ,µ [S n (α 0 )] < ∞. In particular, for each θ ∈ Θ, lim n E θ,µ [S n (α 0 )/n] = 0. If in addition ξ satisfies condition (D 2 ), then for each θ ∈ Θ, the non-negative real number σ 2 (θ) := lim n E θ,µ [S n (α 0 ) 2 ] n
is well-defined and does not depend on µ. Furthermore, the function σ 2 (•) is bounded on Θ, and there exists a positive constant C, only depending on C ξ and µ(V ), such that

∀θ ∈ Θ, ∀n ≥ 1, σ 2 (θ) - E θ,µ [S n (α 0 ) 2 ] n ≤ C n .
Now, we are ready to state our uniform Berry-Esseen statement for S n (α 0 ).

Theorem 2 Let us assume that :

1. Condition (M) holds true;

2. the functional ξ is centered and satisfies Condition (D 3 );

3. σ 2 0 := inf θ∈Θ σ 2 (θ) > 0.
Then, there exists a constant B(ξ) such that

∀n ≥ 1, sup θ∈Θ sup u∈R P θ,µ S n (α 0 ) σ(θ) √ n ≤ u -Γ(u) ≤ B(ξ) √ n .
Furthermore, the constant B(ξ) depends on the functional ξ, but only through σ 0 and the constant C ξ of Condition (D 3 ).

The fact that we look for a Berry-Esseen bound with a constant B(ξ) independent of θ is natural given our main purpose, that is prove a uniform Berry-Esseen theorem for Mestimators.

There are several methods for deriving Berry-Esseen bound for the functionals of Markov chains (e.g. see [START_REF] Bolthausen | The Berry-Esseen theorem for strongly mixing Harris recurrent Markov chains[END_REF][START_REF] Jensen | Asymptotic expansions for strongly mixing Harris recurrent Markov chains[END_REF]). But to prove Proposition 3 and Theorem 2, we use the weak spectral method developed in [START_REF] Hervé | The Nagaev-Guivarc'h method via the Keller-Liverani theorem[END_REF]. 3 This method allows to control the constant B(ξ) as a function of C ξ for checking Assumption (A4') of Theorem 1 (see the arguments following equation (31) in Section IV). This follows from the next key technical result. Although the proof of the Berry-Esseen theorem only requires Taylor expansions up to the order m 0 and condition (D m 0 ) with m 0 = 3, for the purpose of possible further applications, Lemma 1 below is stated for any m 0 ∈ N * .

Lemma 1 If ξ is centered and satisfies Condition (D m 0 ) with m 0 ∈ N * , then there exists

β > 0 such that ∀θ ∈ Θ, ∀n ≥ 1, ∀t ∈ [-β, β], E θ,µ e itSn(α 0 ) = λ θ (t) n (1 + L θ (t)) + r θ,n (t), ( 17 
)
where λ θ (•), L θ (•) and r θ,n (•) are some m 0 times continuously differentiable functions from [-β, β] into C satisfying λ θ (0) = 1, λ θ (0) = 0, L θ (0) = 0 and r θ,n (0) = 0. Furthermore, there exists ρ ∈ (0, 1) such that we have for = 0, . . . , m 0 :

G := sup ρ -n |r ( ) θ,n (t)|, |t| ≤ β, θ ∈ Θ, n ≥ 1 < ∞.
Finally, the constants β, ρ, G and the following ones (for = 0, . . . , m 0 )

E := sup{|λ ( ) θ (t)|, |t| ≤ β, θ ∈ Θ} < ∞, F := sup{|L ( ) θ (t)|, |t| ≤ β, θ ∈ Θ} < ∞, depend on ξ, but only through the constant C ξ of Assumption (D m 0 ).
Lemma 1 is proved in Subsection III.3. The definition of L θ (t) and r θ,n (t) (see ( 24) and ( 25)) shows that the constants F and G also depend on µ(V ) (see Remark 3). Now, Lemma 1 allows us to derive Proposition 3 and Theorem 2. Proof of Proposition 3. Assume that ξ is centered and satisfies (D m 0 ) with m 0 ∈ N * . Proceeding as in (16) and using (15), (VG1) and µ(V ) < ∞, we obtain that

sup θ∈Θ sup k≥1 E θ,µ [ |ξ(α 0 , X k-1 , X k )| m ] < ∞ for some m > m 0 . ( 18 
)
Now assume m 0 = 1, and let φ(t)

:= E θ,µ [e itSn(α 0 ) ], t ∈ R. Then φ (0) = i E θ,µ [S n (α 0 )], but Lemma 1 also gives φ (0) = L θ (0) + r θ,n (0). Hence sup θ∈Θ sup n≥1 |E θ,µ [S n (α 0 )]| ≤ F 1 + G 1 .
Next, assume m 0 = 2. From (18) we have E θ,µ [ S n (α 0 ) 2 ] < ∞, and thus we can write

φ (0) = -E θ,µ [S n (α 0 ) 2 ],
and φ (0) = nλ θ (0) + L θ (0) + r θ,n (0) by Lemma 1. Thus we obtain

|λ θ (0) + E θ,µ [S n (α 0 ) 2 ]/n| ≤ (|L θ (0)| + |r θ,n (0)|)/n ≤ (F 2 + G 2 )/n. Set σ 2 (θ) := -λ θ (0). Then sup θ∈Θ σ 2 (θ) ≤ E 2 (by Lemma 1)
, and the proof is complete with

C := F 2 + G 2 .
Proof of Theorem 2.. Recall that ξ is centered and satisfies Condition (D 3 ). To prove the result, we use Lemma 1 with m 0 = 3 and we adapt the arguments of the i.i.d. case. Recall that σ 2 (θ) = -λ θ (0). According to the classical Berry-Esseen inequality (e.g., see [START_REF] Feller | An introduction to probability theory and its applications[END_REF]), we must prove that for some suitable positive constant c,

sup θ∈Θ A n (θ) = O(n -1/2 ) where A n (θ) := c √ n -c √ n E[e it S n (α 0 ) σ(θ) √ n ] -e -t 2 2 t dt.
3 A Berry-Esseen theorem is established in [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour des chaînes de Markov fortement ergodiques[END_REF] for sequences of the form {ξ(X k )} k≥0 under the conditions µ(V ) < ∞ and |ξ| 3 ≤ C V . However, the case of sequences of the form {ξ(X k-1 , X k )} k≥0 is not a direct corollary of this work since the Markov chain {(X k-1 , X k )} k≥0 may not be geometrically ergodic.

For the moment, we just assume that 0 < c ≤ βσ 0 , where β is the real number in Lemma 1. Notice that |t| ≤ c implies |t/σ(θ)| ≤ β for all θ ∈ Θ. Using Lemma 1, we have

A n (θ) ≤ c √ n -c √ n λ θ t σ(θ) √ n n -e -t 2 2 t dt + c √ n -c √ n λ θ t σ(θ) √ n n L θ t σ(θ) √ n t dt + c √ n -c √ n r θ,n t σ(θ) √ n t dt := I n (θ) + J n (θ) + K n (θ).
By a Taylor expansion, for all θ ∈ Θ and |v| ≤ c,

λ θ v σ(θ) -1 + v 2 2 ≤ E 3 6σ 3 0 |v| 3
where E 3 is defined in Lemma 1. Hereafter, set c := min{βσ 0 , 3σ 3 0 /2E 3 , √ 2}. From the last inequality, deduce that for any |v| ≤ c

λ θ v σ(θ) ≤ 1 - v 2 2 + v 2 4 ≤ e -v 2 4 .
Therefore, for any

t ∈ R such that |t| ≤ c √ n, λ θ t σ(θ) √ n n ≤ e -t 2 4 . ( 19 
)
Let us write

λ θ t σ(θ) √ n n -e -t 2 2 = λ t σ(θ) √ n -e -t 2 2n n-1 k=0 λ θ t σ(θ) √ n n-k-1 e -kt 2 2n . Notice that |λ θ (t/σ(θ) √ n) -exp(-t 2 /2n)| ≤ a + E 3 /6σ 3 0 |t/ √ n| 3 if a := sup |v|≤c |ψ (3) (v)| with ψ(v) := 6 exp(-v 2 /2). Moreover, n-1 k=0 λ θ t σ(θ) √ n n-k-1 e -kt 2 2n ≤ n-1 k=0 e -t 2 (n-k-1) 4n e -kt 2 4n ≤ b n e -t 2 4 ,
where b := sup |v|≤c exp(v 2 /4). Hence

λ θ t σ(θ) √ n n -e -t 2 2 ≤ a + E 3 6σ 3 0 b n -1 2 |t| 3 e -t 2 4 which yields sup θ∈Θ I n (θ) ≤ b n -1/2 a + E 3 /6σ 3 0 R t 2 exp(-t 2 /4)dt. Next, using (19) and L θ (0) = 0, sup θ∈Θ J n (θ) ≤ F 1 σ 0 √ n R e -t 2 4 dt.
Finally, using r θ,n (0) = 0, we have

sup θ∈Θ |r θ,n (t/σ(θ) √ n)| ≤ (|t|/σ 0 √ n) G 1 ρ n , so that sup θ∈Θ K n (θ) ≤ (2cG 1 /σ 0 ) ρ n .
Gathering the results we deduce that

sup θ∈Θ A n ≤ A √ n + 2cG 1 σ 0 ρ n
where the constants A, ρ, G 1 and c depend on C ξ of Condition (D 3 ). The Berry-Esseen inequality [START_REF] Feller | An introduction to probability theory and its applications[END_REF] then yields

sup u∈R P θ,µ S n (θ) σ(θ) √ n ≤ u -Γ(u) ≤ 1 π A √ n + 2cG 1 σ 0 ρ n + 24η c √ n ,
where η = sup u∈R |Γ (u)|. The proof of Theorem 2 is complete.

III.3 Proof of Lemma 1

For θ ∈ Θ fixed, Lemma 1 follows from [HP10, sect. 10]. Here we must prove that all the constants in Lemma 1 are uniform in θ and depend on ξ as claimed. For this purpose, the weak spectral method is outlined below (in the V -geometrical ergodicity context) and we give the main statements by paying special attention to the constants. For convenience, the technical proofs are postponed in Appendix B.

• Geometrical ergodicity of Q θ . Let 0 < γ ≤ 1. We denote by B γ the weighted supremumnormed space of measurable complex-valued functions f on E such that

f γ := sup x∈E |f (x)| V (x) γ < ∞. (B γ , • γ ) is a Banach space.
The space of bounded operators on B γ is denoted by L(B γ ), and the associated operator norm is still denoted by • γ . We have from (VG1)

sup θ∈Θ π θ (V γ ) ≤ b 1 = sup θ∈Θ π θ (V ) < ∞, (20) 
so that π θ is a continuous linear form on B γ . Define the following rank-one projection on B γ :

∀f ∈ B γ , Π θ f := π θ (f )1 E .
Then Condition (VG2) in (M) can be rewritten as follows: Q θ ∈ L(B γ ) and there exist κ γ < 1 and

C γ > 0 such that ∀θ ∈ Θ, ∀f ∈ B γ , ∀n ≥ 1, Q n θ f -Π θ f γ ≤ C γ κ n γ f γ . ( 21 
)
From ( 20) and (21),

Q n θ γ = sup x∈E (Q n θ V γ )(x)/V (x) γ is uniformly bounded in n ∈ N * and θ ∈ Θ.
• The Fourier kernels associated with Q θ and ξ. Assume that, for all α ∈ A, ξ(α, •, •) is measurable. The Fourier kernels associated with Q θ and ξ are denoted by {Q θ (t)(x, dy), t ∈ R} and defined by ∀x ∈ E, Q θ (t)(x, dy) := e itξ(α 0 ,x,y) Q θ (x, dy).

Let us recall that S n (α 0 ) := n k=1 ξ(α 0 , X k-1 , X k ). The following link between Q θ (t) and the characteristic function of S n (α 0 ) is well-known in the spectral method:

∀n ≥ 1, ∀t ∈ R, E θ,µ [e itS n (α 0 ) ] = µ Q θ (t) n 1 E . ( 22 
)
In fact, we have E θ,µ [e itS n (α 0 ) f (X n )] = µ(Q θ (t) n f ) for any real-valued measurable bounded function f on E. This can be easily checked by induction using the Markov property and the following equality

∀n ≥ 2, E θ,µ [e itS n (α 0 ) f (X n )] = E θ,µ e itS n-1 (α 0 ) (Q θ (t)f )(X n-1 ) .
• Spectral study of Q θ (t) on B γ (for t near 0). It can be easily seen that, for all t ∈ R, we have Q θ (t) ∈ L(B γ ). For κ ∈ (0, 1), we set

D κ := {z ∈ C : |z| ≥ κ, |z -1| ≥ (1 -κ)/2}.
Lemma 2 Let γ ∈ (0, 1). For all κ ∈ (κ γ , 1), there exists β γ,κ > 0 such that, for θ ∈ Θ, |t| ≤ β γ,κ and z ∈ D κ , we have z -

Q θ (t) -1 ∈ L(B γ ) and R γ,κ := sup z -Q θ (t) -1 γ : θ ∈ Θ, |t| ≤ β γ,κ , z ∈ D κ < ∞.
Moreover, the constants β γ,κ and R γ,κ depend on ξ, but only via the constant C ξ of (D m 0 ).

For θ fixed, Lemma 2 is established in [HP10, Prop. 10.1] thanks to the theorem of Keller and Liverani [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF][START_REF] Liverani | Invariant measure and their properties. a functional analytic point of view[END_REF]. Here we only have to prove that the constants β γ,κ and R γ,κ are uniform in θ and depend on ξ as stated above. According to [KL99, Rk. p. 145], it is enough to check that so are the constants involved in the hypotheses of the Keller-Liverani theorem. This is due to Lemmas B.1-B.2 in Appendix B.

• Proof of Formula ( 17). Now assume that ξ satisfies Condition (D m 0 ) for some m 0 ∈ N * . Let γ 0 ∈ (0, 1) be fixed such that γ 0 + m 0 /m < 1. For any κ ∈ (κ γ 0 , 1), denote by Γ 0,κ the oriented circle centered at z = 0, with radius κ, and by Γ 1,κ the oriented circle centered at z = 1, with radius (1 -κ)/2. Note that both Γ 0,κ and Γ 1,κ are contained in D κ . From (21) and Lemma 2, one can deduce that we have, for all n ≥ 1, θ ∈ Θ, and t ∈ [-β γ 0 ,κ ; β γ 0 ,κ ], the following equality in L(B γ 0 ):

Q θ (t) n = λ θ (t) n Π θ (t) + N θ (t) n , ( 23 
)
where λ θ (t) is the dominating simple eigenvalue of Q θ (t), Π θ (t) and N θ (t) n are the elements of L(B γ 0 ) defined by the following line integrals:

Π θ (t) := 1 2iπ Γ 1,κ z -Q θ (t) -1 dz and N θ (t) n := Γ 0,κ z n z -Q θ (t) -1 dz.
Note that we have λ θ (0) = 1 and Π θ (0) = Π θ from (21). Also observe that, from Lemma 2 and the definition of Γ 0,κ , we have N θ (t) n γ = O(κ n ). Since 1 E ∈ B γ 0 and µ(V ) < ∞ (µ is a continuous linear form on B γ 0 ), the equalities ( 22) and (23) give:

E θ,µ [e itS n (α 0 ) ] = λ θ (t) n µ Π θ (t)1 E + µ N θ (t) n 1 E .
Therefore formula (17) holds true with

L θ (t) := µ Π θ (t)1 E -1, r θ,n (t) := µ N θ (t) n 1 E (n ∈ N * ).
We have

L θ (0) = µ Π θ 1 E -1 = 0 and r θ,n (0) = µ N θ (0) n 1 E = µ Q n θ 1 E -Π θ 1 E = 0.
Finally, to make easier the link with Lemma 3 below, let us observe that

1 + L θ (t) = 1 2iπ Γ 1,κ µ (z -Q θ (t)) -1 1 E dz, ( 24 
)
r θ,n (t) = 1 2iπ Γ 0,κ z n µ (z -Q θ (t)) -1 1 E dz. ( 25 
)
• Regularity properties of λ(•), L θ (•), r θ,n (•). Let γ 0 be such that γ 0 + m 0 /m < γ 0 < 1. We denote by L(B γ 0 , B γ 0 ) the space of the bounded linear operators from B γ 0 to B γ 0 , and by • γ 0 ,γ 0 the associated operator norm.

M θ (α) > M θ (α 0 ), ∀α = α 0 . To estimate α 0 = α 0 (θ) we consider an M -estimator α n as defined in Section II, that is M n ( α n ) ≤ min α∈A M n (α) + c n , where {c n } n≥1 is a sequence of non-negative real numbers going to zero.

Let F and F be real-valued measurable functions defined on A × E 2 and let

M n (α) := 1 n n k=1 F (α, X k-1 , X k ), M n (α) := 1 n n k=1 F (α, X k-1 , X k ). ( 27 
)
The functionals F and F could be the first and second order partial derivatives of F with respect to α, but this is not necessary to deduce our next result. Consider the following assumptions on F and F (and implicitly on c n , see (V3)).

Assumptions.

(V0) F and F satisfy Condition (D 3 );

(V1) ∀θ ∈ Θ, E θ,π θ [F (α 0 , X 0 , X 1 )] = 0 and α 0 = α 0 (θ) is unique with this property; (V2) m(θ) := E θ,π θ [F (α 0 , X 0 , X 1 )] satisfies inf θ∈Θ m(θ) > 0; (V3) M n ( α n ) satisfies Condition (A3), that is ∀n ≥ 1 there exists r n > 0 independent of θ such that r n = o(1/ √ n) and sup θ∈Θ P θ,µ |M n ( α n )| ≥ r n = O(n -1/2 ).
Notice that (V0) ensures sup θ∈Θ m(θ) < ∞ (see ( 16)). Now, as a consequence of Proposition 3 applied to F and F , the conditions (V0)-(V2) enable us to define the asymptotic variances:

σ 2 1 (θ) := lim n 1 n E θ,µ n k=1 F (α 0 , X k-1 , X k ) 2 σ 2 2 (θ) := lim n 1 n E θ,µ n k=1 F (α 0 , X k-1 , X k ) -n m(θ) 2 .
Moreover, Condition (V0) and Proposition 3 ensure that sup θ∈Θ σ j (θ) < ∞ for j = 1, 2. The following conditions are also assumed to hold.

(V4) inf θ∈Θ σ j (θ) > 0 for j = 1, 2.

(V5) There exist η ∈ (0, 1/2) and C > 0 such that

∀(α, α ) ∈ A 2 , ∀(x, y) ∈ E 2 , F (α, x, y) -F (α , x, y) ≤ C |α -α | V (x) + V (y) η . (V6) Set d := inf θ∈Θ m(θ)/8π θ (V η ) with η defined in (V5). There exists γ n = o(1) such that sup θ∈Θ P θ,µ | α n -α 0 | ≥ d ≤ γ n .
Theorem 3 Assume that the condition (M) holds true, that F satisfies Condition (D 1 ), that Conditions (V0) to (V6) are fulfilled. Let τ (θ) := σ 1 (θ)/m(θ). Then there exists a positive constant C such that ∀n ≥ 1, sup

θ∈Θ sup u∈R P θ,µ √ n τ (θ) ( α n -α 0 ) ≤ u -Γ(u) ≤ C 1 √ n + √ nr n + γ n .
The statement in the above theorem corresponds to that of the i.i.d. case in [START_REF] Pfanzagl | The Berry-Esseen bound for minimum contrast estimates[END_REF] up to few changes: first the variances of the i.i.d context5 are replaced by the above asymptotic variances σ 2 1 (θ) and σ 2 2 (θ) (this is natural in a general markovian context); second the uniform (in θ) third-order moment conditions6 on both F , F are replaced by the domination condition (D 3 ) for F , F ; third, even when F = ∂F/∂α, here we allow for a positive sequence r n , n ≥ 1, provided it decreases to zero sufficiently fast. The second point is specific to the geometrically ergodic Markov chain case. Indeed, in the same statistical model, Dehay and Yao [START_REF] Dehay | On likelihood estimation for discretely observed Markov jump processes[END_REF] proved a CLT for maximum likelihood estimates under a second-order domination assumption on the two first derivatives of the functional which corresponds to Inequality (D m 0 ) with m 0 = 2. Here the previous second-order assumption is replaced by the (almost) optimal condition (D 3 ) for deriving the Berry-Esseen theorem for M -estimators.

Proof of Theorem 3. It suffices to check the conditions (A1) to (A6) of Theorem 1. The limit M θ (α) := lim n E θ,µ [M n (α)] is well defined by Proposition 3 and Condition (V0), the uniqueness of α 0 is guaranteed by (V1), hence (A1) holds true. One more application of Proposition 3 ensures that

E θ,π θ [F (α 0 , X 0 , X 1 )] = lim n E θ,µ [M n (α 0 )], hence (A2) is satisfied.
Condition (V3) is nothing but (A3). The Berry-Esseen properties in (A4) are associated to the functionals F (α 0 , x, y) and F (α 0 , x, y) respectively, so that they directly follow from Theorem 2. Now, let us check that (A5) holds true with ω n ≡ 0. Define W := V η where η ∈ (0, 1/2) is the scalar in (V5) and notice that 

E θ,π θ [W (X 0 ) 1/η ] = π θ (V ). Next, since V ≥ 1 and η ∈ (0, 1/2), we have 1 ≤ W ≤ W 2 ≤ V so that 1 ≤ π θ (W ) ≤ π θ (W 2 ) ≤ π θ (V ) ≤ b 1 by Property (VG1). Deduce that sup θ∈Θ π θ (W ) < ∞,
n := (1/n) n k=1 (W (X k-1 ) + W (X k )) provided that sup θ∈Θ P θ,µ 8π θ (W ) ≤ W n = O n -1 . ( 28 
)
To prove (28), set

S n := n k=1 W (X k ). Since W n ≤ 2 S n /n + (W (X 0 ) + W (X n )) /n and π θ (W ) ≥ 1, P θ,µ 8π θ (W ) ≤ W n ≤ P θ,µ S n ≥ 2 n π θ (W ) + P θ,µ W (X 0 ) + W (X n ) ≥ 4 nπ θ (W ) ≤ P θ,µ S n -nπ θ (W ) ≥ n + P θ,µ W (X 0 ) + W (X n ) ≥ 4 n .
Equality (28) is then obtained by Markov's inequality

P θ,µ 8π θ (W ) ≤ W n ≤ 1 n 2 E θ,µ (S n -nπ θ (W )) 2 + 1 4n 1/η E θ,µ [(W (X 0 ) + W (X n )) 1/η ] = O n -1 , since sup θ∈Θ sup n≥1 E θ,µ [(W (X 0 ) + W (X n )) 1/η ] ≤ 2 1/η-1 [ µ(V ) + C 1 µ(V ) + b 1 ], using (a + b) 1/η ≤ 2 1/η-1 (a 1/η + b 1/η
) for any a, b ≥ 0 and (VG1)-(VG2). Notice also that now Condition (V6) is identical to Condition (A6). The difficult part is to check the Berry-Esseen-type property (A4'). For this purpose, let Ξ := {ξ i (•, •, •), i ∈ I} denote an arbitrary family of real-valued functionals defined on A × E 2 . Suppose that each ξ i is centered, i.e. E θ,π θ [ξ i (α 0 , X 0 , X 1 )] = 0 for all i ∈ I and θ ∈ Θ, and that Condition (D 3 ) is fulfilled uniformly in i ∈ I, that is

∃m > 3, ∃C ≥ 0, ∀i ∈ I, ∀α ∈ A, ∀(x, y) ∈ E 2 , ξ i (α, x, y) m ≤ C V (x) + V (y) . ( 29 
)
For each i ∈ I, set S n (α 0 , i) = n k=1 ξ i (α 0 , X k-1 , X k ), and using Proposition 3 associate the corresponding asymptotic variance denoted by σ 2 i (θ). Moreover assume that

0 < inf{σ i (θ), θ ∈ Θ, i ∈ I} ≤ sup{σ i (θ), θ ∈ Θ, i ∈ I} < ∞. ( 30 
)
Then, we deduce from Theorem 2 that, under Conditions (M), ( 29), (30), and µ(V ) < ∞, there exists a constant B such that

∀n ≥ 1, sup i∈I sup θ∈Θ sup u∈R P θ,µ S n (α 0 , i) σ i (θ) √ n ≤ u -Γ(u) ≤ B √ n . (31) 
This allows to establish the two conditions in (A4'). Indeed, for (p, v) ∈ N * × R with v such that |v| ≤ 2 √ ln p, let us introduce the functional ξ p,v defined by

ξ p,v (α 0 , x, y) := F (α 0 , x, y) + v √ p σ 1 (θ) m(θ) F (α 0 , x, y) -m(θ) . Set S n (α 0 , p, v) := n k=1 ξ p,v (α 0 , X k-1 , X k ), and 
α θ (p, v) := v √ p σ 1 (θ) m(θ) , S n (θ) := n k=1 F (α 0 , X k-1 , X k ), S n (θ) := n k=1 F (α 0 , X k-1 , X k )-n m(θ), so that S n (α 0 , p, v) = S n (α 0 ) + α θ (p, v) S n (α 0 ). Notice that E θ,π θ [ξ p,v (α 0 , X 0 , X 1 )] = 0 by (V1)-(V2). We have E θ,π θ [S n (α 0 , p, v) 2 ]-E θ,π θ [S n (α 0 ) 2 ] = α θ (p, v) 2 E θ,π θ [S n (α 0 ) 2 ]+2 α θ (p, v)E θ,π θ [S n (α 0 )S n (α 0 )].
From (V2) and the fact that σ 1 (•) is bounded, we have |α θ (p, v)| ≤ A|v|/ √ p for some A > 0 which does not depend on θ. Besides, as already mentioned in this section, one can define the asymptotic variances σ 2 1 (θ) and σ 2 2 (θ) associated to the functionals F and F by

σ 2 1 (θ) := lim n 1 n E θ,π θ [ S n (α 0 ) 2 ] σ 2 2 (θ) := lim n 1 n E θ,π θ [ S n (α 0 ) 2 ].
Similarly, the asymptotic variance σ 2 p,v (θ) associated to ξ p,v can be defined by:

σ 2 p,v (θ) = lim n 1 n E θ,π θ [ S n (α 0 , p, v) 2 ].
Then, it follows from

E θ,π θ [ S n (α 0 ) S n (α 0 ) ] ≤ E θ,π θ [ S n (α 0 ) 2 ] 1/2 E θ,π θ [ S n (α 0 ) 2 ] 1/2 that σ 2 p,v (θ) -σ 2 1 (θ) ≤ A 2 v 2 p σ 2 2 (θ) + 2 A |v| √ p σ 1 (θ) σ 2 (θ).
Since σ j (•) is bounded (j = 1, 2) and |v| ≤ 2 √ ln p ≤ 2 √ p, the previous inequality shows that there exists C > 0, independent of θ, such that

σ 2 p,v (θ) -σ 2 1 (θ) ≤ C |v| √ p .
Set σ 1 := sup θ∈Θ σ 1 (θ) and σ 1 := inf θ∈Θ σ 1 (θ) (we have σ 1 > 0 from (V4)). Using |v|/ √ p ≤ 2 ln p/p and ln p/p = o(1), the above inequality implies that there exists P 0 ∈ N such that we have, for all p ≥ P 0 and v such that |v| ≤ 2

√ ln p ∀θ ∈ Θ, 1 2 σ 1 ≤ σ p,v (θ) ≤ 3 2 σ 1 .
In particular, under the same condition on (p, v), this gives σ p,v (θ) + σ 1 (θ) ≥ 3σ 1 /2, hence:

|σ p,v (θ) -σ 1 (θ)| ≤ 2C |v|/3σ 1 √ p.
This proves the first assertion in (A4'). Now, let us define

I = (p, v) ∈ N * × R : p ≥ P 0 , |v| ≤ 2 ln p .
It follows from (V0), (V2) and σ 1 < +∞ that the family Ξ := {ξ p,v , (p, v) ∈ I} satisfies (29). Besides, the above bounds of σ p,v (θ) give the property (30). Then Equation (31) shows that there exists B > 0 such that we have for all n ≥ 1, (p, v) ∈ I, θ ∈ Θ, and u ∈ R:

P θ,µ S n (α 0 , p, v) σ p,v (θ) √ n ≤ u -Γ(u) ≤ B √ n .
Finally, let us fix any integer n ≥ P 0 and any real number u such that |u| ≤ 2 √ ln n. Then, the previous Berry-Esseen property, applied with p := n and v := u, exactly provides the second property of (A4'). Indeed, we obtain from

S n (α 0 ) = n M n (α 0 ) and S n (α 0 ) = n (M n (α 0 ) - m(θ)) that S n (α 0 , n, u) σ n,u (θ) √ n = 1 σ n,u (θ) √ n S n (α 0 ) + u √ n σ 1 (θ) m(θ) S n (α 0 ) = √ n σ n,u (θ) M n (α 0 ) + u σ 1 (θ) √ n m(θ) M n (α 0 ) -m(θ) .
Now the proof of Theorem 3 is complete.

V An example: AR(1) process with ARCH(1) errors

Let us apply our theoretical results to an AR(1) process with ARCH(1) errors that belongs to the class of ARMA-GARCH models (see [START_REF] Francq | Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes[END_REF] and the references therein). The observations are generated by the process

X n = ρ 0 X n-1 + σ(X n-1 ; a 0 , b 0 ) ε n , n = 1, 2, . . . ( 32 
)
where X 0 has some probability distribution µ, σ 2 (x; a, b) := a+bx 2 and |ρ 0 | < 1, a 0 , b 0 > 0 are the true values of the parameters. {ε n } n≥1 is a sequence of i.i.d. random variables with zero mean and variance equal to 1, with finite pth order moment for some p to be specified below and (unknown) density f ε that is continuous and positive on R. {ε n } n≥1 is independent of X 0 . For simplicity, hereafter µ is assumed to be the Dirac distribution δ 0 . The "true" parameter θ in the associated statistical model is the vector

(ρ 0 , a 0 , b 0 ) ∈ Θ ⊂ [-ρ, ρ] × [m a , M a ] × [m b , M b ] ⊂ R 3 , where ρ ∈ (0, 1), 0 < m a < M a < ∞ and 0 < m b < M b < 1 are given such that ρ + √ M b < 1.
For illustration, we apply our results to estimate ρ 0 and b 0 . First, let us check that the Markov chain defined by (32) satisfies Assumption (M) of Section III.1 with V (x) = (1+|x|) p . To check (VG1)-(VG2) and the existence of the Q θ -invariant probability measure π θ , by [START_REF] Meyn | Computable bounds for geometric convergence rates of Markov chains[END_REF][Th. 2.3] it suffices to prove that there exist constants ∈ (0, 1), c, ς > 0, a Borel subset S of the real line and a probability measure ν concentrated on S such that the following two conditions hold true (see also Remark 2): for all θ ∈ Θ,

∀x ∈ R, Q θ V (x) ≤ V (x) + ς 1 S (x) and Q θ (x, •) ≥ c ν(•) 1 S (x). (33) 
In our setting the transition probability of {X n } n≥0 is given by

Q θ (x, B) = 1 B (ρ 0 x + σ(x, a 0 , b 0 )y)f ε (y)dy
for any Borel set B ⊂ R. As a consequence, for all θ ∈ Θ and x ∈ R,

Q θ V (x) V (x) = R V ρ 0 x + σ(x, a 0 , b 0 )y V (x) f ε (y) dy ≤ R 1 + ρ|x| + ( √ M a + √ M b |x|)|y| 1 + |x| p f ε (y)dy. By Fatou's Lemma, lim sup |x| → ∞ sup θ∈Θ Q θ V (x) V (x) ≤ ρ + M b < 1.
Next, fix ∈ (ρ + √ M b , 1). There exists s > 0 such that for each |x| > s, Q θ V (x) ≤ V (x) for all θ ∈ Θ. Set S := [-s; s]. For all x ∈ S and θ ∈ Θ,

Q θ V (x) ≤ ς := R 1 + ρs + ( M a + M b s)|y| p f ε (y) dy < ∞,
so that the first condition in (33) is guaranteed. To check the second condition in (33), define

0 < δ(u) := inf x∈S, θ∈Θ f ε σ -1 (x, a 0 , b 0 )(u -ρ 0 x) , u ∈ R.
Then, for any x ∈ S, Borel set B ⊂ R and θ ∈ Θ,

Q θ (x, B) = R 1 B ρ 0 x + σ(x, a 0 , b 0 )y f ε (y)dy = B f ε σ -1 (x, a 0 , b 0 )(u-ρ 0 x) σ(x, a 0 , b 0 ) du ≥ B δ(u) m a du.
Define the measure m(du) := m -1 a δ(u) du and notice that m(S) > 0. We deduce from above that all θ ∈ Θ, x ∈ S and Borel set B ⊂ R,

Q θ (x, B) ≥ m(B) ≥ m(B ∩ S) = m(S) ν(B),
where ν is the probability measure ν(B) = m(B ∩ S)/m(S). Hence the second condition in (33) is fulfilled and Assumption (M) is satisfied for {X n } n≥0 defined in (32).

Second, to estimate ρ 0 , one can use the least squares estimator

ρ n := n k=1 X k X k-1 n k=1 X 2 k-1 = arg min ρ 1 n n k=1 F (ρ, X k-1 , X k ),
where F (ρ, X k-1 , X k ) := (X k -ρX k-1 ) 2 . We show that the assumptions of Theorem 3 are satisfied so that we have an uniform Berry-Esseen bound for ρ n . Fix some p > 6. Moreover, assume that

R |x| p f ε (x)dx < ∞. Take F (ρ, X k-1 , X k ) := -2X k-1 (X k -ρX k-1 ) and F (ρ, X k-1 , X k ) := 2X 2 k-1 .
The conditions (V0) and (V1) are obviously fulfilled. Next, define m(θ) 

:= E θ,π θ [F (ρ 0 , X k-1 , X k )] and notice that m(θ)/2 = a 0 + (b 0 + ρ 2 0 )m(θ)/2. It follows that m(θ) = 2a 0 /(1 -ρ 2 0 -b 0 ) >
(θ) = lim n 4 n n k=1 E θ,π θ X 2 k-1 σ 2 (X k-1 , a 0 , b 0 )ε 2 k ≥ 4a 0 lim n E θ,π θ [X 2 n ] ≥ 4m 2 a .
To derive a lower bound for σ 2 2 (θ), let us decompose

E θ,π θ n k=1 F (ρ 0 , X k-1 , X k ) -m(θ) 2 = n k=1 v k,k + 2 1≤k<l≤n v k,l .
where

v k,l := E θ,π θ F (ρ 0 , X k-1 , X k ) -m(θ) F (ρ 0 , X l-1 , X l ) -m(θ) , k ≤ l. It is easily checked that v k,l = (ρ 2 0 + b 0 )v k,l-1 for k < l.
In particular, this implies v k,l > 0, k ≤ l. Next, by elementary inequalities, we can obtain inf θ E θ,π θ (F (ρ 0 , X 0 , X 1 ) -m(θ)) 2 ≥ K for some positive constant K depending on the variance of ε 2 1 . Deduce that σ 2 2 (θ) ≥ K, hence (V4) holds true. Condition (V5) is trivially satisfied. To check the consistency condition (V6) we take advantage of the explicit form of ρ n . Indeed, we have

ρ n -ρ 0 = n -1 n k=1 X k X k-1 -ρ 0 E θ,π θ [X 2 1 ] -ρ 0 n -1 n k=1 X 2 k-1 -E θ,π θ [X 2 1 ] n -1 n k=1 X 2 k-1 -E θ,π θ [X 2 1 ] + E θ,π θ [X 2 1 ] =: ∆ 1n -ρ 0 ∆ 2n ∆ 2n + E θ,π θ [X 2 1 ]
. By Chebyshev's inequality, for any d > 0,

P θ,δ 0 {|∆ 1n | > d} ≤ d -2 n -1 E θ,δ 0 [n∆ 2 1n ]. Proposi- tion 3 guarantees that E θ,δ 0 [n∆ 2
1n ] is uniformly bounded (with respect to θ). Similar arguments apply for ∆ 2n . Since E θ,π θ [X 2 1 ] > m a for all θ, we deduce that (V6) holds with γ n = O(n -1 ). Finally, by Theorem 3, there exists C > 0 such that

∀n ≥ 1, sup θ∈Θ sup u∈R P θ,δ 0 √ n σ 1 (θ)m(θ) -1 ( ρ n -ρ 0 ) ≤ u -Γ(u) ≤ C √ n . ( 34 
)
Third, let us now turn to the estimation of b 0 . For this purpose, assume that the ε n 's have a moment of order p for some p > 12. Recall that a 0 = m(θ)(1 -ρ 2 0 -b 0 )/2 and notice that arguments like those used for ρ n and therefore the details are omitted. Condition (V5) is trivially satisfied. Finally, let us notice that

b n -b 0 = n k=1 ( τ 2 n -X 2 k-1 ) η k (b 0 , ρ n , τ 2 n ) n k=1 ( τ 2 n -X 2 k-1 ) 2
, and thus Condition (V6) can be checked by arguments that we already used in this example. We deduce from Theorem 3 that, for some suitable τ (θ),

∀n ≥ 1, sup θ∈Θ sup u∈R P θ,δ 0 √ n τ (θ) ( b n -b 0 ) ≤ u -Γ(u) = O log n √ n .
The log factor in this Berry-Esseen bound is the price we pay for estimating b 0 by a simple two-step procedure, easy to implement, where we first estimate ρ n and τ 2 n and then we use the least squares criterion M n (b) = T n (b; ρ n , τ 2 n ). We feel that the log factor could be removed by using a direct approach where the three parameters are estimated simultaneously, but the investigation of this idea with Markov chain data is left for future work.

VI Conclusion

In this paper, we study Berry-Esseen's theorem for M -estimators (or minimum contrast estimators) of some parameter α 0 on the real line. The estimators are defined from a criterion based on a functional F (α, X n-1 , X n ) of the observation process {X n } n≥0 . Our approach to derive such bounds relies on Pfanzagl's method originally proposed for i.i.d. observations [START_REF] Pfanzagl | The Berry-Esseen bound for minimum contrast estimates[END_REF]. In a first step, Theorem 1 in [START_REF] Pfanzagl | The Berry-Esseen bound for minimum contrast estimates[END_REF] is extended to obtain Berry-Esseen bounds for M -estimators based on any sequence of observations satisfying suitable conditions. In a second step, the specific case of V -geometrically ergodic Markov observations is considered. We show that such Markov framework allows to apply our general result provided that F and related functionals F , F satisfy suitable domination conditions. This result covers those reported in [START_REF] Rao | On the rate of convergence of estimators for Markov processes[END_REF][START_REF] Milhaud | Étude de l'estimateur du maximum de vraisemblance dans le cas d'un processus autorégressif : convergence, normalité asymptotique, vitesse de convergence[END_REF] which are proved under much stronger moment conditions. We argue that the domination conditions used in the present paper gives an almost optimal treatment of Berry-Esseen bounds for V -geometrically ergodic Markov chains. This is possible due to the operator-type procedure developed in [START_REF] Hervé | The Nagaev-Guivarc'h method via the Keller-Liverani theorem[END_REF].

There are several possible extensions of our results. A straightforward one is to follow the lines of the proof [Pfa71, Th 2] and to consider an estimator of the standard deviation in the Berry-Esseen bounds when this standard deviation depends on θ only through α 0 . The details are omitted. Next, for more effective bounds, we need to carefully evaluate the constants involved throughout the paper. This is a direction of future work. Finally, there is no doubt that the operator-type procedure in [START_REF] Hervé | The Nagaev-Guivarc'h method via the Keller-Liverani theorem[END_REF] could be further used in statistical applications with Markov models, in particular with strongly ergodic Markov chains. This is under investigation.

A Complements for the proof of Theorem 1.

The reader is referred to Proposition 2 and its proof for the notation and the definitions used throughout this part. The following lemma gives key properties of the random functions g ± . Lemma A.1 The following properties hold true.

1. If ν n,θ := √ n( α n -α 0 )/τ (θ), then A n ⊂ g -(ν n,θ ) ≤ 0 ≤ g + (ν n,θ ) . 2. For ω ∈ D n,θ , g ± are increasing on the interval (-2 √ ln n, 2 √ ln n) provided that √ n ≥ 2c W m 4σ 2 m √ ln n σ 1 + √ n ω n . ( 35 
)
Proof. We can write from Assumptions (A5) and (A3)

nM n (α 0 ) + ( α n -α 0 )nM n (α 0 ) = nM n ( α n ) -( α n -α 0 )nR n (α 0 , α n ) ≤ nr n + n α n -α 0 R n (α 0 , α n ) ≤ nr n + n α n -α 0 α n -α 0 + ω n W n . If ω ∈ A n then nM n (α 0 ) + ( α n -α 0 )nM n (α 0 ) ≤ n α n -α 0 2 c W + nω n α n -α 0 c W + nr n .
This last inequality is rewritten as

n[M n (α 0 ) -r n ] + τ (θ) √ n M n (α 0 ) -sign(ν n,θ )c W ω n ν n,θ -τ (θ) 2 c W ν 2 n,θ ≤ 0 and n[M n (α 0 ) + r n ] + τ (θ) √ n M n (α 0 ) + sign(ν n,θ )c W ω n ν n,θ + τ (θ) 2 c W ν 2 n,θ ≥ 0, with ν n,θ := √ n( α n -α 0 )/τ (θ). Since 0 < τ (θ) ≤ σ, then we obtain that g -(ν n,θ ) ≤ 0 and g + (ν n,θ ) ≥ 0.
The second statement is proved as follows for g + . Notice that a + > 0 and g + is continuous. If we restrict v < 0, the minimum of this quadratic function g + (v) is achieved at

v min = - b + 2a + = - τ (θ) √ n [M n (α 0 ) -c W ω n ] 2σ 2 c W ,
or at the origin if v min ≥ 0. Now, if ω ∈ D n,θ and n satisfies the condition (35), it is easy to check that v min < -2 √ ln n and g + is strictly increasing on (0, ∞). Hence, g + is increasing on (-2 √ ln n, 2 √ ln n). Similar arguments apply for g -.

Lemma A.2 We have for n large enough and |u|

< 2 √ ln n E - n,θ,u ∩ B n,θ ⊂ D n,θ,u ∩ B n,θ ⊂ E + n,θ,u ∩ B n,θ . ( 36 
)
Proof. It is understood below that ω ∈ B n,θ . Since B n,θ ⊂ E n,θ ∩ D n,θ and |u| < 2 √ ln n, the second statement in Lemma A.1 guarantees that for n large enough √ n( α n -α 0 )/τ (θ) ≤ u =⇒ g + √ n( α n -α 0 )/τ (θ) ≤ g + (u).

Since B n,θ ⊂ A n , the first assertion in Lemma A.1 yields g + √ n( α n -α 0 )/τ (θ) ≥ 0 so that g + (u) ≥ 0 when √ n( α n -α 0 )/τ (θ) ≤ u. This proves the second inclusion in (36). Next, assume that g -(u) ≥ 0. Since g -is increasing, we have √ n( α n -α 0 )/τ (θ) > u =⇒ g -√ n( α n -α 0 )/τ (θ) > g -(u) ≥ 0.

Since B n,θ ⊂ A n , we know from Lemma A.1 that g -( √ n( α n -α 0 )/τ (θ)) ≤ 0 which is in contradiction with the above inequality. Thus, g -(u) ≥ 0 gives √ n( α n -α 0 )/τ (θ) ≤ u.

B Complements for the proof of Lemma 1

A first step to control the constants in Lemma 2 is to study the resolvent map (z -Q θ ) -1 of the transition kernel Q θ acting on B γ .

Lemma B.1 Let δ, r be such that κ γ < r < 1 and 0 < δ < 1 -r. Then, for any z ∈ C such that |z| > r and |z -1| > δ, the operator z -Q θ is invertible on B γ , and we have:

H γ (δ, r) := sup (z -Q θ ) -1 γ , θ ∈ Θ, |z| > r, |z -1| > δ < ∞.
Proof. Let g ∈ B γ , and let us write h θ = g -π θ (g) 1 E . Since π θ (h θ ) = 0, it follows from (VG2) that Q n θ h θ γ ≤ C γ κ n γ h θ γ . Now assume |z| > r. Then

k≥0 |z| -(k+1) Q k θ h θ γ ≤ C γ κ γ k≥0 κ γ r k+1 h θ γ ≤ C γ r -κ γ h θ γ .
Thus, ψ θ := k≥0 z -(k+1) Q k θ h θ is absolutely convergent in B γ , we have (z -Q θ )ψ θ = h θ and ψ θ γ ≤ C γ h θ γ /(r -κ γ ). Besides, if z = 1, then we clearly have Second, the constants involved in the Doeblin-Fortet inequality and the weak continuity condition of the Keller-Liverani theorem are proved to be uniform in θ and to depend on ξ only via the constant C ξ of (D m 0 ). We appeal to [KL99, Rk. p. 145] and to the improvements given in [START_REF] Liverani | Invariant measure and their properties. a functional analytic point of view[END_REF]. In the context of strongly ergodic Markov chains, the hypotheses resulting from [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF][START_REF] Liverani | Invariant measure and their properties. a functional analytic point of view[END_REF] are stated in [HP10, sect. 4] and used here with the auxiliary norm f 1 := sup |f |/V on B γ . In the sequel, for 0 < γ < γ ≤ 1, we denote by L(B γ , B γ ) the space of the bounded linear operators from B γ to B γ , and by • γ,γ the associated operator norm (with the convention • γ = • γ,γ when γ = γ). Lemma B.2 Let γ ∈ (0, 1). We have:

(z -Q θ ) π θ (g) z -1 1 E = π θ (
(a) ∀θ ∈ Θ, ∀t ∈ R, ∀n ≥ 1, ∀f ∈ B γ , Q θ (t) n f γ ≤ C γ κ n γ f γ + b 1 f 1 ; (b) ∀θ ∈ Θ, ∀t ∈ R, Q θ (t) -Q θ γ,1 ≤ 2 2-γ C ξ 1-γ m (E γ + E 1 ) |t| 1-γ f γ ,
where E γ := sup θ∈Θ Q θ γ , E 1 := sup θ∈Θ Q θ 1 and C γ , κ γ , b 1 are defined in (20) (21).

Proof. By using the inequality Q θ (t) n f γ ≤ Q n θ |f | γ , Assertion (a) easily follows from (21) and (20). To establish (b), let us recall that we have from (D m 0 ) (use V ≥ 1)

|ξ(θ, x, y)| 1-γ ≤ C (1-γ)/m ξ (V (x) + V (y)) 1-γ ≤ 2 1-γ C (1-γ)/m ξ V (x) 1-γ + V (y) 1-γ .
Let f ∈ B γ . From the definition of Q θ (t)f and the inequalities |f | ≤ V γ f γ , |e ia -1| ≤ 2|a| 1-γ , we obtain that

(Q θ (t)f )(x) -(Q θ f )(x) ≤ f γ E e itξ(α 0 ,x,y) -1 V (y) γ Q θ (x, dy) ≤ 2 2-γ C ξ 1-γ m |t| 1-γ f γ V (x) 1-γ Q θ V γ (x) + (Q θ V )(x) ,
from which we deduce (b).

For the next lemma (used to prove Lemma 3), we introduce the following notations. For any θ ∈ Θ, k ∈ N, t ∈ R, let us denote by Q θ,k (t) the operator associated to the kernel: Q θ,k (t)(x, dy) = i k ξ(α 0 , x, y) k e itξ(α 0 ,x,y) Q θ (x, dy) (x ∈ E). 

≤ 2 1+ k+ε m C ξ k+ε m |t -t 0 | ε f γ V k+ε m (x) Q θ V γ (x) + Q θ V γ (x) .
Since the functions V -γ Q θ V γ and V -γ Q θ V γ are bounded on E uniformly in θ ∈ Θ, we deduce that ∆ θ,k f γ ≤ D ξ |t -t 0 | ε f γ , where D ξ is a positive constant depending on C ξ (but independent of θ). This gives (a). The proof of (b) is similar by using the operators Q θ,k (t) -Q θ,k (t 0 ) -(t -t 0 )Q θ,k+1 (t 0 ) and the inequality |e ia -1 -ia| ≤ 2|a| 1+ε .

W

  and by Proposition 3 applied toξ(θ, x, y) = W (y) (X k ) -n π θ (W ) 2 < ∞.Now, Condition (A5) is guaranteed by the properties (M) and (V5) with ω n ≡ 0, c W := sup θ∈Θ π θ (W ) and W

  g) 1 E . Now assume |z| > r and |z -1| > δ. Then the function fθ := (π θ (g)/(z -1)) 1 E + ψ θ is such that (z -Q θ )f θ = g. Thus (z -Q θ ) -1 g = f θ . From (20), we obtain |π θ (g)| ≤ π θ (|g|) ≤ π θ (V γ ) g γ ≤ b 1 g γ and h θ γ = g -π θ (g) 1 E γ ≤ (1 + b 1 ) g γ . This gives: f θ γ ≤ (b 1 /δ) g γ + C γ (1 + b 1 ) g γ /(r -κ γ ), hence H γ (δ, r) ≤ [b 1 /δ + C γ (1 + b 1 )/(r -κ γ )] < +∞.

Lemma B. 3

 3 Let 0 < γ < γ ≤ 1 and k = 0, . . . , m 0 :(a) If γ + k/m < γ ≤ 1, then the map t → Q θ,k (t) is continuous from R to L(B γ , B γ ). (b) If k ≤ m 0 -1 and γ + (k + 1)/m < γ ≤ 1, then the map t → Q θ,k (t) is continuously differentiable from R to L(B γ , B γ ),and for all t ∈ R, (dQ θ,k /dt)(t) is the operator in L(B γ , B γ ) associated to the kernel Q θ,k+1 (t).

Finally, we

  have Q k,γ,γ := sup{ Q θ,k (t) γ,γ , θ ∈ Θ, t ∈ R} < ∞, and Q k,γ,γ depends on ξ but only via the constant C ξ of (D m 0 ). Proof. Set ∆ θ,k := Q θ,k (t) -Q θ,k (t 0 ), and let 0 < ε ≤ 1 be such that γ + (k + ε)/m ≤ γ . Using |e ia -1| ≤ 2|a| ε and (D m 0 ), we obtain for f ∈ B γ : |∆ θ,k f (x)| ≤ 2 |t -t 0 | ε f γ |ξ(α 0 , x, y)| k+ε V (y) γ Q θ (x, dy)

  2m a and thus (V2) holds. Condition (V3) is satisfied with r n ≡ 0. From Proposition 3, we can use the Q θ -invariant probability measure π θ to check Condition (V4). Notice that lim n E θ,π θ [X 2 n ] = m(θ)/2 > m a and recall that {ε n } n≥1 is i.i.d.

	We deduce that
	σ 2 1

This is slightly more general than the usual definition of M -estimators or minimum contrast estimators, where cn = 0, see[START_REF] Arcones | A remark on approximate M-estimators[END_REF].

S is the so-called small set.

As observed in[START_REF] Gouëzel | Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps[END_REF], the passage to the differentiability properties can be derived from[START_REF] Campanato | Proprietà di una famiglia di spazi funzionali[END_REF].

Namely, E θ [F (θ, X0) 2 ] and E θ [(F (θ, X0)-m(θ)) 2 ] for an i.i.d sequence {Xn} n≥0 and a functional F (θ, x).

Namely, sup θ∈Θ E θ [ |F (θ, X 0 )| 3 + |F (θ, X 0 )| 3 ] < ∞.

Lemma 3 We have the following regularity properties:

(a) The map Q θ (•) is m 0 -times continuously differentiable from R to L(B γ 0 , B γ 0 ), and we have Q := sup t∈R, θ∈Θ Q ( ) θ (t) γ 0 ,γ 0 < ∞ for = 0, . . . , m 0 . (b) There exist some real numbers κ ∈ (κ γ 0 , 1) and 0 < β < β γ 0 ,κ such that, for all θ ∈ Θ and z ∈ D κ , the function R θ,z : t → z -Q θ (t) -1 is m 0 -times continuously differentiable from [-β, β] into L(B γ 0 , B γ 0 ), and we have for = 0, . . . , m 0 :

The scalars β, κ and all the bounds in (a) (b) depend on ξ only via the constant C ξ of (D m 0 ).

For θ fixed, Lemma 3 is established in [START_REF] Hervé | The Nagaev-Guivarc'h method via the Keller-Liverani theorem[END_REF]Prop. 10.3]. It can be also derived from [START_REF] Gouëzel | Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps[END_REF] which relaxes the assumptions used in [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF][START_REF] Gouëzel | Banach spaces adapted to Anosov systems[END_REF] to obtain Taylor expansions 4 of the resolvent maps. However, a fine control of the constants is still required. Using either [START_REF] Gouëzel | Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps[END_REF] or [HP10, sect. 10], this control is derived from Lemma 2 and from Lemma B.3 in Appendix B.

Since

and that its m 0 first derivatives are uniformly bounded in θ and z ∈ Γ 0,κ ∪Γ 0,κ . The regularity properties (and the related bounds) for L θ (•) and r θ,n (•) then follow from ( 24) and (25), while those concerning the function λ θ (•) follow from both Lemma 3 (a) and Lemma 3 (b), according to a formula given in [HP10, sect. 7.2]. Finally the property λ θ (0) = 0 can be proved as follows. By deriving (17) (applied with µ = π θ ) at t = 0 and by using the fact that ξ is centered, we have:

Remark 3 Notice that, according to (24) (25), the constants F and G in Lemma 1 also depend on the supremum in θ of the norm of µ in B γ 0 , namely sup θ∈Θ µ(V γ 0 ).

IV A Berry-Esseen theorem for M -estimators

Consider a Markov chain satisfying the condition (M) of Section III.1. Let us introduce the statistic

where α is the parameter of interest, F is a real-valued measurable function on A × E 2 and A is an open interval of the real line. Assume that F satisfies Condition (D 1 ) and let

which is well defined by Proposition 3. Assume also that, for each θ ∈ Θ, there exists a unique α 0 = α 0 (θ) ∈ A, the so-called true value of the parameter of interest, such that

If ρ 0 and a 0 were known, one could easily estimate b 0 by least squares, more precisely by minimizing T n (b; ρ 0 , τ 2 0 ) with respect to b. With this idea in mind, our feasible estimator of b 0 is defined as follows

Let us point out that in this case M n (•) and M n (•) are only approximations of the derivatives of M n (•). Checking Assumptions (V0) to (V2) is obvious and therefore we skip the details. To check Condition (V3) for

We check that each term satisfies Condition (V3) with a suitable r n . First, we can write

By elementary algebra

Using the Berry-Esseen bound for τ 2 n (see Theorem 2) and Markov's inequality for X 2+a n for some small a > 0, we can prove that P

Use this with j = 1 and our Theorem 2 for the centered functional ξ

Next, the bound on | ρ n -ρ 0 | 2 and Theorem 2 applied to the centered functional ξ(X k , X k-1 ) = (τ 2 0 -X 2 k-1 )X 2 k-1τ 4 0 + E θ,π θ [X 4 k-1 ] allow us to deduce that P θ,δ 0 {|∆ 2n | ≥ n -1 log n} = O(n -1/2 ). Finally, use the Berry-Esseen bounds for ρ n and τ 2 n and Markov's inequality for X 2+a n with some a > 0 to deduce that P θ,δ 0 {|∆ 3n | ≥ n -1 log n} = O(n -1/2 ). Combining these facts gives that M n ( b n ) satisfies Condition (V3) with r n = n -1 log n. Condition (V4) can be checked using similar