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Abstract—In this paper, we study the problem of optimizing the
throughput for micro-factories subject to failures. The challenge
consists in mapping several tasks of different types onto a set of
machines. The originality of our approach is the failure model
for such applications in which not only the machines are subject
to failures but the reliability of a task may depend on its type.
The failure rate is unrelated: a probability of failure is associated
to each couple (task type, machine). We consider different kind
of mappings: in one-to-one mappings, each machine can process
only a single task, while several tasks of the same type can be
processed by the same machine in specialized mappings. Finally,
general mappings have no constraints. The optimal one-to-one
mapping can be found in polynomial time for particular problem
instances, but the problem is NP-hard in most of the cases. For
the most realistic case of specialized mappings, which turns out
to be NP-hard, we design several polynomial time heuristics
and a linear program allows us to find the optimal solution
(in exponential time) for small problem instances. Experimental
results show that the best heuristics obtain a good throughput,
much better than the throughput achieved with a random
mapping. Moreover, we obtain a throughput close to the optimal
solution in the particular cases where the optimal throughput
can be computed.

I. INTRODUCTION

In this paper, we study the problem of optimizing the

throughput for micro-factories subject to failures. Micro-

factories are production systems composed of cells, each one

performing a particular task on complex micro-components

that pass through them. The probability for a fault to arise in

these cells is high, so taking faults into account is mandatory

when scheduling a production. In this context, faults are

however not only attached to the processing unit, as it is

commonly assumed for computer based distributed systems,

but also to the tasks. In a production system a task may

indeed be complex to perform, for instance due to some hard

manipulation, with an impact on its success ratio. If the same

robot is able to perform different tasks, it may generate less

faults on simple tasks than on difficult ones.

To produce a micro-product, several tasks, each character-

ized by a task type, must be performed by the cells in an order

fixed by a precedence graph. In the micro-factory, the robots

that compose the cells must however be configured before

being able to process a type of task. So the issue we face

is to map several tasks of different types onto a set of cells,

or machines, with the objective of optimizing the number of

products that output the system, in spite of the faults.

In a first study [1], we have tackled the particular case

in which faults only depend on the task type. In this paper

we are interested in studying the impact of a fault model

linked to both tasks and machines. Our specific use case is

a micro-factory, more a production system than a distributed

computing system, but the results presented in this paper are

more generally applicable to distributed production systems or

to distributed systems where the fault probability is attached

not only to resources, but also to tasks.

The paper is organized as follows. The micro-factory con-

text and related works are presented in Section II. Section III

gives a more formal presentation of the micro-factories and

of the failure model. Section IV presents the optimization

problems tackled in the paper. The complexity study and

results are given in Section V. In the rest of the paper, we

focus on a particular variant of the problem, which is NP-hard:

our aim is to find a specialized mapping which maximizes the

throughput of a linear chain application. In Section VI, we

provide several methods to solve this problem: (i) an integer

linear programming formulation of the problem which allows

us to find the optimal solution for small problem instances,

and (ii) polynomial time heuristics for general instances.

An extensive set of simulations is detailed in Section VII,

and demonstrates the efficacy of our heuristics. Finally, we

conclude in Section VIII.

II. CONTEXT AND STATE OF THE ART

Micro-factories are production units designed to produce

pieces composed of micro-metric elements [2]. Today’s micro-

factories are composed of micro-robots able to carry out

basic operations through elementary actuators as piezo-electric

beams (e.g., for gripping), stick-slip systems, etc. As these

robots are usually teleoperated by a human operator, only

simple tasks can be done. To perform more complex operations

and to improve their efficiency, micro-factories need to be

automated and robots need to be grouped in cells. Then

cells will be put together and they will cooperate to produce

complex assembled pieces, as it is done for macroscopic

productions. Due to the piece, actuator and cell sizes, it is

however impossible for human operators to directly interfere

with the physical system. So it needs a highly automated com-

mand. The complexity of this command makes it mandatory

to develop a distributed system to support this control. So, the



cell group results in a distributed system that is very similar

to a distributed computing platform. However, at this scale

the physical constraints are not totally controlled so there is a

need to take faults into account in the automated command.

The main issue for fault tolerant systems [3] is to overcome

the failure of a node, a machine or a processor. To deal

with those faulty machines, the most common method used

in distributed systems is to replicate [4] the data. Those

models assume that failures are attached to a machine. So the

probability to get one product as a result is highly increased

when the task is replicated on several machines. Once all the

replicated jobs are done, a vote algorithm [5] is often used

to decide which result is the right one. However, in our case

the products are physical objects and therefore can not be

replicated.

In real-time systems, another model called Window-

Constrained [6] model can be used. In this model one con-

siders that, for y messages, only x (x ≤ y) of them will

reach their destination. The y value is called the Window. The

looses are not considered as a failure but as a guarantee: for a

given network a Window-Constrained Scheduling [7], [8] can

guarantee that no more than x messages will be lost for every y
sent messages. The Window-Constrained based failure model

is adapted to a distributed system, the micro-factory. But in this

paper, the objective function makes us use the failure model

as the ratio x/y. In any case, the issue is to guarantee the

output of a given number of products. Once an allocation of

tasks to machines has been given, we can compute the number

of products needed as input of the system and guarantee the

output for the desired number of products.

III. FRAMEWORK

We outline in this section the characteristics of the applica-

tive framework and target platform. Finally, we describe and

motivate the failure model that we use in this work.

A. Applicative framework

We consider a set N of n tasks: N = {T1, T2, . . . , Tn}.

Each task Ti (1 ≤ i ≤ n) is applied successively on a set

of products. We wish to produce xout products as an output,

and the total number of products being processed by a task

may depend on the allocation: we process more than xout

products since some losses may occur because of failures, as

explained later in Section III-C. Note that all products are

identical. When the context is not ambiguous, we may also

design task Ti by i for clarity, as for instance in the figures.

A type is associated to each task as the same operation may

be applied several times to the same product. Thus, we have a

set T of p task types with n ≥ p and a function t : [1..n] → T
which returns the type of a task: t(i) is the type of task Ti,

for 1 ≤ i ≤ n.

The application is a directed acyclic graph (DAG) in which

the vertices are tasks, and edges represent dependencies be-

tween tasks. An example of application with n = 5 tasks is

represented on Figure 1. In the top branch of the DAG, we

need to finish the processing of task T1 on one product before
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Figure 1: Example of application.

proceeding to task T2. The join to task T4 corresponds to the

merge of two products, which produces a new unit of product

composed of the two. Typically one instance of product from

each predecessor in the graph is required to process with

the joining task. Note that forks cannot be considered in this

context as the output of one task is a physical component that

cannot be split in two. Unlike data that can be easily replicated

at every step of a DAG, an instance of a physical component is

the result of all the preceding tasks and cannot be duplicated

as it is material.

B. Target platform

The platform consists in a set M of m machines: M =
{M1,M2, . . . ,Mm}. All machines can be interconnected: the

platform graph is a complete graph. A machine handles some

of the tasks at a given speed: machine Mu can perform the

task Ti onto one product in a time wi,u. We also consider

that tasks of the same type have the same execution time on

a given machine, since they correspond to the same action to

be performed on the products. Thus, we have:

∀i, i′ ∈ [1, n], ∀u ∈ [1,m], t(i) = t(i′) ⇒ wi,u = wi′,u.

We neglect the communication time required to transfer a

product from one machine to another. If a communication

may not be negligible, we can always model it as a particular

task with a dedicated machine (the machine responsible of the

transfer of the product).

We are interested in producing the desired number of prod-

ucts rather than producing a particular instance of a product.

So we consider that products are not identified: two products,

on which the same sequence of tasks has been done, are

exactly similar and we can use one or the other indifferently

for further operations.

C. Failure model

An additional characteristic of our framework is that tasks

are subject to failure. It may happen that a product is lost

or damaged while a task is being executed on this product.

For instance electrostatic strength may be accumulated on the

actuator, and thus the piece will be pushed away rather than

caught. Indeed, we work at a scale such that these electrostatic

strengths are stronger than gravity.

Due to our application setting, we deal only with transient

failures, as defined in [9]. The tasks are failing for some of

the products, but we do not consider a permanent failure of

the machine responsible of the task, as this would lead to a

failure for all the remaining products to be processed and the

unability to finish them.

One classical technique used to deal with failures is replica-

tion [4]. However, while replication is very useful for hardware

failures of machines, we cannot use it in our framework since



the products are not a data such as a numerical image that

we need to process, but it is a physical object. The cost of

these products is very low while the equipments are expensive.

Thus, the only solution consists in processing more products

than needed, so that at the end, the required number of finished

products are brought out.

The failure rate of task Ti performed onto machine Mu

is the percentage of failure for this task and is denoted

fi,u =
li,u
bi,u

, where li,u is the number of lost products each

time bi,u products have been processed (li,u ≤ bi,u).

IV. OPTIMIZATION PROBLEMS

Now that the framework has been clarified, we formalize in

this section the various optimization problems that we wish to

solve. Our goal is to assign tasks to machines so as to optimize

some key performance criteria. The solution to one problem is

thus an allocation function a : [1..n] → [1..m] which returns

for each task the machine on which it is executed. Thus,

if a(i) = u, task Ti is executed on machine Mu, and the

processing of one product for this task takes a time wi,u.

We first discuss the objective criteria that we want to

optimize. Then we introduce the different rules of the game

that can be used in the definition of the allocation function a.

The complexity of these various problems is discussed in

Section V.

A. Objective function

In our framework, several objective functions could be

optimized. For instance, one may want to produce a mapping

of the tasks on the machines as reliable as possible, i.e.,

minimize the total number of products to input in the system.

Rather, we consider that products are cheap, and we focus

on a performance criteria, the throughput. The goal is to

maximize the number of products processed per time unit,

making abstraction of the initialization and clean-up phases.

This objective is important when a large number of products

must be produced.

Rather than maximizing the throughput of the application,

we rather deal with the period, which is the inverse of the

throughput. First we introduce the fractional number xi, which

is the average number of products required to output one

product out of the system for task Ti. We can compute

xi recursively for any application. Let Tj be the (unique)

successor of Ti, if it exists (remember that we do not allow

forks in the application graph). For tasks with no successor, we

set xj = 1, which means that Ti needs to output one product.

Then, if task Ti is assigned to machine Mu, we have

xi =
1

1− fi,u
× xj =

bi,u
bi,u − li,u

× xj ,

where the fraction represents the number of products needed

per successful product. Starting from the nodes with no

successor, we can then compute xi for each task Ti.

We are now ready to define the period of a machine: it is

the time needed by a machine to execute all the tasks allocated

onto this machine in order to produce one final product out of

the system. Formally, we have

period(Mu) =
∑

1≤i≤n|a(i)=u

xiwi,u . (1)

The period of machine Mu is the sum, for each task allo-

cated to that machine, of the average number of products (xi)

needed to output one product, multiplied by the speed (wi,u)

of that task onto that machine. The slowest machine will slow

down the whole application, thus we aim at minimizing the

largest machine period. The machines realizing this maximum

are called critical machines. If Mc is a critical machine, then

period = period(Mc) = maxMu∈M period(Mu).
Note that minimizing the period is similar to maximizing

the throughput.

B. Rules of the game

In this section, we classify several variants of the optimiza-

tion problem that has been introduced. A task must always

be processed by one unique machine (allocation function),

but different rules can be enforced about what a machine can

process.

1) One-to-one mappings: In this first class of problems, a

machine can compute only one single task. This rule of the

game is enforced with the following constraint, meaning that

a machine cannot compute two different tasks:

∀1 ≤ i, i′ ≤ n i 6= i′ ⇒ a(i) 6= a(i′) .
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Figure 2: One-to-one mapping.

On Figure 2, we have an application graph (a) that must be

mapped on a platform graph (b). The result is shown in (c),
where we can see that one machine can handle only one task.

Thus this mapping is quite restrictive because we must have

at least as many machines as tasks.

2) Specialized mappings: We have dedicated machines

that can realize only one type of tasks. But task types are

not dedicated to machines, so two machines may compute

different tasks of the same type.

For instance, let us consider five tasks T1, T2, T3, T4, T5

with the following types: t(1) = t(3) = t(5) = 1 and

t(2) = t(4) = 2. If machine M3 computes task T1, it

could also execute T3 and T5 but not T2 and T4. As types

are not dedicated to machines, T5 could also be assigned to

another machine, for instance M1. This situation is described

on Figure 3.

The following constraint expresses the fact that a machine

cannot compute two tasks of different types:

∀1 ≤ i, i′ ≤ n t(i) 6= t(i′) ⇒ a(i) 6= a(i′) .
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Figure 3: Specialized mapping (task types: t(1) = t(3) =
t(5) = 1 and t(2) = t(4) = 2).

(b)

1

2

3

5

4

(a) (c)

3

4

125

M2

M1

M2 M3

M4 M1 M4

M3

Figure 4: General mapping (task types: t(1) = t(3) = 1,

t(2) = t(4) = 2 and t(5) = 3).

3) General mappings: A machine can compute any task

regardless of its type, thus there are no constraints. An example

of this case is shown on Figure 4.

V. COMPLEXITY RESULTS

Complexity results are classified depending on the mapping

rules. We start with one-to-one mappings, then we focus on

specialized and general ones.

A. Complexity of one-to-one mappings

For one-to-one mappings, we can refine the problem com-

plexity depending on the application class. We are particularly

interested in linear chain applications, as in the example of

Figure 1. Indeed, the problem remains polynomial for such

applications (Theorem 1), while it turns out to be NP-hard for

general applications (Theorem 2).

In this section, we introduce a new notation: Fi =
1

1−fi,a(i)
.

Theorem 1. Given a linear chain application and a set of

homogeneous machines (wi,u = w for all i, u), finding the

one-to-one mapping which maximizes the throughput can be

done in polynomial time.

Proof: For a linear chain application with dependencies

from task Ti to task Ti+1, for 1 ≤ i ≤ n − 1, the average

number of products xi needed to output one product out of

the system and performed by the task Ti can be computed

thanks to the Fj , with j ≥ i, see Section IV-A:

xi = Fi × xi+1 =
∏

i≤j≤n

Fj . (2)

Of course, the values of Fj depend on the allocation

function. Thus, the period period(Ma(i)) = period(i) of

the machine Ma(i) on which the task Ti is assigned to is

xi ×wi,a(i) = xi ×w. Since all Fj values are greater than 1,

we have x1 = max1≤i≤n xi, and the period is constrained by

the machine on which task T1 is executed. The goal is thus to

minimize the product
∏

1≤j≤n Fj , in order to maximize the

period.

Since the mapping is required to be one-to-one, we create a

bipartite graph with one node per task Tj (1 ≤ j ≤ n) on one

side, one node per machine on the other side. The cost of an

edge from task Tj to machine Mu is then set to − log(1−fj,u),
so as to transform the previous product into a sum.

Then, we can find in polynomial time a minimum weight

matching in this bipartite graph, for instance using the Hun-

garian algorithm [10], [11]. This matching corresponds to an

assignment of tasks to machines which minimizes
∏

1≤j≤n Fj ,

and thus it is equivalent to a one-to-one mapping which has a

minimum period.

Note that this reasoning does not hold anymore with hetero-

geneous machines (wi, wu or wi,u), since the bottleneck task

is not necessarily T1 in such cases. The complexity remains

open for such cases.

However, if we consider general applications rather than

restricting to linear chains, the problem becomes NP-hard.

Theorem 2. Finding the optimal one-to-one mapping is NP-

hard, even with constant processing costs w and failure rates

which depend on machines (fi,u = fu for 1 ≤ i ≤ n).

Proof: We consider the following decision problem: given

a period K, is there a one-to-one mapping whose period does

not exceed K? The problem is obviously in NP: given a period

and a mapping, it is easy to check in polynomial time whether

it is valid or not.

The NP-completeness is obtained by reduction from 3-

PARTITION [12], which is NP-complete in the strong

sense. Let I1 be an instance of 3-PARTITION: given a set

{z1, ..., z3n} of 3n integers, and an integer Z such that
∑

1≤j≤3n zj = nZ, does there exist n independent subsets

B1, · · · , Bn of {z1, · · · , z3n} such that for all 1 ≤ i ≤ n,
∑

zj∈Bi
zj = Z?

We build the following instance I2 with 3n + 1 tasks and

processors:

• the application consists in n linear chains of 4 tasks

sharing the same final task T (4): for 1 ≤ i ≤ n,

T
(1)
i → T

(2)
i → T

(3)
i → T (4);

• w = 1 (constant processing cost);

• f3n+1 = 0 (machine M3n+1 never fails);

• for 1 ≤ u ≤ 3n, fu = 2zu−1
2zu ;

• K = 2Z .

Note that the size of I2 is polynomial in the size of I1.

Indeed, since 3-PARTITION is NP-complete in the strong

sense, we could encode I1 in unary, and thus the size of the

instance would be in O(nZ). Moreover, the values of fu can

be encoded in binary and thus their size is polynomial in the

size of I1.

Now we show that I1 has a solution if and only if I2
has a solution. Suppose that I1 has a solution. We construct

the allocation function a such that a(T (4)) = 3n + 1, i.e.,

the last task is processed by the reliable processor, and, for

1 ≤ i ≤ n, tasks T
(1)
i , T

(2)
i , T

(3)
i are allocated to the three

processors such that zu ∈ Bi. Since all w are equal to 1, the

period of the mapping is constrained by one of the T
(1)
i tasks,

and their period is Pi =
∏

zu∈Bi

1
1−fu

. Taking the logarithm,

log2(Pi) =
∑

zu∈Bi
log2(

1
1−fu

) =
∑

zu∈Bi
log2(2

zu) = Z =



log2(K), that means Pi = K for 1 ≤ i ≤ n, and I2 has a

solution.

Suppose now that I2 has a solution. The critical resource is

still one of the T
(1)
i , since w = 1. For each of these machines,

we must have log2 Pi ≤ Z, and thus
∑

u∈alloci
zu = Z,

where alloci represents the set of indices of the four processors

allocated to the ith chain. To minimize this quantity, we can

build a solution in which the reliable processor is processing

task T (4), and then the problem amounts to 3-PARTITION

the zu. Therefore, I1 has a solution. This concludes the proof.

This NP-hardness result illustrates the additional difficulty

of having a failure probability which depends both on tasks

and machines. Indeed, the problem can be solved in polyno-

mial time with fully heterogeneous machines (wi,u) when the

failure rates are identical for all machines (fi,u = fi for each

machine), because we are then able to compute xi for each

task, independently of the mapping (see [1]).

B. Complexity of specialized and general mappings

In [1], we proved that the problem of finding the optimal

specialized or general mapping is NP-hard, even for a linear

chain application with constant processing costs w, and when

failure probabilities are independent of the machines (fi,u =
fi). Therefore, the problem remains NP-hard when considering

more general values of failure probabilities. This illustrates the

additional complexity of considering more general mapping

rules rather than restricting to one-to-one mappings.

VI. SOLVING THE SPECIALIZED MAPPING PROBLEM

In the practical setting of micro-factories, general mappings

are not really useful because of the unaffordable reconfig-

uration costs. Indeed, if a machine is processing tasks of

different types, one needs to reconfigure the machine between

operations.

However, when the number m of machines is greater than

the number p of task types, it is always possible to find a

specialized mapping, since each machine is able to process all

the tasks of a same type. The key point is then to find m (or

less) groups of tasks of the same type to be assigned to the

m machines of the platform. Even if we restrict to specialized

mappings and linear chain applications, this problem is already

NP-hard, as explained in Section V-B.

Thus, we present in the following a linear program and six

heuristics that return a mapping, by grouping tasks of same

type onto machines.

A. Linear programming for the specialized mapping

In this section, we present a linear program to solve the

specialized mapping problem presented in Section IV-B2. This

linear program is a Mixed Integer Program (MIP) because it

uses both integer and rational variables. Solving a MIP is NP-

complete, however efficient solvers such as Cplex [13] makes

it possible to solve small problem instances in a reasonable

time. The following MIP implementation allows us to validate

the relevance of the scalable heuristics that we present in the

next section.

In the following, the two indices i and u denote respectively

a task Ti (1 ≤ i ≤ n) and a machine Mu (1 ≤ u ≤ m).

The parameters of the linear program are the following:

• wi,u is the time needed by the task Ti to perform one

product onto the machine Mu;

• fi,u is the failure rate of task Ti on machine Mu.

The variables needed to define the MIP are the following:

• xi is the average number of products that the task Ti has

to perform to output one product out of the system;

• For any pair (Ti,Mu) we denote ai,u ∈ {0, 1} as the

mapping of Ti onto the machine Mu: ai,u = 1 if the task

Ti is performed by the machine Mu and 0 otherwise;

• For any pair (Mu, j) we denote tu,j ∈ {0, 1} such as

tu,j = 1 if the machine Mu is specialized to perform

tasks of type j and 0 otherwise;

• K ∈ Q is a rational number which represents the upper

bound on the period for all machines.

The objective function is to minimize the period K, but

several constraints must be enforced to have a valid mapping

function (a), and a correct number of product (x).

• We ensure that each task Ti is performed by one and only

one machine Mu:

∀i
∑

u

ai,u = 1 (3)

• We ensure that each machine Mu is dedicated to at most

one type j:

∀u
∑

j

tu,j ≤ 1 (4)

• We ensure that each task Ti of type j = t(i) can be

performed only by one machine Mu which is specialized

upon the type t(i). This constraint is not in contradiction

with the fact that several tasks of same type j can be

performed by the machine Mu:

∀u ∀i ai,u ≤ tu,t(i) (5)

• We ensure that the average number of products that the

task Ti has to perform depends on the mapping of Ti but

also on the number of products that the task Ti+1 has to

perform to output one product out of the system.

∀u ∀i xi ≥
1

1− fi,u
ai,u × xi+1

This formula can be transformed into the following linear

equation:

∀i ∀u xi ≥
1

1− fi,u
xi+1 − (1− ai,u)MAXxi

(6)

where MAXxi
is an upper bound of xi such that xi ≤

MAXxi
=

∏

i≤j≤n
1

1−max1≤u≤m(fj,u)
.



• The period of each machine Mu depends on the mapping

and its value is bounded by K:

∀u
∑

i

ai,u × xiwi,u ≤ K

This non-linear formula can be transformed into the

following linear inequations. In order to make the lin-

earization possible, we define a new positive rational

variable yi,u = ai,u × xi for every task Ti and for every

machine Mu. So the previous equation can be rewritten

into the equation (7) under the constraints (8):

∀u
∑

i

yi,uwi,u ≤ K (7)







∀i ∀u yi,u ≤ ai,uMAXxi

∀i ∀u yi,u ≤ xi

∀i ∀u yi,u ≥ xi − (1− ai,u)MAXxi

(8)

The objective is to minimize the period under the previous

constraints, thus we get the following MIP:
{

Minimize K
under the constraints (3), (4), (6), (7), (8)

(9)

B. Heuristics

Since faults occur depending on the task and the machine,

we are not able to compute the number of products the task Ti

has to perform before knowing which task is assigned to which

machine. The six heuristics presented here are executed by

starting with the last task of the application graph and going

backward to the first one.

H1: Random heuristic. A task Ti is assigned to a machine

Mu if Mu is free or if Mu is already specialized to tasks of

the type t(i). If none of these conditions are fulfilled, we try

the next machine Mu+1 and so on until an available machine

is found.

H2: Binary search heuristic 1. This heuristic aims at

optimizing the potential of the machines, i.e., the goal is to

assign to each machine a set of tasks for which it is efficient.

Thus, we start by sorting, for each machine Mu, the set

of wi,u, for 1 ≤ i ≤ n, in ascending order. Then, ranki,u
represents the rank of Ti in the ordered set for Mu.

The heuristic performs a binary search on the period be-

tween 0 (best case) and the time required to perform sequen-

tially all the tasks on a machine (worst case). For each value

of the search, all tasks are assigned greedily (from T1 to Tn)

to machines.

We try to assign the task Ti to a machine such that ranki,u
is minimum. If the rank equals one, this means that the

potential of Mu for this task is optimal. In case of equality

(several machines of identical rank for Ti), machines are sorted

by non-decreasing values of wi,u. Of course, the assignment

can be done only if the machine was not already specialized

to a type which is different from t(i), and if the fixed period

is not exceeded. Otherwise we try to assign Ti to the next

machine, according to their priority order for this task. If no

machine is able to process Ti, then no assignment is found and

we try a larger period. If all tasks can be correctly assigned,

we try a smaller period.

H3: Binary search heuristic 2. This heuristic is the

same as H2 except that, for the assignment, the machines are

sorted by their heterogeneity level in descending order. The

idea is to preserve homogeneous machines for the last tasks.

The heterogeneity level of Mu is computed as the standard

deviation of its wi,u values. Each task is assigned to the most

heterogeneous machine capable of handling it. Note that for

this heuristic, slow machines may be used instead of powerful

ones, because of their heterogeneity level.

H4: Best performance heuristic. This heuristic assign a

task Ti to the machine Mu with the best performance value

for that task. The performance value of Mu for Ti is computed

by wi,u × fi,u × xi.

H4w: Faster machine heuristic. This heuristic is the same

that H4 except that the faster machine is selected (wi,u × xi)

without taking into account the failure rate in the assignment

process.

H4f: Reliable machine heuristic. This heuristic is the

same that H4 except that the most reliable machine is selected

(fi,u × xi) without taking into account the speed in the

assignment process.

VII. EXPERIMENTS

In this section, we compare the six heuristics that give

scheduling solutions to the specialized mapping problem with

wi,u and fi,u for linear chain applications. The results are com-

puted by a simulator, developped in C++. The performance of

each heuristic is measured by its period in ms.

Recall that m is the number of machines, p the number of

types, and n the number of tasks. Each point in the figures is an

average value of 30 simulations where the wi,u are randomly

chosen between 100 and 1000 ms, for 1 ≤ i ≤ n and 1 ≤ u ≤
m. Similarly, failure rates fi,u are randomly chosen between

0.5% and 2% (i.e., 1/200 and 1/50), unless stated otherwise.

A. Specialized mappings with m and p fixed

In this first set of experiments, the number of machines m
and the number of task types p are fixed, and we plot the period

for each heuristic as a function of the number of tasks n.

Figure 5 shows that H1 and H4f are not very competitive.

Indeed, minimizing the failure rate does not prevent from

choosing a slow machine and so getting a long period. For

the next experiment, only the other heuristics are plotted. In

Figure 6, H4 is slightly under the others. That is explained

by the fi,u factor used by H4. Two major factors are in com-

petition here, the speed and the reliability. A large platform

is set (100 machines) to see the difference between those two

factors. In Figure 7, H4w shows up to be better than the others.

As a conclusion of this first set of experiments, we can say

that the machine speed seems to be a more important criteria

than its reliability when taking assignment choices.

To study more precisely the effect of failure rates, platforms

with a high failure rate (up to 10%) are used. Figure 8 shows

that periods are increasing dramatically with the number of

tasks. In that special case only H2 is performing well.
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Figure 5: m = 50, p = 5.
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Figure 7: m = 100, p = 5.

B. One-to-one mappings with m and n fixed

As shown in section V-A, considering the one-to-one map-

ping, an optimal solution can be found in polynomial time

only if the failure is attached only to tasks (fi,u = fi
for 1 ≤ u ≤ m). Thus, a platform with 100 machines,

100 tasks and failures defined by fi is set. We plot the

period as a function of the number of types p and run 100

simulations for each dot of the figure. Figure 9 shows H2,

H3, H4w and the optimal one-to-one solution (OtO). For a

better visibility the other heuristics are ignored here. H4w has

the best performance and is very close to the optimal when

the number of types is low. We can also see that when the
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Figure 8: m = 10, p = 5, 0 ≤ fi,u ≤ 0.1.

number of types is high, all heuristics tend to have the same

performance. This is explained by the fact that with p close

to m, the way of creating the groups of tasks is less crucial.

Results are very encouraging and show that H2, H3 and H4w

are respectively at a factor of 1.84, 1.75 and 1.28 from the

optimal solution.
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Figure 9: m = 100, n = 100, fi,u = fi.

C. Comparison with the linear program

This last set of experiments compares our heuristics to the

mixed integer linear program (MIP) described in Section VI-A.

We restrict the study to small problem instances, so that we

are able to derive a solution for the linear program, and results

are reported only if 30 successful experiments over 60 trials

are obtained with the MIP. Those “MIP-compatible” platforms

are selected and the heuristics are run on them.

In the first experiment, we use a platform with 5 machines,

and the application has 4 types. We are then able to target

applications with up to 15 tasks. Figure 10 shows that H4w

is once again the best heuristic but H2 and H4 are close. To

measure that difference, Figure 11 shows the normalization of

the heuristics with the MIP solution. Results reveal that H2,

H3 and H4w are respectively at a factor of 1.73, 1.58 and 1.33

from the optimal.

For the next experiment, we use a platform with 9 machines,

and the application has between 5 and 20 tasks of 4 different



types. For visibility reason, we discard results of H1 and H4f

from the figure. Figure 12 shows that with more than 15 tasks,

the MIP is not able to find solutions anymore.
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Figure 10: m = 5, p = 2.
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Figure 11: m = 5, p = 2. Normalization with the MIP.
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VIII. CONCLUSION

In this paper, we investigate a throughput optimization prob-

lem in the context of micro-factories subject to failures. The

problem consists in assigning tasks of tree-shaped application

graphs to machines. The failures that occur in the system

depend on both the task and the machine on which the task is

assigned. We proved that the problem to find an optimal one-

to-one mapping for linear chain onto homogeneous machines

is polynomial while the problem becomes NP-hard for in-tree

one-to-one mappings or for specialized and general mappings.

Since general mappings are not usable in practice because of

reconfiguration costs, we focused on specialized mappings and

proposed several polynomial heuristics to solve the problem

when the graph is a linear chain. Also, a mixed linear

programming formulation of the problem is given to allow us

to evaluate our heuristics by comparing experimental results

to the optimal, considering small problem instances. These

experimental results showed that the most performing solution

is obtained by H4w. This heuristic focuses on the execution

speed and does not take into account the failure rate. The

comparison between H4w and the optimal solutions that can

be found respectively for one-to-one mappings and specialized

mappings (onto small platforms thanks to the linear program)

showed that H4w is respectively at a factor of 1.28 and 1.33

from the optimal. This is a very promising result, but somehow

expected, which means that if we produce fast enough we

overcome the faults.

As future work, an interesting problem would be to consider

that the instances of a same task can be computed by several

machines. Thus, the workload of a task would be divided and

the throughput could be improved.
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“On the efficacy, efficiency and emergent behavior of task replication
in large distributed systems,” Parallel Computing, vol. 33, no. 3, pp.
213–234, 2007.

[5] B. Parhami, “Voting algorithms,” IEEE Transactions on Reliability,
vol. 43, no. 4, pp. 617–629, Dec 1994.

[6] R. West and C. Poellabauer, “Analysis of a window-constrained sched-
uler for real-time and best-effort packet streams,” in Proc. of the 21st

IEEE Real-Time Systems Symp. IEEE, 2000, pp. 239–248.
[7] R. West, Y. Zhang, K. Schwan, and C. Poellabauer, “Dynamic window-

constrained scheduling of real-time streams in media servers,” 2004.
[Online]. Available: citeseer.ist.psu.edu/article/west03dynamic.html

[8] R. West and K. Schwan, “Dynamic window-constrained scheduling for
multimedia applications,” in ICMCS, Vol. 2, 1999, pp. 87–91. [Online].
Available: citeseer.ist.psu.edu/west98dynamic.html

[9] P. Jalote, Fault Tolerance in Distributed Systems. Prentice Hall, 1994.
[10] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval

Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.
[11] I. S. Duff and J. Koster, “On algorithms for permuting large entries to

the diagonal of a sparse matrix,” SIAM Journal on Matrix Analysis and

Applications, vol. 22, pp. 973–996, 2001.
[12] M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide

to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.
[13] “ILOG CPLEX: High-performance software for mathematical program-

ming and optimization,” http://www.ilog.com/products/cplex/.


