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Abstract

This paper proposes a new testing procedure for detecting error cross section
dependence after estimating a linear dynamic panel data model with regressors
using the generalised method of moments (GMM). The test is valid when the cross-
sectional dimension of the panel is large relative to the time series dimension. Im-
portantly, our approach allows one to examine whether any error cross section de-
pendence remains after including time dummies (or after transforming the data in
terms of deviations from time-speci�c averages), which will be the case under het-
erogeneous error cross section dependence. Finite sample simulation-based results
suggest that our tests perform well, particularly the version based on the Blundell
and Bond (1998) system GMM estimator. In addition, it is shown that the system
GMM estimator, based only on partial instruments consisting of the regressors, can
be a reliable alternative to the standard GMM estimators under heterogeneous error
cross section dependence. The proposed tests are applied to employment equations
using UK �rm data and the results show little evidence of heterogeneous error cross
section dependence.
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1 Introduction

During the past decade a substantial literature has been developed analysing the e¤ects
of cross section dependence as well as advancing ways of dealing with it in panel data
models. Cross section dependence may arise for several reasons � often, due to spatial
correlations, economic distance and common unobserved shocks. In the case of spatial
attributes, where a natural immutable distance measure is available, the dependence
may be captured through spatial lags using techniques that are familiar from the time
series literature (Anselin, 1988, 2001). In economic applications, spatial techniques
are often adapted using alternative measures of economic distance (see e.g. Conley,
1999, Kapoor, Kelejian and Prucha, 2004, Lee, 2004, Lee, 2007, and others). There
are several contributions in the literature that allow for time-varying individual e¤ects
(Holtz-Eakin, Newey and Rosen, 1988, Ahn, Lee and Schmidt, 2001 and Han, Orea
and Schmidt, 2005). Recently, a number of researchers have modelled cross section
dependence by restricting the covariance matrix of the errors using a common factor
speci�cation with a �xed number of unobserved factors and individual-speci�c factor
loadings that give rise to heterogenous cross section dependence (see Forni and Reichlin,
1998, Robertson and Symons, 2000, Phillips and Sul, 2003, Stock and Watson, 2002,
Bai and Ng, 2004, Moon and Perron, 2004, Pesaran, 2006, among others). The factor
structure approach is widely used because it can approximate a wide variety of error
cross section dependence. For example, in a panel data set of �rms we may think of the
factors as capturing �uctuations in economic activity or changes in regulatory policy for
the industry as a whole, and so on. The impact of these factors will vary across �rms,
due to di¤erences in size, liquidity constraints, market share etc. In a macro panel
data model, the factors may represent a general demand shock or an oil price shock
with the factor loadings re�ecting the relative openness of the economies, di¤erences in
technological constraints, and so on.1

In the literature of estimating linear dynamic panel data models with a large number
of cross-sectional units (N) and a moderately small number of time series observations
(T ), generalised method of moments (GMM) estimators are widely used, such as those
proposed by Arellano and Bond (1991), Ahn and Schmidt (1995), Arellano and Bover
(1995) and Blundell and Bond (1998). These methods typically assume that the distur-
bances are cross-sectionally independent. On the other hand, in empirical applications
it is common practice to include time dummies, or, equivalently, to transform the ob-
servations in terms of deviations from time-speci�c averages (i.e. to cross-sectionally
demean the data) in order to eliminate any common time-varying shocks; see, for ex-
ample, Arellano and Bond (1991) and Blundell and Bond (1998). This transformation
will marginal out these common e¤ects, unless their impact di¤ers across cross-sectional
units (heterogeneous cross section dependence). In this case, the standard GMM esti-
mators used in the literature will not be consistent, as shown by Sara�dis and Robertson
(2007) and in the current paper.

Several tests for cross section dependence have been proposed in the econometric

1Other examples are provided by Ahn, Lee and Schmidt (2001).
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literature. The most widely used test is perhaps the Lagrange Multiplier (LM) test pro-
posed by Breusch and Pagan (1980), which is based on the squared pair-wise Pearson�s
correlation coe¢ cients of the residuals. This test requires T being much larger than
N . Frees (1995) proposed a cross section dependence test that is based on the squared
Spearman rank correlation coe¢ cients and allows N to be larger than T . Recently, Ng
(2006) has developed tools for guiding practitioners as to how much residual cross sec-
tion correlation is in the data and which cross-sectional units are responsible for this in
particular, through tests that are based on probability integral transformations of the
ordered residual correlations. However, the proposed procedures are valid only in panels
for which

p
T -consistent estimates are available. Pesaran, Ullah and Yamagata (2006)

developed bias-adjusted normal approximation versions of the LM test of Breusch and
Pagan (1980), which are valid for large-N panel data models but with strictly exogenous
regressors only. Pesaran (2004) proposed another test for cross section dependence, called
the CD test, which is closely related to Friedman�s (1937) test statistic. Pesaran showed
that the CD test can also be applied to a wide variety of models, including heteroge-
neous dynamic models with multiple breaks and non-stationary dynamic models with
small/large N and T . However, as Frees (1995) implied and Pesaran (2004) pointed out,
the problem of the CD test is that in a stationary dynamic panel data model it will fail
to reject the null of error cross section independence when the factor loadings have zero
mean in the cross-sectional dimension. It follows that the CD test will have poor power
properties when it is applied to a regression with time dummies or on cross-sectionally
demeaned data.

This paper proposes a new testing procedure for error cross section dependence after
estimating a linear dynamic panel data model with covariates by the generalised method
of moments. This is valid whenN is large relative to T . Importantly, unlike the CD test,
our approach allows one to examine whether any error cross section dependence remains
after including time dummies, or after transforming the data in terms of deviations from
time-speci�c averages, which will be the case under heterogeneous error cross section
dependence.

The small sample performance of our proposed tests is investigated by means of
Monte Carlo experiments and we show that they have correct size and satisfactory power
for a wide variety of simulation designs. Furthermore, the paper suggests a consistent
GMM estimator under heterogeneous error cross section dependence. Results on the
�nite sample properties of the estimator are reported and discussed.

Our proposed tests and estimators are applied to employment equations using UK
�rm data, and it is found that there is little evidence of heterogeneous cross section
dependence in this data set.

The remainder of the paper proceeds as follows. Section 2 reviews some relevant
existing tests for error cross section dependence. Section 3 proposes a new test for cross
section dependence and a consistent GMM estimator under these circumstances. Section
4 reports the results of our Monte Carlo experiments. Section 5 illustrates an empirical
application of our approach. Finally, Section 6 contains concluding remarks.
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2 Existing Tests for Cross Section Dependence

Consider a panel data model

yit = �i + �
0xit + uit, i = 1; 2; : : : ; N , t = 1; 2; : : : ; T , (1)

where the uit may exhibit cross section dependence. The hypothesis of interest is

H0 : E(uitujt) = 0 8 t for all i 6= j; (2)

vs
H1 : E(uitujt) 6= 0 for some t and some i 6= j; (3)

where the number of possible pairings (uit; ujt) rises with N . In the literature several
tests for error cross section dependence have been proposed, and some relevant ones are
discussed in this section.

2.1 Breusch-Pagan (1980) Lagrange Multiplier Test

Breusch and Pagan (1980) proposed a Lagrange multiplier (LM) statistic for testing the
null of zero cross-equation error correlations, which is de�ned as

LM = T

N�1X
i=1

NX
j=i+1

�̂2ij ; (4)

where �̂ij is the sample estimate of the pair-wise Pearson correlation coe¢ cient of the
residuals

�̂ij = �̂ji =

PT
t=1 eitejt�PT

t=1 e
2
it

�1=2 �PT
t=1 e

2
jt

�1=2 ; (5)

where eit is the Ordinary Least Squares (OLS) estimate of uit in (1). LM is asymp-
totically distributed as chi-squared with N(N � 1)=2 degrees of freedom under the null
hypothesis, as T !1 with N �xed.

2.2 Pesaran�s (2004) CD Test

Recently Pesaran (2004) proposed another test for cross section dependence, called CD
test, which allows for a �exible model structure, including fairly general heterogeneous
dynamic models and nonstationary models. The test statistic is de�ned as

CD =

s
2T

N(N � 1)

0@N�1X
i=1

NX
j=i+1

�̂ij

1A . (6)

4



A
C

C
E

P
T
E

D
M

A
N

U
S

C
R

IP
T

ACCEPTED MANUSCRIPT

For su¢ ciently large N and T , the CD test statistic tends to a standard normal variate
under the null of cross section independence.2 The �nite sample evidence in Pesaran
(2004) shows that the estimated size of the test is very close to the nominal level for any
combinations of N and T considered. As Pesaran (2004) notes, there are two important
cases in which the CD test can be unreliable. Firstly, when the distribution of the
errors is not symmetric, the CD test becomes invalid and it may not have correct size.3

Secondly, the CD test may lack power towards some directions of alternatives. To see
this, consider the following single-factor structure for the error process

uit = �ift + "it,

where �i is a factor loading that is �xed and bounded, ft is an unobserved common
factor such that ft � i:i:d:(0; 1), "it � i:i:d:(0; �2) and E(ft"it) = 0 for all i and t.
The common factor ft generates error cross section dependence because of the fact that
cov(uit; ujt) = �i�j , and the power of the CD test hinges on this non-zero covariance.
Now suppose that �i � i:i:d:(0; �2�) and �i is uncorrelated with ft and "it. In this case,
cov(uit; ujt) = E(�i)E(�j) = 0, even if there does exist (potentially large) error cross
section dependence.

In the next section, we elaborate on the stochastic properties of the factors and factor
loadings, and develop a new cross section dependence test.

3 Sargan�s Di¤erence Tests for Heterogeneous Error Cross
Section Dependence in a Linear Dynamic Model with
Regressors

3.1 Model Speci�cation

Consider the following model

yit = �i + �yi;t�1 + �
0xit + uit, i = 1; 2; :::; N , t = 1; 2; :::; T , (7)

where j�j < 1, � is a (K � 1) parameter vector that is bounded and non-zero, xit is a
(K � 1) vector of regressors with xit = (x1it; x2it; :::; xKit)

0, �i is a random e¤ect with
�nite mean and �nite variance, and uit has a multi-factor structure such that

uit = �
0
ift + "it; (8)

where �i = (�1i; �2i; :::; �Mi)
0 is a (M � 1) vector of factor loadings that is assumed to

be i:i:d:(�;��) with �� being a positive semi-de�nite matrix, ft = (f1t; f2t; :::; fMt)
0 is a

2As Frees (1995) pointed out, test statistics similar to the CD test of Pesaran were proposed by
Friedman (1937), based on the Spearman rank correlation coe¢ cient (which is expected to be robust
against non-normality). Although we do not consider the Friedman test in this paper, results that are
similar to the CD test would apply for this test.

3However, the experimental results of Pesaran (2004) illustrate that the CD test is robust to skewed
errors.
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(M�1) vector of time-varying common factors that are assumed to be non-stochastic and
bounded, and "it is an independently distributed random variable over i with zero-mean
and �nite variance �2i .

The error (multi-) factor structure has been employed extensively in the economic
literature.4 For example, in a macro panel, a common factor could be an unobserved
technological shock, and the factor loadings can be thought of as capturing a cross-
sectionally heterogeneous response to such shock. Note that since our asymptotic is
N ! 1 with T �xed, ft is treated as non-stochastic here. In this paper we explicitly
employ a random coe¢ cient assumption for the factor loadings.

The process for xit is de�ned as

xit = �i + �� xi;t�1 + �xift + �"i;t�1 + vit, i = 1; 2; :::; N , t = 1; 2; :::; T , (9)

where �i = (�i1; �i2; :::; �iK)
0 is a (K � 1) vector of random e¤ects with �nite mean

and �nite variance, � signi�es the Hadamard product, � = (�1; �2; :::; �K)
0 such that

j�kj < 1 for k = 1; 2; :::;K, �xi = (
1i;
2i; :::;
Ki)
0 with 
ki = (
ki1; 
ki2; :::; 
kiM )

0,
such that �xi � i:i:d:(�x;��x), � = (�1; �2; :::; �K)0, and vit is a vector of independently
distributed random variables over i with mean vector zero and a �nite variance matrix
�vi = diag(�2vki), k = 1; 2; :::;K. The model de�ned by (7), (8), and (9) is general
enough to allow for a large variety of plausible speci�cations that are widely used in the
economic literature. Furthermore, this model accommodates more simple processes for
xit; such as those where xit is strictly exogenous, or exogenous with respect to ft:

The null hypothesis of interest is then

H0 : var(�i) = �� = 0 (10)

against the alternative
H1 : �� 6= 0, (11)

as opposed to (2) and (3).

Remark 1 Observe that error cross section dependence may occur under the null hy-
pothesis when �i = � for all i, since E(uitujt) = �

0ftf 0t�, which is not zero unless � = 0.
However, such error cross section dependence can be eliminated simply by including time
dummies, or equivalently by cross-sectionally demeaning the data. This implies that the
null hypothesis in (10) can be interpreted as saying that the cross section dependence
is homogeneous across pairs of cross-sectional units, against the alternative hypothesis
(11) of heterogeneous error cross section dependence.

We make the following assumptions:

4See e.g. Robertson and Symons (2000), Phillips and Sul (2003), Bai and Ng (2004), Moon and
Perron (2004), and Pesaran (2006) among others. Notice that these methods are only justi�ed when T
is large. For related work that allows for time-varying individual e¤ects in the �xed T , large N case,
see Holtz-Eakin, Newey and Rosen (1988), Ahn, Lee, and Schmidt (2001) and Han, Orea and Schmidt
(2005).
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Assumption 1: E(�i"it) = 0, E(�i"it) = 0, and E(�ivit) = 0, for all i, t. Also
E (vit"is) = 0 for all t and s.

Assumption 2: E("it"is) = 0 and E(vitv0is) = 0 for all i and t 6= s.

Assumption 3: E(yi0"it) = 0 and E(xi1"it) = 0 for all i and t = 1; 2; :::; T .

Assumption 4: Time-varying common factors, fm;t, m = 1; 2; :::;M ; t = 1; 2; :::; T are
non-stochastic and bounded.

Assumption 5:

(a) E("it�i) = 0, E(vit�0i) = 0, E("it�xi) = 0, cov(�i;�i) = 0, cov(�i;�xi) = 0,
cov(�i;�

0
i) = 0, cov(�

0
xi;�i) = 0, for all i and t.

(b) cov(�xi;�i) = 0 and cov(�i;x0i1) = 0.

Assumption 6: � 6= 0.

Assumptions 1-3 are standard in the GMM literature; see, for example, Ahn and
Schmidt (1995). Assumption 4 ensures that the initial observations of y and x are
bounded.

Assumption 5(a), a random coe¢ cient type assumption on the factor loadings, allows
cross-sectionally heterogeneous inter-dependence among both level and �rst-di¤erenced
variables (yit; x1it; x2it; :::; xKit), as well as cross section dependence of each variable
through the common factor ft. This contrasts to a simple time e¤ects assumption,
namely �i = � and �xi = �x for all i, which is stronger than ours. On the other hand,
Assumption 5(a) is stronger than assuming �i and �xi to be merely bounded, in that the
cross-sectionally demeaned variables of (yit; x1it; x2it; :::; xKit) become cross-sectionally
uncorrelated to each other, asymptotically.

Assumption 5(b) implies that the cross-sectionally demeaned xi;t�1 and (uit�ui;t�1)
or the cross-sectionally demeaned (xi;t�1�xi;t�2) and uit are uncorrelated under the al-
ternative hypothesis (11). This will obviously hold true if the common factor components
have no impact on xit � namely, when �xi = 0 for all i in equation (9). This restriction
can be relaxed provided that the direct e¤ect of the factors on yit is uncorrelated with
the e¤ect of the factors on xit, which satis�es Assumption 5(b).5

Assumption 6, � 6= 0, is also necessary in order to obtain a consistent estimator
under the alternative of heterogeneous error cross section dependence, although this is
probably not a restrictive assumption in many applications.

For further discussion, stacking (7) for each i yields

yi = �i�T + �yi;�1 +Xi� + ui, i = 1; 2; :::; N , (12)

ui = F�i + "i, (13)

5For su¢ ciently large N , the overidentifying restrictions test (de�ned by equation (28) below) is
expected to have enough power to detect the violation of Assumption 5(b).
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where yi = (yi1; yi2; :::; yiT )0, � g is a (g � 1) vector of unity, yi;�1 = (yi0; yi1; :::; yiT�1)0,
Xi = (xi1;xi2; :::;xiT )

0, ui = (ui1; ui2; :::; uiT )0, F = (f1; f2; :::; fT )
0, "i = ("i1; "i2; :::; "iT )0,

and the cross-sectionally demeaned and di¤erenced equation is de�ned by

�y
i
= ��y

i;�1 +�Xi� +�ui, i = 1; 2; :::; N , (14)

�ui = �F�i +�"i, (15)

or
�y

i
= �Wi� +�ui, (16)

where the underline signi�es that the variables are cross-sectionally demeaned, and
��" denotes the �rst-di¤erenced operator. For example, �y

i
= (�y

i2
;�y

i3
; :::;�y

iT
)0,

�y
it
= (y

it
� y

it�1), yit = (yit � �yt) with �yt = N�1PN
i=1 yit, �Wi= (�yi;�1;�Xi),

� = (�;�0)0, with obvious notation.

Remark 2 Pesaran�s CD test statistic as de�ned in (6) can fail to reject the null hypoth-
esis of homogeneous error cross section dependence given in (11), when E(�i) = 0. This
arises when time dummies are introduced or the data are cross-sectionally demeaned,
since E(�

i
) = 0. On the other hand, the Breusch and Pagan (1980) LM test de�ned as

in (4) will have power, although its use is justi�ed only when T is much larger relative
to N .

3.2 Sargan�s Di¤erence Tests based on the First-di¤erenced GMM Es-
timator

De�ne the matrices of instruments

ZY i =

26666664
y
i0

0 0 0 � � � � � � � � � 0

0 y
i0

y
i1

0 � � � � � � � � � 0

0 0 0 y
i0

� � � � � � � � � 0
...

...
...

...
. . . ::: :::

...
0 0 0 0 � � � y

i0
� � � y

iT�2

37777775 , (T � 1� hy) (17)

where hy = T (T � 1)=2, and

ZXi =

2666664
x0i1 0 0 0 � � � � � � � � � 0
0 x0i1 x0i2 0 � � � � � � � � � 0
0 0 0 x0i1 � � � � � � � � � 0
...

...
...

...
. . . ::: :::

...
0 0 0 0 � � � x0i1 � � � x0iT�1

3777775 , (T � 1� hx) (18)

where hx = KT (T � 1)=2. If xit is strictly exogenous � that is, � = 0 in (9), ZXi =
�T�1 
 vec(Xi)0.6

6One can construct ZXi such that both strictly exogenous and predetermined regressors are present.
See, for example, Arellano (2003).
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Proposition 3 Consider two sets of moment conditions

Moment Conditions I: E[Z
0
Y i�ui] = 0 (19)

and
Moment Conditions II: E[Z

0
Xi�ui] = 0, (20)

where ZY i, ZXi, and �ui are de�ned as in (17), (18), and (15), respectively. Under
Assumptions 1-4, 5(a)-(b), 6 and model (7), both sets of moment conditions given in (19)
and (20) hold under the null hypothesis (10). However, under the alternative hypothesis
given in (11), (20) holds but (19) does not.

Proof. See Appendix A.
Now de�ne the full set of moment conditions

E[Z
0
i�ui] = 0, (21)

where
Zi =

�
ZY i ZXi

�
(T � 1� h); (22)

and h = hy + hx.
Based on Proposition 3, the hypothesis testing for (10) reduces to a test for the

validity of the subset of the moment conditions in (21), as given in (19). There are at
least three possible approaches. The �rst one is to take a Hausman-type (1978) approach.
Newey (1985) showed that the Hausman test may be inconsistent against some local
alternatives. In our application, this may happen when hy = T (T � 1)=2 > K + 1,
which is the most likely empirical situation.7 In addition, Arellano and Bond (1991)
examined a Hausman-type test for serial correlation and found that it has poor �nite
sample performance, in that it rejects the null hypothesis far too often. The second
approach is to adopt Newey�s (1985) optimal test. The third approach is to use Sargan�s
(1988) di¤erence test, which we are adopting, since it is relatively easier to compute
than the Newey�s test statistic, and furthermore, they are asymptotically equivalent.
We consider two versions of Sargan�s di¤erence test. One is based on the Arellano and
Bond (1991) two-step �rst-di¤erenced GMM estimator � hereafter DIF � and the other
is based on the Blundell and Bond (1998) two-step system GMM estimator � hereafter,
SYS.

Initially, the test based on DIF is considered. This is de�ned as

e��DIF2 =  NX
i=1

�W0
iZi
e_
�1 NX

i=1

Z0i�Wi

!�1 NX
i=1

�W0
iZ
�1
i
e_
�1 NX

i=1

Z0i�yi; (23)

where e_
 = N�1PN
i=1 Z

0
i�
e_ui�e_u0iZi with �e_ui = �yi��Wi

e_�DIF1, which is the residual
vector based on the one-step DIF estimator (denoted by DIF1),

e_�DIF1= NX
i=1

�W0
iZ
�1
i
e
�1 NX

i=1

Z0i�Wi

!�1 NX
i=1

�W0
iZie
�1 NX

i=1

Z0i�yi; (24)

7See Proposition 5 and its proof in Newey (1985), under the assymption of i.i.d. errors.

9



A
C

C
E

P
T
E

D
M

A
N

U
S

C
R

IP
T

ACCEPTED MANUSCRIPT

where e
 = N�1PN
i=1 Z

0
iHZi, and H is the square matrix of order T � 1, with 2�s on the

main diagonal, -1�s on the �rst o¤-diagonals, and zeros elsewhere.
Now, the two-step DIF estimator based only on the restricted set of moment con-

ditions in (20), which is consistent both under the null and the alternative, is de�ned
as

b��DIFX2 =  NX
i=1

�W0
iZXi

b_
�1X NX
i=1

Z0Xi�Wi

!�1 NX
i=1

�W0
iZXi

b_
�1X NX
i=1

Z0Xi�yi; (25)

where b_
X = N�1PN
i=1 Z

0
Xi�

b_ui�b_u0iZXi with �b_ui = �yi ��Wi
b_�DIFX1, where �b_ui is

the residual vector based on the one-step DIF estimator that exploits (20), denoted by
DIFX1,

b_�DIFX1 =  NX
i=1

�W0
iZXi

b
�1X NX
i=1

Z0Xi�Wi

!�1 NX
i=1

�W0
iZXi

b
�1X NX
i=1

Z0Xi�yi; (26)

where b
X = N�1PN
i=1 Z

0
XiHZXi.

Sargan�s (1958), or Hansen�s (1982) test statistic of overidentifying restrictions for
the full set of moment conditions in (21) is based on DIF2 and is given by

SDIF2 = N
�1

 
NX
i=1

�e�u0iZi
! e_
�1 NX

i=1

Z0i�e�ui
!
, (27)

where �e�ui = �yi ��Wi
e��DIF2. Sargan�s statistic for (20) that is based on DIFX2 is

given by

SDIFX2 = N
�1

 
NX
i=1

�b�u0iZXi
! b_
�1X

 
NX
i=1

Z0Xi�b�ui
!
; (28)

where �b�ui = �yi ��Wi
b��DIFX2.

We are now ready to state a proposition on Sargan�s di¤erence test of heterogeneous
cross section dependence:

Proposition 4 Under Assumptions 1-4, 5(a)-(b), 6 and model (7), SDIF2
d! �2h�(K+1)

under the null hypothesis, SDIFX2
d! �2hx�(K+1) under the null hypothesis and the alter-

native hypothesis, and

DDIF2 = (SDIF2 � SDIFX2)
d! �2hy (29)

under the null hypothesis, where SDIF2, SDIFX2 are as de�ned in (27) and (28) respec-
tively, while h = hy + hx with hy and hx de�ned as in (17) and (18) respectively.

Proof. See Appendix B.
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Remark 5 The cross section correlation of the sample moment conditions Z0i�e�ui; which
is induced as a result of the cross-sectional demeaning of the series, is asymptotically
negligible, and standard central limit theorems can be applied to the asymptotic expansion
of N�1=2PN

i=1 Z
0
i�
e�ui; See proof in Appendix B.

Remark 6 Sargan�s di¤erence test has non-trivial asymptotic local power; See proof in
Appendix B.

Remark 7 Proposition 4 holds with unbalanced panel data, so long as minNt ! 1,
where Nt is the number of cross-sectional units for a given time t. In this case, the cross-
sectional demeaning for y

t
, say, is now de�ned as y

t
= yt��yt, where �yt = N�1

t

PNt
i=1 yit.

8

3.3 Sargan�s Di¤erence Tests based on the System GMM Estimator

It has been well documented (see, for example, Blundell and Bond, 1998) that the DIF
estimator can su¤er from a weak instruments problem when � is close to unity and/or
the variance of the individual e¤ects is large relative to that of the idiosyncratic errors.
Thus, we also consider another version of Sargan�s di¤erence test based on the Blundell
and Bond (1998) SYS estimator, which is known to be more robust to the problem of
weak instruments under certain conditions.

Arellano and Bover (1995) proposed the use of lagged di¤erences as possible instru-
ments for the equations in levels, E (uit�wit) = 0 withwit = (yt�1;x

0
t)
0 for t = 3; 4; :::; T ,

which is valid under the null hypothesis and Assumptions 1-3. In addition, Blundell
and Bond (1998, 2000) proposed using an additional condition E (ui2�wi2) = 0 under
mild conditions upon the initial observations, which would follow from joint stationarity
of the y and x processes. Accordingly, we add Assumption 5(c):

Assumption 5(c): cov(�i;�yi1) = 0 and cov(�i;�xi2) = 0.

De�ne

Z+Y i =

�
ZY i 0

0 ZLY i

�
(2(T � 1)� hys); (30)

where ZLY i = diag(�yi;t�1) for t = 2; 3; :::; T , hys = hy + (T � 1); and

Z+Xi =

�
ZXi 0

0 ZLXi

�
(2(T � 1)� hxs); (31)

where ZLXi is a (T � 1 � K(T � 1)) matrix whose sth diagonal raw vector is �x0is,
s = 2; 3; :::; T , otherwise zeros, and hxs = hx +K(T � 1).

Proposition 8 Consider two sets of moment conditions

Moment Conditions I�: E[Z+0Y i�i] = 0 (32)

8For more details on the computations of the Arellano and Bond (1991) and Blundell and Bond (1998)
estimators with unbalanced panels, see Arellano and Bond (1999).
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and
Moment Conditions II�: E[Z+0Xi�i] = 0, (33)

where Z+Y i and Z
+
Xi are de�ned as in (30) and (31) respectively,

�i = (�u
0
i;u

+0
i )

0; and u+i = (ui2; ui3; :::; uiT ; )
0. (34)

Under Assumptions 1-4, 5(a)-(c), 6 and model (7), both (32) and (33) hold under the
null hypothesis in (10). However, under the alternative hypothesis given in (11), (33)
holds but (32) does not.

Proof. See Appendix C.
In the same manner as DDIF2, we de�ne the Sargan�s di¤erence test statistic based

on SYS estimator
DSY S2 = (SSY S2 � SSY SX2) (35)

where SSY S2 is Sargan�s test statistic of overidentifying restrictions based on the two-
step SYS estimator that makes use of both sets of moment conditions I� and II� in
Proposition 8 (denoted by SY S2), namely

E[Z+0i �i] = 0, (36)

where
Z+i =

�
Z+Y i Z+Xi

�
(2(T � 1)� hs); (37)

hs = hsy+hsx, and SSY SX2 is Sargan�s test statistic based on the two-step SYS estimator
that exploits only Moment Conditions II�, as de�ned in (33), denoted by SY SX2.9

One-step and two-step SYS estimators based on the moment conditions (36), e_�SY S1 ande��SY S2, and those based on (33), b_�SY SX1 and b��SY SX2, are de�ned accordingly.10 It is
straightforward to see that DSY S2

d! �2hys as N !1, under the null hypothesis.

3.4 Discussion

The overidentifying restrictions test can be regarded as a misspeci�cation test, in a sense
that it is designed to detect violations of moment conditions, which are the heart of GMM
methods. Thus, it will have power under the alternative hypothesis of heterogenous error
cross section dependence. Nonetheless, the proposed Sargan�s di¤erence test is expected
to have higher power than the overidentifying restrictions test, so long as Assumption
6, � 6= 0, holds, since the former exploits extra information about the validity of the
moment conditions under the alternative hypothesis, which the latter does not use. This

9With small samples DDIF2 may not be positive, but it can be patched easily. See, for example,
Hayashi (2000, p.220). However, we did not adopt this modi�cation here since one of our aims is to
show the properties of a consistent estimator based only on orthogonality conditions E[Z0Xiui] = 0 or
E[Z+0Xi�i] = 0.
10The initial weighting matrix for one-step GMM-SYS estimator is de�ned as a block diagnoal matrix

of order 2(T � 1), whose diagnoal blocks are H and IT�1.
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also implies that, when � = 0, the overidentifying restrictions test should replace our
approach.11

Now consider a violation of Assumption 2, E("it"is) = 0 for t 6= s, no error serial
correlation. Under the alternative of error cross section dependence, the composite error
uit = �0

i
ft + "it will be serially correlated, since E(uituis) = f 0tE(�i�

0
i
)fs 6= 0 for all

i. This means that the second-order serial correlation test based on DIF2 or SYS2,
the m2 test, proposed by Arellano and Bond (1991), is likely to reject the hypothesis
of no error serial correlation, under the alternative of heterogeneous error cross section
dependence.12 Then, a question that may arise is how to distinguish between error cross
section dependence and serial correlation in the idiosyncratic errors. To answer this
question, consider two scenarios. First, suppose that there is �rst-order autoregressive
serial correlation but no heterogeneous error cross section dependence, such that "it =
�""it�1+ �it with j�"j < 1 and �it � i:i:d:(0; �2�). In this case, the problem can be solved
in a straightforward manner by adding a further lag of the dependent variable on the
right hand side of (7) and using (up to) yit�3 as instruments for �yit�1 and �yit�2.
Second, suppose there is both �rst-order autoregressive error serial correlation as above
and heterogeneous error cross section dependence. Clearly, the m2 test based on DIFX2
or SYSX2 is likely to reject the null even when E("it"is) = 0 for t 6= s. Meanwhile, the
probability of rejecting the null by the overidentifying restrictions test for the restrictions
based only on the subset of Xi (de�ned by (20) or (33)), tends to its signi�cance level
when E("it"is) = 0 for t 6= s, but such a probability goes to one when E("it"is) 6= 0 for
t 6= s. Therefore, the solution given in the �rst case applies, but the test statistic to
employ is the overidentifying restrictions test based only on the subset of Xi, not the
m2 test based on DIFX2 or SYSX2.

Finally, we have shown that the moment conditions (20) and (33) hold under the al-
ternative of error cross section dependence, therefore, the DIFX2 and SYSX2 estimators
are consistent. However, in �nite samples there could be a trade-o¤ between e¢ ciency
and bias. If the degree of heterogeneity of the error cross section dependence is relatively
small, then the bias of the standard GMM estimators exploiting moment conditions in-
cluding (19) or (20) which are invalid, may be small enough so that these estimators are
preferred (in root mean square errors terms) to a consistent estimator based only on the
valid moment conditions (20) or (33). We will investigate the �nite sample performance
of these estimators in the next section.13

11 In Appendix B, it is formally shown that when hx > (K+1), the DDIF2 test is asymptotically more
powerful than the SDIF2 test under the local alternatives.
12Heterogeneity of � would also render the error term serially correlated, as discussed in Pesaran and

Smith (1995).
13Other solutions have been proposed in the literature, such as a panel feasible generalized median

unbiased estimator, proposed by Phillips and Sul (2003), or the common correlated e¤ects (CCE) esti-
mator proposed by Pesaran (2006). However, both estimators require a larger value for T than that
considered in this paper.
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4 Small Sample Properties of Cross Section Dependence
Tests

This section investigates by means of Monte Carlo experiments the �nite sample per-
formance of our tests, the Breusch and Pagan (1980) LM test and Pesaran�s (2004) CD
test, all based on cross-sectionally demeaned variables. Our main focus is on the e¤ects
of (i) the degree and heterogeneity of error cross section dependence, (ii) the relative
importance of the variance of the factor loadings and the idiosyncratic errors, and (iii)
di¤erent values of � and �. In order to make the results comparable across experiments,
we control the population signal-to-noise ratio and the impact of the ratio between the
variance of the individual-speci�c time-invariant e¤ects and the variance of the idiosyn-
cratic errors and the common factor on yit. To this end, we extend the Monte Carlo
design of Kiviet (1995) and Bun and Kiviet (2006) to accommodate a factor structure
in the error process.

Recently Bowsher (2002) reports �nite sample evidence that Sargan�s overidentifying
restrictions test exploiting all moment conditions available can reject the null hypothesis
too infrequently in linear dynamic panel models. Thus, we only make use of y

it�2 and
y
it�3 as instruments for �yit�1 and we use xit�2 and xit�3 as instruments for �xit�1.

4.1 Design

The data generating process (DGP) we consider is given by

yit = �i + �yi;t�1 + �xit + uit; (38)

uit = �ift + "it, i = 1; 2; :::; N ; t = �48;�47; :::; T ,

where �i � i:i:d:N(1; �2�) and ft � i:i:d:N(0; �2f ).14 "it is drawn from (i) i:i:d:N(0; �2")

and (ii) i:i:d:(�21�1)=
p
2, in order to investigate the e¤ect of non-normal errors. yi;�49 =

0 and the �rst 49 observations are discarded.15 To control the degree and heterogeneity
of cross section dependence three speci�cations for the distribution of �i are considered:8<:

Low cross section dependence: �i � i:i:d:U [�0:3; 0:7]
Medium cross section dependence: �i � i:i:d:U [�1; 2]
High cross section dependence: �i � i:i:d:U [�1; 4]:

Also, as we change the value of � = 0:2; 0:5; 0:8, � is equated to 1 � � in order to keep
the long run e¤ect of x on y constant.

The DGP of xit considered here is given by

xit = �xi;t�1 + �"i;t�1 + 
ift + vit, i = 1; 2; :::; N ; t = �48;�47; :::; T , (39)

14Note that the unobserved common factor, ft, is randomly drawn to control the signal-to-noise ratio
without loss of generality.
15We do not report the results based on non-normal errors in this paper, since the results were very

similar. They are available from the authors upon request.
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where � = 0:5, 
i � i:i:d:U [�1; 2], vit � i:i:d:N(0; �2v). � is set to 0:5.16 xi;�49 = 0 and
the �rst 50 observations are discarded.

Since our focus is on the performance of the tests and estimators, we pay careful
attention to the main factors that a¤ect it � namely, (i) the signal-to-noise ratio, (ii)
the relative importance of the variance of the factor loadings and the idiosyncratic errors,
and (iii) the impact of the ratio between the variance of the individual-speci�c e¤ects
and the variance of the idiosyncractic error and factor loadings on yit. To illustrate, we
de�ne the signal as �2s = var (y

�
it � uit), where y�it = yit��i=(1��). Then, denoting the

variance of the composite error by �2u = var(uit) = �
(2)
� �

2
f + �

2
" with �

(2)
� = E(�2i ), we

de�ne the signal-to-noise ratio as � = �2s=�
2
u. We set � = 3. The relative importance

in terms of the magnitude of the variance of �ift and "it, as measured by �
(2)
� �

2
f=�

2
",

is thought in the literature to be an important factor to control for and we achieve
this by changing �(2)� and applying the normalisation �2f = �2" = 1. As it has been
discussed by Kiviet (1995), Blundell and Bond (1998), and Bun and Kiviet (2006), in
order to compare the performance of estimators across di¤erent experimental designs it
is important to control the relative importance of �i and ("it, ft). We choose �2� such
that the ratio of the impact on var(yit) of the two variance components �i and ("it, ft)
is constant across designs.17

We consider all combinations of N = 50; 100; 200; 400, and T = 5; 9. All experiments
are based on 2,000 replications.

4.2 Results

Tables 1 reports the size and power of the tests for T = 5.18 LM denotes Breusch and
Pagan�s LM test, as de�ned in (4), and CD denotes Pesaran�s CD test, de�ned in (6),
both of which are based on the �xed e¤ects estimator. DDIF2 is Sargan�s di¤erence test
based on the two-step DIF estimator de�ned in (29), and DSY S2 is Sargan�s di¤erence
test based on the two-step SYS estimator de�ned in (35). The size of the LM test is
always indistinguishable from 100% and therefore it is not recommended. The CD test
does not reject the null in all experiments, and has no power across experiments. On
the other hand, although the size of DDIF2 and DSY S2 is below the nominal level for
N = 50 (especially for the latter), as N becomes larger the size quickly approaches its
nominal size. In addition, our proposed tests have satisfactory power. DSY S2 has more
power than DDIF2 in general, unless DSY S2 rejects the null too infrequently. Di¤erent
values of � seem to have very little e¤ect on the performance of DDIF2 and DSY S2.

We now turn our attention to the performance of the estimators. Table 2 reports
the bias of the estimators for �.19 DIF1 and DIF2 are the one-step and two-step DIF

16xit has zero mean without loss of generality, since we cross section-demean all data before computing
the statistics.
17See Appendix D for the details of the way of controlling these parameters.
18We do not report the results for T = 9 in this paper, since these were similar to those for T = 5.

They are available from the authors upon request.
19We do not report the performance of the estimators for �, since it has a similar pattern to that for

�; although it is not as much a¤ected by error cross section dependence.
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estimators respectively, de�ned by (24) and (23), and they are based on the full set of
moment conditions I and II in Proposition 3. DIFX1 and DIFX2 denote the one-step
and two-step DIF estimators de�ned by (26) and (25), and they are based only on the
subset of the moment conditions II. SY S1 and SY S2 are the one-step and two-step SYS
estimators respectively, and they are based on the full set of moment conditions I� and
II� in Proposition 8, and SY SX1 and SY SX2 denote the one-step and two-step SYS
estimators based only on the subset of moment conditions II�. The bias of all GMM
estimators under low cross section dependence is not noticeably di¤erent from that under
zero cross section dependence. As the degree of error cross section dependence rises, the
bias of the GMM estimators based on the full set of moment conditions increases, which
is expected as only those estimators based on Moment Conditions II or II� are consistent.
As a result, the relative bias between those estimators that use the full set of moment
conditions and those that use only Moment Conditions II or II� increases. Table 3 reports
root mean square errors of the estimators for �. Under no error cross section dependence
and low cross section dependence, DIF2 and SY S2 outperform DIFX2 and SY SX2
respectively in terms of root mean square error. However, under moderate and high
cross section dependence, DIFX2 and SY SX2 have a smaller root mean square error
compared to DIF2 and SY S2 respectively, in most cases.

5 An Empirical Example: Employment Equations of U.K.
Firms

In this section we examine the homogeneity of error cross section dependence of the
employment equations using (unbalanced) panel data for a sample of UK companies,
which is an updated version of that used by Arellano and Bond (1991), and it is contained
in the DPD-Ox package.20 Brie�y, these authors select a sample of 140 companies that
operate mainly in the UK with at least 7 continuous observations during the period
1976-1984.

We apply our test to the model speci�cations of Blundell and Bond (1998). The
model we estimated is given by

yit = �i + �1yit�1 + �0wit + �1wit�1 + '0�it + '1�it�1 + uit,

where yit is log of the number of employees of company i, wit is log of real product wage,
�it is the log of gross capital stock.

Table 4 presents estimation and test results.21 Observe that year dummies are in-
cluded to remove possible time e¤ects, therefore no cross-sectional demeaning of the
series is implemented. Our estimation results based on the full sets of instruments, Zi
and Z+i , as de�ned in (22) and (37) but without cross-sectional demeaning, resemble

20The data set used is available at http://www.doornik.com/download/dpdox121.zip
21The GMM estimates of the parameters have been obtained using the xtabond2 command in Stata; see

Roodman, D., (2005). xtabond2: Stata module to extend xtabond dynamic panel data estimator. Center
for Global Development, Washington. http://econpapers.repec.org/software/bocbocode/s435901.htm
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those reported in the last two columns of Table 4 in Blundell and Bond (1998), although
the values do not match exactly due to di¤erences in computations and the data set
used. First, all m2 tests suggest that there is no evidence of error serial correlation and
this implies possibly no heterogeneous error cross section dependence. This is con�rmed
by the fact that both Sargan�s di¤erence tests based on DIF and SYS for heterogeneous
error cross section dependence safely fail to reject the null hypothesis of homogeneous
error cross section dependence. The estimation results based only on partial instruments
consisting of the covariates, ZXi and Z

+
Xi, as de�ned by (18) and (31) but without cross-

sectional demeaning, are largely downward biased for the DIF estimator and less so for
the SYS estimator. This indicates that the e¢ ciency loss of SYS that does not contain
Z+Y i in the instrument set is much smaller compared to the e¢ ciency loss of DIF. This
feature seems to have some e¤ect on the testing results. For example, the p-value of the
�rst-order serial correlation test, m1, for DIF with the full set of instruments, Zi, is zero
up to three decimal points, but it goes up to 0.028 with the subset of instruments ZXi.
On the other hand, the p-value of m1 for SYS is zero up to three decimal points in both
cases.

6 Concluding Remarks

This paper has proposed a new testing procedure for error cross section dependence
after estimating a linear dynamic panel data model with regressors by the generalised
method of moments (GMM). The procedure is valid when the cross-sectional dimension
is large and the time series dimension of the panel is small. Importantly, our approach
allows one to examine whether any error cross section dependence remains after including
time dummies, or after transforming the data in terms of deviations from time-speci�c
averages, which will be the case under heterogeneous error cross section dependence. The
�nite sample simulation-based results suggest that our tests perform well, particularly
the version based on the Blundell and Bond (1988) system GMM estimator. On the
other hand, the LM test of Breusch and Pagan (1980) overrejects the null hypothesis
substantially and Pesaran�s (2004) CD test lacks power. Also it is shown that the system
GMM estimator, based only on partial instruments consisting of the regressors, can be
a reliable alternative to the standard GMM estimators under heterogeneous error cross
section dependence. The proposed tests are applied to employment equations using
UK �rm data, and the results show little evidence of heterogeneous error cross section
dependence.
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Appendices

A Proof of Proposition 3

To simplify the analysis without loss of generality we consider the case where K = 1. For t � 2 + j,
given j such that 0 � j � t� 1, it can be shown that

xit�j = �
i

t�j�2X
`=0

�` + �t�j�1xi1 + 

0
i

t�j�2X
`=0

�`ft�j�` + �

t�j�2X
`=0

�`"i;t�j�1�` +

t�j�2X
`=0

�`vi;t�j�`; (40)

and for t � 1

y
it
= �i

t�1X
j=0

�j + �ty
i0
+ �

t�1X
j=0

�jxi;t�j + �
0
i

t�1X
j=0

�jft�j +

t�1X
j=0

�j"i;t�j : (41)

Firstly we consider E(y
i;t�s�uit) for s � t � T , given 2 � s � T , under the alternative hypothesis of

�i 6= �. But this is equivalent to considering E(yit�ui;t+s) for 0 � t � T � s, given 2 � s � T . Initially
we focus on the case of s = 2. When t = 0, E(y

i0
�ui2) = E(y

i0
�0
i
)�f2 by Assumption 3, which is not

necessarily zero under the alternative. When t � 1, using (40) and (41), together with uit = �0ift + "it,

E(y
it
�ui;t+2) = �tE

�
y
i0
�0
i

�
�ft+2 +�f

0
t+2E

�
�
i
�0
i

� t�1X
j=0

�jft�j 6= 0; (42)

under Assumptions 1-4, 5(a)-(b), 6 and model (7). A similar approach for the case of s > 2 leads to the
conclusion that E(y

it
�ui;t+s) 6= 0 for t � 0, s � 2 under the alternative, as required. Under the null of

�i = �, it follows immediately that E(yit�ui;t+s) = 0 for t � 0, s � 2.
Now we consider E(xi;t�s�uit) for s < t � T , given 1 � s � T � 1, under the alternative, which

is equivalent to considering E(xit�uit+s) for 1 � t < T � s, given 1 � s � T � 1. Initially we focus on
the case of s = 1. When t = 1, E(xi1�ui2) = 0 due to Assumption 3 and 5(b). For t � 2 and using
(40), together with uit = �

0
i
ft + "it, we have E(xit�uit+1) = 0, under Assumptions 1-4, 5(a)-(b), 6 and

model (7), under the alternative. A similar approach for the case where s > 1 leads to the conclusion
that E(xit�ui;t+s) 6= 0 for t � 0, s � 1 under the alternative, as required. Under the null of �i = �, it
follows immediately that E(y

it
�ui;t+s) = 0 for t � 0, s � 1, which completes the proof. In addition, it

is straightforward to show that E(xi;t�1�yi;t�1) 6= 0.

B Proof of Proposition 4

Firstly we establish that SDIFX2
d! �2hx�(K+1) under the alternative of H1 : �� 6= 0, where SDIFX2 is

de�ned in (28). Rewriting 1p
N

PN
i=1 Z

0
Xi

�
�ui ��b�ui� gives

1p
N

NX
i=1

Z0Xi�
b�ui = 1p

N

NX
i=1

Z0Xi�ui �N�1
NX
i=1

Z0Xi�Wi

p
N
�e��DIF2 � �� . (43)

Next, orthogonally decomposing b_
�1=2
X

PN
i=1 Z

0
Xi�

b�ui gives
1p
N

b_
�1=2
X

NX
i=1

Z0Xi�
b�ui =

1p
N
P̂B

b_
�1=2
X

NX
i=1

Z0Xi�
b�ui + 1p

N
M̂B

b_
�1=2
X

NX
i=1

Z0Xi�
b�ui

=
1p
N
M̂B

b_
�1=2
X

NX
i=1

Z0Xi�
b�ui, (44)
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where P̂B = B̂
�
B̂0B̂

��1
B̂0, M̂B = I� P̂B , B̂ =� b_
�1=2

X N�1PN
i=1 Z

0
Xi�Wi, and the last line follows

from B̂0 b_
�1=2
X

PN
i=1 Z

0
Xi�

b�ui = 0 by the de�nition of the GMM estimator. Substituting (43) into (44)
yields

1p
N

b_
�1=2
X

NX
i=1

Z0Xi�
b�ui = 1p

N
M̂B

b_
�1=2
X

NX
i=1

Z0Xi�ui, (45)

since M̂BB̂ = 0.
We can express the instruments as deviations from their cross-sectional averages:

ZXi = ZXi � �ZX ; (46)

where ZXi is de�ned similarly to ZXi but all x
0
its are replaced with xit, and �ZX is de�ned similarly but

all non-zero elements are replaced with their cross-sectional averages, �xt. Also de�ne the instruments in
terms of deviations from their mean as

ZoXi = ZXi �mZX ; (47)

and
�uoi = �F (�i � �) + �"i (48)

where mZX = E(ZXi), � = E(�i). Using (46)-(48)

1p
N

NX
i=1

Z0Xi�ui =
1p
N

NX
i=1

Zo0Xi (�ui ���u) (49)

�
�
�ZX �mZX

�0 1p
N

NX
i=1

(�ui ���u) .

It is easily seen that the second term of (49) is asymptotically negligible. Consider the �rst term of (49).
Reminding ourselves that �ui = �F�i +�"i, we have

1p
N

NX
i=1

Zo0Xi (�ui ���u)

=
1p
N

NX
i=1

Zo0Xi�F
�
(�i � �)�

�
��� �

��
� 1p

N

NX
i=1

Zo0Xi (�"i ���") .

By the assumptions �i � i:i:d:(�;��), "it � i:i:d:(0; �2i ) above,
�
��� �

�
= Op(N

�1=2) and ��" =
Op(N

�1=2) as well as N�1=2PN
i=1 Z

o
Xi = Op(1). Then it follows that

1p
N

NX
i=1

Z0Xi�ui =
1p
N

NX
i=1

Zo0Xi�u
o
i + op(1). (50)

Since b_
X � 
X = op(1), B̂�B = op(1) where B = � 

�1=2
X N�1PN

i=1 Z
o0
Xi�W

o
i and


X = p limN!1N�1PN
i=1 E(Z

o0
Xi�u

o
i�u

o0
i Z

o
Xi) with obvious notations, together with (50), (45) can

be written as
1p
N

b_
�1=2
X

NX
i=1

Z0Xi�
b�ui = 1p

N
MB


�1=2
X

1p
N

NX
i=1

Zo0Xi�u
o
i + op(1). (51)

As Zo0Xi�u
o
i are independent across i, a suitable Central Limit Theorem ensures that



�1=2
X

1p
N

NX
i=1

Zo0Xi�u
o
i

d! N(0; Ihx).

19



A
C

C
E

P
T
E

D
M

A
N

U
S

C
R

IP
T

ACCEPTED MANUSCRIPT

Noting that rank(MB) = hx � (K + 1) we have

SDIFX2 =
1

N

 
NX
i=1

�uo0i Z
o
Xi

!


�1=2
X MB


�1=2
X

 
NX
i=1

Zo0Xi�u
o
i

!
+ op(1) (52)

d! �2hx�(K+1),

under the alternative hypothesis of H1 : �� 6= 0, as required. Under the null hypothesis of H0 : �� = 0,

(52) follows immediately. Also it is straightforward to establish that SDIF2
d! �2h�(K+1), where SDIF2

is de�ned as in (27), in line with the proof provided for (52).
Now we provide the asymptotic distribution of SDIF2 � SDIFX2. Consider the local alternative

HN : �i = �+
�i
N1=4

,

where 0 < jj�ijj <1 for all i, which are assumed to be non-stochastic for expositional convenience. Here
the analysis is based on the instruments in terms of deviations from their true mean, rather than from the
cross-sectional average, since we have already shown that the e¤ect of such replacement is asymptotically
negligible. Without loss of generality, consider ZoY i = diag(yo

i;t�2), t = 2; 3; :::; T , hy = T �1. Also de�ne

Zoi =
�
ZoY i ZoXi

�
, 
 = p lim

N!1
N�1

NX
i=1

E
�
Zo0i �u

o
i�u

o0Zoi
�
, (53)

where


 =

�

Y 
Y X


XY 
X

�
, (54)

with block elements that are conformable with ZoY i and Z
o
Xi. By using (42) we have

E

 
N�1=2

NX
i=1

Zo0Y i�u
o
i

!
= �N ,

where �N = O(1) is a (T � 1� 1) vector whose �rst element is N�1PN
i=1 E(yi0�i

0)�f2 and the (t� 1)th

elements are N�1PN
i=1 �

tE
�
y
i0
�i

0
�
�ft+2 +�f

0
t+2�i�i

0Pt�1
j=0 �

jft�j , for t = 2; 3; :::; T � 1. De�ne

Zo�i = ZoiL
0, with L =

�
Ihy �
YX


�1
X

0 Ihx

�
where L is non-singular, so that

1p
N

NX
i=1

Zo�0i �uoi �
�
�N
0

�
d! N (0;
�) ,

where


� = L
L0 =

�

�
Y 0
0 
X

�
;

with 
�
Y = 
Y �
Y X


�1
X 
XY . It follows that

SDIF2 =
1

N

 
NX
i=1

�uo0i Z
o�
i

!

��1=2M�

B

��1=2

 
NX
i=1

Zo�0i �uoi

!
+ op(1)

with M�
B = I�B� (B�0B�)

�1
B�0,

B� =

�
B�
Y

B

�
= �
��1=2N�1

NX
i=1

Zo�0i �Wo
i ,
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so that

SDIF2 � SDIFX2 =
1

N

 
NX
i=1

�uo0i Z
o�
i

!

��1=2M�

B

��1=2

 
NX
i=1

Zo�0i �uoi

!
(55)

� 1

N

 
NX
i=1

�uo0i Z
o
Xi

!


�1=2
X MB


�1=2
X

 
NX
i=1

Zo0Xi�u
o
i

!
+ op(1)

=
1

N

 
NX
i=1

�uo0i Z
o�
i

!

��1=2M
��1=2

 
NX
i=1

Zo�0i �uoi

!
+ op(1)

where

M =M�
B �

�
0 0
0 MB

�
=

�
M11 M12

M21 M22

�
, (56)

which is a symmetric and idempotent matrix of rank hy. Finally, we have

SDIF2 � SDIFX2 =
1

N

 
NX
i=1

�uo0i Z
o�0
i

!

��1=2M
��1=2

 
NX
i=1

Zo�0i �uoi

!
+ op(1)

d! �2 (hy; �)

which is a non-central chi-squared distribution with hy degrees of freedom and non-centrality parameter

� = p limN!1 �
0
N


��1=2
Y M11


��1=2
Y �N > 0, so long as �N 6= 0. Therefore, the result SDIF2�SDIFX2 d!

�2hy readily follows under the null hypothesis, as required.

Furthermore, using (55) and (56), it is easily seen that SDIF2
d! �2 (h� (K + 1); �) under the local

alternatives, where � is the same non-centrality parameter of the asymptotic distribution of (SDIF2 �
SDIFX2). Therefore, when h� (K + 1) > hy, or � subtracting hy from both sides � hx > (K + 1), the
Sargan�s di¤erence test is locally more powerful than the overidentifying restrictions test.

C Proof of Proposition 8
In line with the proof of Proposition 3 in Appendix A, consider E(�xit(�i + uit)). For t � 3 and using
(40) together with uit = �0

i
ft + "it, we have under the alternative hypothesis of �i 6= �, E(�xit(�i +

uit)) = 0, under Assumptions 1-4, 5(a)-(c), 6 and model (7). A similar line of argument proves that
E(�xi2(�i + ui2)) = 0. However, for t � 2 and using (40) and (41) we have under the alternative

E(�y
it
(�i + uit+1)) = �tE

�
�y

i1
�0
i

�
ft+1 + f

0
t+1E

�
�
i
�0
i

� t�1X
j=0

�j�ft�j 6= 0;

under Assumptions 1-4, 5(a)-(c), 6 and model (7). A similar line of argument will prove that E(�y
i1
(�i+

ui2)) 6= 0 under the alternative. Finally, under the null hypothesis, it is also easily seen that E(�yit(�i+
uit+1)) = 0 for t � 1 and E(�xit(�i + uit)) = 0 for t � 2, which completes the proof. Further-
more, it is straightforward to show that E(�xi;t�1xit) 6= 0, E(�xi;t�1yi;t�1) 6= 0, E(�y

i;t�1xit) 6= 0,

E(�y
i;t�1yi;t�1) 6= 0.

D Derivations of Parameters in Monte Carlo Experiments
Using the lag operator, L, we can write yit and xit as

yit =
�i
1� �

+
�

1� �L
xit +

�i
1� �L

ft +
1

1� �L
"it (57)

xit =
�L

1� �L
"it +


i
1� �L

ft +
1

1� �L
vit (58)
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and thereby substituting (58) into (57) yields

yit =
�i
1� �

+
�vit

(1� �L) (1� �L)
+
�
i + �i (1� �L)

(1� �L) (1� �L)
ft +

1 + (�� � �)L

(1� �L) (1� �L)
"it. (59)

De�ne y�it = yit � �i=(1� �), such that (57) can be rewritten as

y�it = �y�it�1 + �xit + uit (60)

and let the signal-to-noise ratio be denoted by �2s=�
2
u; where �

2
s is the variance of the signal,

�2s = var (y�it � uit) = var (y�it) + var (uit)� 2cov (y�it; uit) . (61)

�2s varies across designs, with the aim being to keep the signal-to-noise ratio constant over changes in �
and the distribution of �i, so that the explanatory power of the model does not change. In particular,
we set �2s=�

2
u = � = 3, where �2u = var (uit). We normalise �2f = �2" = 1 and we keep the total

signal-to-noise ratio �xed by modifying �2s accordingly through changes in �
2
v. It can be shown that

�2s =
�
�2�2v + �2fb1 + �2"b2

	
a1 � 2��
���

2
f � �2u,

where a1 =
(1+��)

(1��2)(1��2)(1���) , b1 =
�
��
 + ��

�2
+
�
���

�2 � 2(���)(�+�)
1+��

and b2 = 1 + (�� � �)2 +
2(����)(�+�)

1+��
.

Applying the normalisation �2f = �2" = 1, substituting �
2
s = �2u�, and solving for �

2
v yields

�2v = ��2
��
�2u (1 + �) + 2��
��

�
=a1 � (b1 + b2)

	
.

In line with the simulation design of Bun and Kiviet (2006), we choose �2� such that the ratio of the
impacts on var(yit) of the two variance components �i and ("it, ft) is  2. By (59)

var(yit) = var

�
1

1� �
�i

�
+ var

�
�

(1� �L) (1� �L)
vit

�
+var

�
�
i + �i (1� �L)

(1� �L) (1� �L)
ft

�
+ var

�
1 + (�� � �)L

(1� �L) (1� �L)
"it

�
=

�2�

(1� �)2
+ (�2�2v + �2fb1 + �2"b2)a1.

Now de�ne  2 such that �2�
(1��)2 =  2(�2fb1 + �2"b2)a1. By applying the normalisation �

2
" = �2f = 1, we

set �2� =  2 (1� �)2 (b1 + b2)a1: We choose  = 1.
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Table 1: Size and Power of the Cross Section Dependence Tests in the Case with
Predetermined Regressors with T = 5

� = 0:2 � = 0:5 � = 0:8

Test,N 50 100 200 400 50 100 200 400 50 100 200 400
Size: �i = � = 0

LM 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
CD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DDIF2 3.55 4.20 5.30 5.35 4.40 4.45 4.60 5.40 6.45 7.05 6.30 5.40
DSY S2 3.65 5.20 5.30 5.15 4.15 5.35 5.55 5.80 5.10 6.25 6.35 6.30

Power: �i � i:i:d:U [�0:3; 0:7]
LM 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
CD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DDIF2 4.80 9.10 18.15 29.25 6.00 9.90 18.70 32.10 7.65 13.95 21.75 35.30
DSY S2 4.00 10.90 21.65 36.40 5.35 10.75 22.95 41.60 5.50 13.55 28.05 46.55

Power: �i � i:i:d:U [�1; 2]
LM 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
CD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DDIF2 38.65 70.10 86.40 94.00 43.25 74.45 88.45 95.25 46.25 77.85 91.30 95.85
DSY S2 29.80 77.25 92.35 96.95 34.50 79.75 93.30 97.80 36.80 83.30 95.90 98.80

Power: �i � i:i:d:U [�1; 4]
LM 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
CD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DDIF2 63.30 89.70 95.15 98.20 67.70 90.30 96.40 98.55 69.00 92.65 98.00 99.25
DSY S2 55.25 93.80 98.60 99.30 56.35 94.10 98.30 99.65 62.20 96.35 98.95 99.80

Notes: LM and CD denote the Breusch-Pagan LM test and Pesaran�s (2004) CD test, respectively. Both
are based on the residuals of the Fixed E¤ects estimator. DDIF2 and DSY S2 denote Sargan�s di¤erence
tests based on the two-step Arellano Bond (1991) DIF estimator, and on the two-step Blundell and Bond
(1998) SYS estimator respectively. The data generating process (DGP) is yit = �i + �yi;t�1 + �xit +
�ift + "it, i = 1; 2; :::; N , t = �48;�47; :::; T with yi;�49 = 0. The initial 49 observations are discarded.
�i � i:i:d:N(1; �2�), � and �i are as speci�ed in the Table, � = 1��, ft � i:i:d:N(0; 1), "it � i:i:d:N(0; 1);
xit = �xi;t�1 + �"i;t�1 + 
ift + vit, i = 1; 2; :::; N , t = �48;�47; :::; T with xi;�49 = 0 and the initial
50 observations being discarded. � = � = 0:5, � = 0:5; 
i � i:i:d:U [�1; 2], vit � i:i:d:N(0; �2v), �

2
v is

chosen such that the signal-to-noise ratio equals 3. �2� is chosen such that the impact of the two variance
components �i and (ft, "it) on var(yit) is constant. All variables are cross-sectionally demeaned before
computing statistics. All experiments are based on 2,000 replications.
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Table 2: Bias (�1000) of Fixed E¤ects and GMM estimators for �; in the Case with
Predetermined Regressors with T = 5

� = 0:2 � = 0:5 � = 0:8

Test,N 50 100 200 400 50 100 200 400 50 100 200 400
No Cross Section Dependence: �i = � = 0

FE -115.62 -114.70 -116.66 -115.46 -187.03 -183.89 -185.06 -184.63 -392.65 -389.05 -388.91 -388.59
DIF1 -23.68 -10.76 -7.76 -2.46 -46.94 -24.22 -10.82 -5.29 -205.25 -105.79 -59.39 -26.46
DIF2 -22.83 -10.11 -7.65 -1.98 -48.67 -24.47 -10.48 -5.25 -223.06 -115.40 -61.99 -27.85
DIFX1 -20.58 -10.07 -7.70 -2.30 -65.99 -32.32 -15.45 -7.80 -438.04 -326.91 -209.79 -116.42
DIFX2 -19.93 -10.18 -7.62 -2.11 -66.16 -33.28 -14.50 -7.79 -457.19 -339.03 -214.87 -118.03
SYS1 13.43 7.31 1.92 2.04 6.89 2.96 1.59 1.42 -12.35 -3.91 -5.17 -1.46
SYS2 11.58 6.06 0.34 1.51 7.24 4.18 2.20 1.42 -4.91 2.04 -0.20 0.54
SYSX1 9.57 4.71 0.54 1.47 5.67 5.55 3.01 2.37 -50.06 -42.01 -30.40 -13.39
SYSX2 7.94 3.37 -0.59 1.45 10.07 8.00 6.87 4.32 -37.91 -28.31 -15.51 -2.08

Low Cross Section Dependence: �i � i:i:d:U [�0:3; 0:7]
FE -107.82 -106.72 -108.15 -107.89 -171.34 -168.69 -169.18 -168.50 -325.46 -321.39 -321.04 -319.85
DIF1 -22.29 -10.66 -7.80 -3.68 -42.94 -23.58 -11.97 -6.50 -140.41 -75.11 -45.60 -24.33
DIF2 -20.85 -9.55 -7.44 -2.92 -43.64 -23.37 -11.12 -6.08 -147.90 -77.45 -46.13 -24.42
DIFX1 -18.53 -8.89 -7.33 -2.29 -60.43 -29.10 -13.46 -7.00 -353.16 -251.67 -159.44 -87.67
DIFX2 -17.71 -8.66 -7.26 -2.05 -60.16 -29.79 -12.58 -6.89 -365.60 -254.65 -158.36 -85.55
SYS1 12.24 6.24 1.06 0.53 2.80 -0.67 -1.42 -0.59 -18.63 -11.68 -10.26 -6.72
SYS2 10.12 4.93 -0.41 0.12 3.05 1.22 -0.17 -0.37 -12.05 -5.93 -5.40 -3.88
SYSX1 9.36 4.72 0.38 1.27 2.25 3.82 2.44 1.75 -53.49 -43.00 -30.35 -15.23
SYSX2 7.18 3.42 -0.89 1.29 6.42 6.01 6.09 3.68 -43.81 -31.09 -18.55 -6.48

Moderate Cross Section Dependence: �i � i:i:d:U [�1; 2]
FE -87.17 -85.41 -85.48 -87.94 -143.05 -141.46 -140.35 -138.30 -281.73 -278.38 -277.75 -274.77
DIF1 -30.36 -21.66 -18.81 -19.59 -60.73 -50.04 -42.90 -35.16 -202.24 -165.42 -151.49 -136.35
DIF2 -27.14 -16.75 -15.14 -14.83 -57.18 -44.98 -36.37 -29.22 -204.32 -163.72 -150.64 -135.37
DIFX1 -14.25 -6.81 -5.99 -1.91 -51.31 -24.03 -11.00 -5.72 -289.33 -199.89 -124.44 -68.86
DIFX2 -12.92 -5.71 -5.65 -1.29 -46.85 -21.95 -8.43 -4.37 -281.22 -184.10 -106.67 -55.71
SYS1 -0.15 -2.22 -6.09 -9.19 -15.90 -19.55 -20.10 -15.63 -50.84 -48.19 -46.00 -48.00
SYS2 -1.04 -1.85 -6.40 -8.35 -13.94 -16.42 -17.16 -13.89 -45.48 -43.31 -41.70 -42.90
SYSX1 6.00 3.00 -0.28 0.67 -3.87 1.04 1.15 0.76 -56.04 -40.74 -28.56 -16.86
SYSX2 3.96 2.14 -1.32 1.02 0.77 3.29 4.38 2.87 -43.59 -25.70 -16.02 -5.77

High Cross Section Dependence: �i � i:i:d:U [�1; 4]
FE -63.49 -61.52 -60.98 -64.34 -119.29 -118.17 -116.32 -113.69 -374.01 -371.82 -372.45 -366.96
DIF1 -34.91 -29.04 -26.18 -29.00 -83.57 -77.34 -72.34 -64.51 -459.56 -434.21 -438.01 -414.08
DIF2 -30.25 -22.18 -20.73 -22.36 -76.68 -68.73 -62.60 -54.55 -466.73 -441.78 -447.79 -427.26
DIFX1 -9.91 -4.75 -4.25 -1.22 -41.29 -19.10 -8.88 -4.72 -453.74 -344.77 -244.99 -148.10
DIFX2 -8.17 -3.38 -3.57 -0.52 -33.56 -14.40 -4.84 -2.42 -436.91 -313.41 -198.66 -106.04
SYS1 -0.25 -3.56 -8.64 -13.43 -17.11 -26.10 -29.33 -25.59 -79.86 -95.60 -100.75 -114.51
SYS2 -1.63 -3.71 -8.97 -12.56 -15.61 -24.64 -27.43 -24.05 -77.14 -94.71 -100.97 -113.50
SYSX1 9.23 4.76 1.29 1.22 11.12 9.72 5.95 3.11 -5.01 2.03 0.03 1.38
SYSX2 4.93 2.10 -0.78 0.87 12.32 8.56 6.71 3.56 4.83 18.18 17.69 22.97

Notes: See notes to Table 1. FE is the �xed e¤ects estimator, DIF1 and DIF2 are the Arellano and
Bond (1991) one-step and two-step �rst di¤erenced GMM (DIF) estimators, respectively. DIFX1 and
DIFX2 are the one-step and two-step DIF estimators, respectively, which are based on the instruments
consisting of subsets of Xi only. SYS1 and SYS2 are the Blundell and Bond (1998) one-step and two-step
system GMM (SYS) estimators, respectively. SYSX1 and SYSX2 are the one-step and two-step SYS
estimators, respectively, which are based on the instruments consisting of subsets of Xi only.
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Table 3: Root Mean Square Errors (�1000) of Fixed E¤ects and GMM estimators for
�; in the Case with Predetermined Regressors with T = 5

� = 0:2 � = 0:5 � = 0:8

Test,N 50 100 200 400 50 100 200 400 50 100 200 400
No Cross Section Dependence: �i = � = 0

FE 15.45 14.24 14.27 13.75 37.79 35.41 35.12 34.69 159.49 153.85 152.75 151.86
DIF1 4.42 1.98 1.09 0.47 9.06 4.18 1.81 0.92 78.33 29.52 12.20 5.26
DIF2 5.03 2.34 1.18 0.50 11.00 4.82 1.97 0.97 98.83 37.00 14.03 5.66
DIFX1 7.01 3.48 1.91 0.89 22.98 11.60 5.92 3.16 315.62 204.34 106.17 52.48
DIFX2 8.05 3.91 1.99 0.91 27.12 12.61 6.30 3.23 362.43 230.90 115.28 54.88
SYS1 3.91 1.84 0.94 0.48 4.82 2.48 1.23 0.65 8.64 5.38 3.16 1.66
SYS2 4.11 1.84 0.88 0.39 5.14 2.50 1.18 0.58 9.23 5.41 2.68 1.26
SYSX1 7.09 3.44 1.83 0.95 15.09 8.64 4.80 2.58 41.18 32.94 22.05 13.32
SYSX2 7.79 3.66 1.80 0.84 16.82 9.33 4.83 2.49 47.67 37.96 23.18 12.41

Low Cross Section Dependence: �i � i:i:d:U [�0:3; 0:7]
FE 13.70 12.54 12.43 12.12 32.16 30.03 29.56 29.09 110.86 105.91 104.80 103.60
DIF1 4.26 1.99 1.13 0.57 8.33 4.04 1.94 1.16 44.25 19.17 9.75 5.98
DIF2 4.72 2.29 1.17 0.56 9.97 4.47 2.02 1.11 53.34 21.98 10.06 5.60
DIFX1 6.38 3.17 1.70 0.81 20.57 9.96 5.19 2.73 219.80 133.09 71.42 33.30
DIFX2 7.27 3.53 1.74 0.83 24.14 10.70 5.50 2.74 248.84 143.90 74.07 33.74
SYS1 3.78 1.95 1.04 0.63 4.58 2.55 1.44 0.95 6.91 5.07 3.37 2.46
SYS2 3.95 1.88 0.95 0.50 4.88 2.41 1.25 0.71 7.32 4.65 2.64 1.71
SYSX1 6.57 3.19 1.65 0.86 13.60 7.63 4.27 2.29 33.21 29.45 20.42 12.20
SYSX2 7.05 3.31 1.59 0.77 14.81 8.02 4.26 2.19 36.72 29.89 20.00 10.27

Moderate Cross Section Dependence: �i � i:i:d:U [�1; 2]
FE 11.92 10.98 10.77 10.63 27.41 25.10 24.52 23.50 93.31 89.68 88.77 87.15
DIF1 7.20 5.57 4.98 4.40 18.59 14.22 12.47 10.62 98.86 83.78 81.96 72.86
DIF2 6.34 4.24 3.44 2.91 16.57 11.09 8.86 7.00 102.60 81.07 77.90 66.73
DIFX1 5.14 2.54 1.32 0.65 17.80 8.07 4.06 2.12 176.18 98.94 52.60 25.59
DIFX2 5.11 2.40 1.15 0.56 17.92 7.35 3.74 1.78 186.10 97.06 47.46 21.20
SYS1 7.18 6.56 5.99 5.53 12.54 11.26 10.69 10.06 22.59 22.96 24.48 24.15
SYS2 6.26 4.70 3.90 3.38 10.61 7.93 6.74 5.93 20.06 19.19 19.07 18.60
SYSX1 5.23 2.60 1.31 0.67 11.61 6.48 3.54 1.91 32.33 27.07 18.39 12.57
SYSX2 4.87 2.25 1.06 0.53 10.82 5.52 2.95 1.53 32.23 21.75 14.97 8.52

High Cross Section Dependence: �i � i:i:d:U [�1; 4]
FE 9.38 8.73 8.62 8.33 24.88 22.38 21.96 20.60 185.46 183.37 184.96 180.72
DIF1 7.95 6.81 6.48 6.03 28.58 24.28 23.09 19.77 364.79 357.52 380.38 358.02
DIF2 6.24 4.69 4.26 3.92 24.40 19.06 17.33 14.08 378.32 369.79 395.92 376.19
DIFX1 3.80 1.81 0.95 0.47 15.21 6.73 3.29 1.74 362.81 233.76 141.53 69.36
DIFX2 2.86 1.30 0.62 0.30 11.89 4.63 2.31 1.05 370.67 223.07 119.02 48.29
SYS1 9.28 9.28 9.10 8.47 19.20 18.75 18.68 17.70 59.51 67.97 79.84 81.53
SYS2 7.63 6.62 6.10 5.55 16.35 14.20 13.37 12.27 57.14 64.93 74.88 76.46
SYSX1 4.18 2.02 1.02 0.52 10.96 6.02 3.22 1.68 43.40 34.61 28.51 22.76
SYSX2 2.93 1.27 0.60 0.29 8.95 4.09 2.08 1.00 46.88 34.68 26.44 17.26

See Notes to Table 2.
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Table 4: Homogeneity Error Cross Section Dependence Tests and Estimates of Em-
ployment Equation, 140 Firms with 9-Year Observations

A: Two-Step DIF Estimator, 1976-84
Estimation Results

Based on Zi Based on ZXi
Coef. Std.Err. Coef. Std.Err.

yi;t�1 0.679 (0.084) 0.401 (0.124)
wit -0.720 (0.117) -0.551 (0.130)
wit�1 0.463 (0.111) 0.347 (0.112)
�it 0.454 (0.101) 0.447 (0.110)
�it�1 -0.191 (0.086) -0.079 (0.105)
cons 0.005 (0.017) 0.003 (0.014)
Test Results

statistics p-values statistics p-values
Sargan 88:8

(79)
[0.211] 62:0

(51)
[0.140]

m1 -4.46 [0.000] -2.19 [0.028]
m2 -0.17 [0.866] -0.47 [0.641]
DDIF2 26:84

(28)
[0.527] - -

B: Two-Step SYS Estimator, 1976-84
Estimation Results

Based on Z+i Based on Z+Xi
Coef. Std.Err. Coef. Std.Err.

yi;t�1 0.873 (0.044) 0.825 (0.071)
wit -0.780 (0.116) -0.717 (0.105)
wit�1 0.527 (0.168) 0.560 (0.149)
�it 0.470 (0.071) 0.395 (0.088)
�it�1 -0.358 (0.072) -0.253 (0.092)
cons 0.948 (0.390) 0.720 (0.402)
Test Results

statistics p-values statistics p-values
Sargan 111:6

(100)
[0.201] 77:3

(65)
[0.142]

m1 -5.81 [0.000] -5.19 [0.000]
m2 -0.15 [0.883] -0.12 [0.906]
DSY S2 34:30

(35)
[0.502] - -

Notes: The estimated model is yit = �i + �t + �1yit�1 + �0wit + �1wit�1 + '0�it + '1�it�1 + uit,
where yit is the log of the number of employees of company i, wit is the log of real product wage and
�it is the log of gross capital stock. Year dummies are included in all speci�cations. The standard
errors reported are those of the robust one-step GMM estimator. The �rst row of the test results
reports Sargan�s statistic for overidentifying restrictions. m1 and m2 are the �rst-order and second-
order serial correlation tests in the �rst-di¤erenced residuals. DDIF2 denotes Sargan�s Di¤erence test
for heterogeneous error cross section dependence based on the two-step Arellano and Bond (1991) DIF
GMM estimator. DSY S2 denotes Sargan�s Di¤erence test based on the two-step Blundell and Bond
(1998) SYS GMM estimator. Sargan test and Sargan�s di¤erence test are distributed as �2 under the
null with degrees of freedom reported in parentheses. Instruments used in each equation are for DIF:
yi;t�2; yi;t�3; :::; yi;0;wi;t�2; wi;t�3; :::; wi;0;�i;t�2; �i;t�3; :::; �i;0, and for SYS: �yi;t�1, �wi;t�1, ��i;t�1.
Zi, ZXi, Z+i , Z

+
Xi are de�ned by (22), (18), (37), (31) but without cross-sectional demeaning, respectively.
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