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Optimal consumption and investment for

markets with randoms coefficients. ∗

Belkacem Berdjane†and Serguei Pergamenshchikov‡

February 6, 2011

Abstract

We consider an optimal consumption - investment problem for fi-
nancial markets of Black-Scholes’s type with the random coefficients.
The existence and uniqueness theorem for the Hamilton-Jacobi-Bellman
(HJB) equation is shown. We construct an iterative sequence of func-
tions converging to the solution of this equation. An optimal con-
vergence rate for this sequence is found and sharp computable upper
bounds for the approximation accuracy of the optimal consumption
- investment strategies are obtained. It turns out that the optimal
convergence rate in this case is super geometrical, i.e. is more rapid
than any geometrical rate.
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1 Introduction

In this paper we consider a Black-Scholes financial market with coef-
ficients depending on an external stochastic process of diffusion type.
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For this model we consider an optimal consumption and investment
problem on the finite time horizon. In this setting, we have to solve
a non-degenerate non-linear second order partial differential equation.
Several methods are proposed to deal with this problem. In [14] for a
pure investment problem a special power transformation is introduced,
which makes disappear the non-linear term in the Hamilton-Jacobi-
Bellman (HJB) equation. Moreover, in [8] a similar transformation
is used for some consumption - investment problems. More effective
methods have been proposed in [3] and [2]. In the first paper opti-
mization control problem is studied through a special measure trans-
formation. In the second paper the authors consider the dual problem
whose control process belongs to a set of equivalent local martingale
measures and the value function for the dual problem depends only
on time and a factor variable. This method has also been successfully
used for a robust utility maximization model in [6]. In all these three
papers the classical existence theorem for the HJB equation is proved
by the methods of non-degenerate linear partial differential equations
(see, for example, chapter VI.6 and appendix E in [4]). In this paper
we study the HJB equation through some special mapping based on
the Feynman - Kac representation. It turns out that in this case the
fixed-point equation for this mapping gives the classical solution for
HJB. Similarly to [7] to find the fixed-point solution we introduce a
metrical space in which the constructed Feynman - Kac mapping is
contracted. Taking this into account we obtain a geometrical conver-
gence rate for the fixed-point iterative scheme. Moreover, we find the
upper bound for the approximation accuracy in the explicit form, we
minimize it and then we obtain the sharp approximation accuracy for
optimal consumption - investment strategies.

Our paper is structured as follows. In section 2 we introduce the
financial market and we state the main conditions on the market pa-
rameters. In Section 3 we define all necessary parameters. In section 4
we state the main results of the paper. In Section 5 we study the prop-
erties of the Feynman - Kac mapping. The proofs of the main results
are given in Section 6. In Section 7 we consider a numerical exam-
ple. The corresponding verification theorem and auxiliary results are
stated in Appendix.
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2 Market model

Let (Ω,FT , (Ft)0≤t≤T ,P) be an standard filtered probability space
with two standard independing (Ft)0≤t≤T adapted Wiener processes

(Wt)0≤t≤T and (Vt)0≤t≤T taking its values in R
d and R

m respectively,
i.e.

Wt = (W1(t), . . . ,Wd(t))
′ and Vt = (V1(t), . . . , Vm(t))′ .

The prime ′ denotes the transposition.
Our financial market consists of one riskless bond (S0(t))0≤t≤T and

d risky stocks (Si(t))0≤t≤T governed by the following equations:




dS0(t) = r(t, Yt)S0(t)dt ,

dSi(t) = Si(t)µi(t, Yt)dt+ Si(t)
∑d

j=1
σij(t, Yt) dWj(t) ,

(2.1)

with S0(0) = 1 and Si(0) = si for 1 ≤ i ≤ d. In this model r(t, y) ∈
R+ is the riskless interest rate, µ(t, y) = (µ1(t, y), . . . , µd(t, y)

′ is the
vector of stock-appreciation rates and σ(t, y) = (σij(t, y))1≤i,j≤d is the
matrix of stock-volatilities. We assume that for almost all y ∈ R

m the
coefficients r(·, y), µ(·, y) ∈ R

d and σ(·, y) ∈ Md are nonrandom càdlàg
functions. We denote by Md the set of quadratic matrix of order d.
We also assume that for all y ∈ R

m and 0 ≤ t ≤ T the matrix σ(t, y)
is non-degenerated.

We assume that the economic factor Y has a dynamic given by a
stochastic differential equation:

dYt = F (t, Yt) dt+ βdUt , (2.2)

where β > 0, Ut = ρVt +
√

1− ρ2σ∗Wt with 0 ≤ ρ ≤ 1 and with
nonrandom m×d matrix σ∗ such that σ∗σ

′
∗ = I is the identity matrix

of order m. Moreover, F is a K → R
m nonrandom function such that

the equation (2.2) has an unique strong solution. HereK = [0, T ]×R
m.

We denote this solution on the interval [t, T ] by Y t,y = (Y t,y
s )t≤s≤T

with Y t,y(t) = y.
To describe the wealth process we need to introduce some special

function. For any y ∈ R
m and t ≥ 0 we set

θ(t, y) = σ−1(t, y)(µ(t, y) − r(t, y)1d) , (2.3)

where 1d = (1, . . . , 1)′ ∈ R
d. We assume that

sup
(t,y)∈K

|θ(t, y)| < ∞ , (2.4)
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where |·| denotes the Euclidean norm for vectors and the corresponding
matrix norm for matrices.

Similarly to [11] we consider the fractional portfolio process

ϕt = (ϕ1(t), . . . , ϕd(t))
′ ∈ R

d ,

i.e. ϕi(t) represent the fraction of the wealth process Xt invested in
the i-th stock at the time t. The fractions for the consumption we
denote by v = (vt)0≤t≤T . In this case the wealth process satisfies the
following stochastic equation

dXt = Xt(r̂t + π′
tθ̂t − vt)dt+Xtπ

′
tdWt , X0 = x > 0 , (2.5)

where πt = σ̂′
tϕt and f̂t = f(t, Yt) for any [0, T ] × R → R function

f . This implies in particular that any optimal investment strategy
is equal to φ∗

t = (σ′
t)
−1π∗

t , where π∗
t is the optimal control process

for equation (2.5). Now we describe the set of all admissible control
processes. A stochastic control process ν = (νt)t≥0 = ((πt, vt))t≥0

is called admissible if it is (Ft)0≤t≤T - progressively measurable with

values in R
d × [0,∞), such that

‖π‖T < ∞ and

∫ T

0

vtdt < ∞ a.s. (2.6)

and the equation (2.5) has a unique strong a;s. positive continuous
solution (Xν

t )0≤t≤T on [0 , T ]. We denote by V the class of all admis-

sible control processes. Now for any x ∈ R
d, y ∈ R

m and ν ∈ V we
define the cost function as

J(x, y, ν) := Ex,y

(∫ T

0

vγt (X
ν
t )

γdt + (Xν
T )

γ

)
,

were 0 < γ < 1, Ex,y is the conditional expectation for Xν
0 = x and

Y0 = y. In this paper we consider the following optimisation problem

sup
ν∈V

J(x, y, ν) . (2.7)

We assume that the market parameters satisfy the following con-
ditions:

A1) The functions r : K → R+, µ : K → R
d
+ and σ : K → Md belong
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to C1(K), are bounded and have the bounded derivatives. Moreover,
for all y ∈ R

m and 0 ≤ t ≤ T the matrix σ(t, y) is non-degenerated
and

inf
(t,y)∈K

|σ(t, y)| > 0 .

A2) The K → R
m function F (., .) belongs to C1(K) and all its partial

derivatives are bounded.

3 Definitions of principal parameters

First we introduce the special stochastic differential equation

dηt = α(t, ηt)dt+ dUt , (3.1)

where

α(t, y) = F (t, y) +
γ
√

1− ρ2β

1− γ
σ∗θ(t, y) .

We denote by (ηt,ys )t≤s≤T the strong solution of this equation on the

interval [t, T ] with ηt,yt = y. We will use the distribution of this process
to construct the solution of the Hamilton - Jacoby - Bellman equation
(HJB). Furthermore, we set

Q(t, y) =
γ(1− ρ2γ)

1− γ

(
r(t, y) +

|θ(t, y)|2
2 (1− γ)

)
(3.2)

and
Q∗ = sup

(t,y)∈K
Q(t, y) and α∗ = sup

(t,y)∈K
|α(t, y)| ,

where K = [0, T ] × R
m. Moreover, we define

H∗ =

(
8T∗̟∗ e

γ
∗
(2) + 2α∗ e

γ
∗
(1) +

2
√
2√
π

eγ∗(1)

)
eα

2
∗
T/2 , (3.3)

where T∗ = max(T, 1), γ∗(κ) = Q∗T
2 + κα2

∗T (m+ 2),

̟∗ = max
(t,y)∈K

(
|DyΨ(t, y)|+ |Dyα(t, y)|

)

and

Ψ(v, y) = Q(v, y)− 1

2
|α(v, y)|2 . (3.4)
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Here Dy is the gradient with respect to y ∈ R
m, i.e. for any differen-

tiable K → R function f

Dyf(t, y) =

(
∂

∂y1
f(t, y), . . . ,

∂

∂ym
f(t, y)

)′

.

To study the HJB equation we need to introduce some special func-
tional space. To this end we denote by the X the set of K → [1,∞)
functions from C1 (K) such that

sup
(t,y)∈K

(
|f(t, y)|+

∣∣Dyf(t, y)
∣∣) ≤ r∗ , (3.5)

where

r∗ = eQ∗
T

(
1 +

1

Q∗q∗

)
+m

(
3
H∗

q∗
+Q∗

1e
(α∗

1
+Q

∗
)T

)
T∗

with

Q∗
1 = sup

(t,y)∈K
|DyQ(t, y)| and α∗

1 = sup
(t,y)∈K

|Dyα(t, y)| .

Moreover, for any f and g from X we introduce the metrics in X as
follows

̺∗(f, g) = sup
(t,y)∈K

(
e−κ(T−t)̺f,g(t, y)

)
. (3.6)

Here

̺f,g(t, y) = |f(t, y)− g(t, y)| +
∣∣Dy (f(t, y)− g(t, y))

∣∣

and the parameter
κ = Q∗ + ζ + l∗ , (3.7)

where l∗ = 1 +mL∗ with

L∗ = (1 + r∗q∗ +mTQ∗
1)e

α∗

1
T and q∗ =

1

1− ρ2γ
.

Here ζ is some positive parameter which will be specified later.
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4 Main results

Using the process (3.1) we define the principal X → X mapping L:

Lf (t, y) = EG(t, T, y) + 1

q∗

∫ T

t
Hf (t, s, y) ds , (4.1)

where G(t, s, y) = exp
(∫ s

t Q(u, ηt,yu )du
)
, q∗ is given in (3.7) and

Hf (t, s, y) = E
(
f(s, ηt,ys )

)1−q
∗ G(t, s, y) .

To solve the HJB equation we need to study the “fixed-point” equation
for the mapping L in X , i.e.

Lh = h . (4.2)

To find the fixed-point solution we construct the following iterated
scheme (hn)n≥0 from X . We set h0 ≡ 1 and

hn(t, y) = Lhn−1
(t, y) for n ≥ 1 . (4.3)

First we study the behaviour of the deviation

∆n = h(t, y) − hn(t, y) .

Theorem 4.1. The equation (4.2) has an unique solution h in X such
that for any n ≥ 1 and ζ > 0

sup
(t,y)∈K

(
|∆n(t, y)|+

∣∣Dy∆n(t, y)
∣∣) ≤ B∗ λn , (4.4)

where B∗ = eκT (1 + r∗)/(1 − λ) (κ is given in (3.7)) and

λ =
l∗

ζ + l∗
.

Now we can maximize the upper bound (4.4) over ζ > 0. Indeed,
setting ζ̃ = ζ/l∗ and T̃ = l∗T we obtain

B∗ λn = C∗ exp{n ln l∗ + gn(ζ̃)} ,

where
C∗ = (1 + r∗)e(Q∗

+l
∗
)T
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and
gn(x) = xT̃ − lnx− (n − 1) ln(1 + x) .

Now we minimize this function over x > 0, i.e.

min
x>0

gn(x) = g∗
n = x∗nT̃ − lnx∗n − (n− 1) ln(1 + x∗n) ,

where

x∗n =

√
(T̃ − n)2 + 4T̃ + n− T̃

2T̃
.

Thus we obtain the optimal upper bound (4.4).

Corollary 4.2. The equation (4.2) has an unique solution h in X
such that for any n ≥ 1

sup
(t,y)∈K

(
|∆n(t, y)|+

∣∣Dy∆n(t, y)
∣∣) ≤ U∗

n , (4.5)

where
U∗

n = C∗ exp{n ln l∗ + g∗
n} .

To write the optimal solution for the problem (2.7) we need the
parameter

ε =
1− γ

1− ρ2γ
. (4.6)

Theorem 4.3. The optimal value of J(x, y, ν) for optimization prob-
lem (2.7) is given by

max
ν∈V

J(x, y, ν) = J(x, y, ν∗) = xγ (h(0, y))ε ,

where h(t, y) is the unique solution of the equation (4.6). The optimal
control ν∗ = (π∗, v∗) is for all 0 ≤ t ≤ T of the form




π∗
t = π∗(t, Yt) =

θ(t, Yt)

1− γ
+

ε
√

1− ρ2βσ∗Dyh(t, Yt)

(1− γ)h(t, Yt)
;

v∗t = v∗(t, Yt) = (h(t, Yt))
−q

∗ .

(4.7)

The optimal wealth process (X∗
t )0≤t≤T satisfies the following stochastic

equation

dX∗
t = a∗(t,X∗

t , Yt)dt+ (b∗(t,X∗
t , Yt))

′dWt , X∗
0 = x , (4.8)
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where

a∗(t, x, y) =
x|θ(t, y)|2
1− γ

+
xε
√

1− ρ2β

(1− γ)h(t, y)
(σ∗Dyh(t, y))

′θ(t, y)

+ xr(t, y)− x (h(t, y))−q
∗ ;

b∗(t, x, y) =
xθ(t, y)

1− γ
+

xε
√

1− ρ2β

(1− γ)h(t, y)
σ∗Dyh(t, y) .

Remark 4.1. Note that the optimal strategy (4.7) coincides with the
well-known Merton strategy in the case ρ = 1, i.e. when the process
(Yt)0≤t≤T independents on the financial market.

To calculate the optimal strategy in (4.7) we use the sequence (4.3),
i.e. we set

π∗
n(t, y) =

θ(t, y)

1− γ
+

ε
√

1− ρ2β

(1− γ)hn(t, y)
σ∗Dyhn(t, y)

and
v∗n(t, y) = (hn(t, y))

−q
∗ .

Theorem 4.1–Theorem 4.3 imply the following result

Theorem 4.4. For any n ≥ 1

sup
(t,y)∈K

(
|π∗(t, y)− π∗

n(t, y)|+ |v∗(t, y)− v∗n(t, y)|
)
≤ B∗

1 U
∗
n ,

where

B∗
1 =

ε
√

1− ρ2

1− γ
|σ∗|(1 + r∗) + q∗ .

Remark 4.2. One can check directly that for some ε > 0

U∗
n = O(n−εn) as n → ∞ .

This means that the convergence rate is more rapid than any geomet-
rical , i.e. it is super geometrical.
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5 Properties of the mapping L
Proposition 5.1. (X , ̺∗) is the completed metrical space.

Proof. Indeed, let (fn)n≥1 be a fundamental sequence from (X , ̺∗),
i.e.

lim
m,n→∞

̺∗(fn, fm) = 0 .

This means that it is fundamental in C1(K). Therefore, taking into
account that the metrics ̺∗ is equivalent to the usual metrics inC1(K),
we deduce that there exists a function f ∈ C1(K) such that

lim
n→∞

̺∗(fn, f) = 0 .

The definition of the metrics ̺∗ in (3.6) implies immediately that
f ∈ X . Hence Proposition 5.1.

Proposition 5.2. For any f ∈ X we have Lf ∈ X .

Proof. Obviously, that for any f ∈ X the mapping L(f) ≥ 1. More-
over, setting

f̃s = f(s, ηt,ys ) , (5.1)

we represent Lf (t, y) as

Lf (t, y) = EG(t, T, y) + 1

q∗

∫ T

t
E
(
f̃s

)1−q
∗ G(t, s, y)ds . (5.2)

Therefore, taking into account that f̃s ≥ 1 and q∗ ≥ 1 we get

Lf (t, y) ≤ eQ∗
(T−t) +

∫ T

t

1

q∗
eQ∗

(s−t)ds

≤
(

1

q∗Q∗

+ 1

)
eQ∗

T . (5.3)

Moreover, from (4.1) we obtain

∂

∂yi
Lf (t, y) = E

∂

∂yi
G(t, T, y) + 1

q∗

∫ T

t

∂

∂yi
Hf (t, s, y) ds ,

where
∂

∂yi
G(t, T, y) = G(t, T, y)Gi(t, y)
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with

Gi(t, y) =

∫ T

t

(
Q̃y(u)

)′
υi(u)du

and

υi(s) =
∂

∂yi
ηt,ys . (5.4)

Therefore by (5.3) and applying here Lemmas A.3–A.4 we get

∣∣Lf (t, y)
∣∣ +
∣∣DyLf (t, y)

∣∣ ≤ r∗ .

Now we have to show that the function Lf (t, y) is continuously dif-
ferentiable with respect to t for any f ∈ X . Indeed, to this end we
consider for any f from X the following partial derivatives equation

ut(t, y) +Q(t, y)u(t, y) + (α(t, y))′Dyu(t, y)

+
β2

2
trDy,yu(t, y) +

1

q∗
(f(t, y))1−q

∗ = 0 (5.5)

with the boundary condition u(T, y) = 1. Note that (see, for example,
Theorem 5.1, p. 320 in [12]) under the conditions A1)–A2) this equa-
tion has an unique solution which belongs to C1,2(K) for any f from
X . Moreover, the Ito formula implies u(t, y) = Lf (t, y). Therefore
the function Lf (t, y) ∈ C1,2(K), i.e. Lf ∈ X for any f ∈ X . Hence
Proposition 5.2.

Proposition 5.3. The mapping L is a contraction in the metric space
(X , ̺∗), i.e. for any f , g from X

̺∗(Lf ,Lg) ≤ λ̺∗(f, g) , (5.6)

where the parameter 0 < λ < 1 is given in (4.4).

Proof. First note that, for any f and g from X and for any y ∈ R
m

|Lf (t, y)− Lg(t, y)| ≤
1

q∗
E

∫ T

t
G(t, s, y)

∣∣∣∣
(
f̃s

)1−q
∗ − (g̃s)

1−q
∗

∣∣∣∣ ds

≤
∫ T

t

EG(t, s, y)
∣∣∣f̃s − g̃s

∣∣∣ds .
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We recall that f̃s = f(s, ηt,ys ) and g̃s = g(s, ηt,ys ). Taking into account

here that G(t, s, y) ≤ eQ∗
(s−t) we obtain

|Lf (t, y)−Lg(t, y)| ≤
∫ T

t

eQ∗
(s−t)E|f̃s − g̃s|ds .

Moreover, the definition (5.1) implies

E|f̃s − g̃s| ≤ eκ(T−s) ̺∗(f, g) .

Therefore,

∣∣∣e−κ(T−t)
(
Lf (t, y)− Lg(t, y)

)∣∣∣ ≤ 1

κ −Q∗

̺∗(f, g) . (5.7)

Moreover, for any 1 ≤ i ≤ d

∂

∂yi
Lf (t, y) =

∂

∂yi
EG(t, T, y)

+
1− q∗
q∗

∫ T

t
E (f̃s)

−q
∗

(
f̃y(s)

)′
υi(s)G(t, s, y)ds

+
1

q∗

∫ T

t
E (f̃s)

1−q
∗

∂

∂yi
G(t, s, y)ds ,

where
f̃y(s) = fy(s, η

t,y
s ) with fy(s, y) = Dy f(s, y) (5.8)

and υi(s) is defined in (5.4).
Therefore, for any f and g from X

∂Lf (t, y)

∂yi
−

∂Lg(t, y)

∂yi
=

1− q∗
q∗

∫ T

t
E (ω1(s))

′ υi(s)G(t, s, y)ds

+
1

q∗

∫ T

t
Eω2(s)

∂

∂yi
G(t, s, y)ds ,

where

ω1(s) =
f̃y(s)

(f̃s)
q
∗

−
g̃y(s)

(g̃s)
q
∗

and ω2(s) = (f̃s)
1−q

∗ − (g̃s)
1−q

∗ .

It is easy to check that

|ω1(s)| ≤ (1 + r∗q∗)e
κ(T−s) ̺∗(f, g)
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and
|ω2(s)| ≤ (q∗ − 1)eκ(T−s) ̺∗(f, g) .

From this we obtain
∣∣∣∣
∂Lf (t, y)

∂yi
−

∂Lg(t, y)

∂yi

∣∣∣∣ ≤ eκ(T−t) L∗

κ −Q∗

̺∗(f, g) ,

where L∗ is given in (3.7). Therefore,

sup
(t,y)∈K

e−κ(T−t)
∣∣DyLf (t, y)−DyLg(t, y)

∣∣ ≤ mL∗

κ −Q∗

̺∗(f, g) .

Taking into account the definition (3.7), we obtain the inequality (5.6).
Hence Proposition (5.3).

6 Proofs

6.1 Proof of Theorem 4.1

Indeed, Proposition 5.3 implies immediately that the equation (4.2)
has an unique solution h ∈ X which is the limit of the sequence (4.3).
Moreover, for each n ≥ 1

̺∗(h, hn) ≤
λn

1− λ
̺∗(h1, h0) .

Thanks to Proposition 5.2 all the functions hn belong to X , i.e. by
the definition of the space X in (3.5)

̺∗(h1, h0) ≤ sup
(t,y)∈K

(
|h1(t, y)− 1|+ |Dyh1(t, y)|

)
≤ 1 + r∗ .

Taking into account that

sup
(t,y)∈K

(
|∆n(t, y)|+

∣∣Dy∆n(t, y)
∣∣) ≤ eκT̺∗(h, hn) .

we obtain the inequality (4.4). Hence Theorem 4.1.
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6.2 Proof of Theorem 4.3

We apply the Verification Theorem A.2 to Problem 2.7 for the stochas-
tic control differential equation (2.4). For fixed ϑ = (π, v), where
π ∈ R

d and v ∈ [0,∞), the coefficients in model (A.1) are defined as

a(t, ς, ϑ) =
(
x (r(t, y) + π′θ(t, y)− v), F (t, y)

)′

b(t, ς, ϑ) =

(
xπ′ ; 0′m

β
√

1− ρ2σ∗ ; βρ Im

)
,

where ς = (x, y)′ ∈ R
N , N = m+1, k = N+d, 0m = (0, . . . , 0)′ ∈ R

m,
Im is the identity matrix of the order m. Note that

bb′(t, ς, ϑ) =

(
x2 |π|2 ; xβ

√
1− ρ2π′σ′

∗

xβ
√

1− ρ2σ∗ π ; β2Im

)
.

Therefore, according to (A.4),

H0(t, ς,q,M, ϑ) = x r(t, y)q1 + (F (t, y))
′

q̃+ (xγvγ − xvq1)

+
1

2
x2µ|π|2 + xπ′

(
θtq1 + β

√
1− ρ2σ′

∗µ̃
)
+

β2

2
trM0 ,

where q = (q1, q̃)
′ and

M =

(
µ ; µ̃′

µ̃ ; M0

)
,

q̃, µ̃ ∈ R
m and M0 is a symmetric matrix of the order m.

To check the conditions H2)−H4) we need to calculate the Hamil-
ton function (A.4) for Problem 2.7 which is defined as

H(t, ς,q,M) = sup
ϑ∈Rd×[0,∞)

H0(t, ς,q,M, ϑ) = H0(t, ς,q,M, ϑ0) .

Therefore, for µ < 0 we obtain

H(t, ς, z) = x r(t, y)q1 + (F (t, y))
′

q̃+
1

γ1

(
γ

q1

)γ1−1

+
|θtq1 + β

√
1− ρ2σ′

∗µ̃|2
2|µ| +

β2

2
trM0 ,
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where γ1 = (1−γ)−1, ϑ0 = ϑ0(t, ς,q,M) = (π∗(t, ς,q,M), v∗(t, ς,q,M))
with 




π∗ = π∗(t, ς,q,M) =
θtq1 + β

√
1− ρ2σ′

∗µ̃

x|µ| ;

v∗ = v∗(t, ς,q,M) =
1

x

(
γ

q1

)γ1

.

(6.1)

Now we need to write the HJB equation (A.5), i.e.
{

zt(t, ς) +H(t, ς,Dςz(t, ς),Dς,ςz(t, ς)) = 0 ,

z(T, x, y) = xγ ,

where Dςz(t, ς) =
(
zx(t, ς) , Dyz(t, ς)

)′
and

Dς,ςz(t, ς) =




∂2z(t, ς)

∂2x
; (Dx,yz(t, ς))

′

Dx,yz(t, ς) ; Dy,yz(t, ς)


 ,

with

Dx,yz(t, ς) =

(
∂2z(t, ς)

∂x∂y1
, . . . ,

∂2z(t, ς)

∂x∂ym

)′

and

Dy,yz(t, ς) =

(
∂2z(t, ς)

∂yj∂yi

)

1≤i,j≤m

.

Therefore in our case the HJB equation has the following form




zt(t, ς) +xr(t, y)zx(t, ς) + (F (t, y))′Dyz(t, ς)

+
|θ(t, y)zx(t, ς) + β

√
1− ρ2 σ′

∗Dx,yz(t, ς)|2
2|zxx(t, ς)|

+
1

γ1

(
γ

zx(t, ς)

)γ1−1

+
β2

2
trDy,yz(t, ς) = 0

z(T, ς) = xγ .

(6.2)

Using the solution of this equation we represent the optimal functions
(6.1) as




π∗(t, ς) =
θ(t, y) zx(t, ς) + β

√
1− ρ2σ′

∗ Dx,yz(t, ς)

x|zxx(t, ς)|
;

v∗(t, ς, ) =
1

x

(
γ

zx(t, ς)

)γ1

.

(6.3)
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To find the solution of the HJB equation we represent z(t, ς) as

z(t, ς) = xγ Υ(t, y) .

By substituting this representation in (6.2) we obtain





Υt(t, y) +εQ(t, y)Υ(t, y) + (α(t, y))′Dy Υ(t, y)

+(γ1 − 1)
(1 − ρ2) |DyΥ(t, y)|2

2Υ(t, y)

+
1

γ1

(
1

Υ(t, y)

)γ1−1

+
β2

2
trDy,yΥ(t, y) = 0

Υ(T, y) = 1 ,

where the functions α(t, y), Q(t, y) and the parameter ε are given in
(3.1), (3.1) and (4.6) respectively. Now to remove the nonlinear term
we use the power transformation introduced in [14], i.e. we set

Υ(t, y) = hε(t, y) . (6.4)

This implies





ht(t, y) +Q(t, y)h(t, y) + (α(t, y))′Dy h(t, y)

+
β2

2
trDy,yh(t, y) +

1

q∗

(
1

h(t, y)

)q
∗
−1

= 0 ;

h(T, y) = 1 .

(6.5)

Through the Feynman - Kac formula we can check directly that the
solution of this equation is given by the solution of the equation (4.2).
Therefore, the function

z(t, ς) = xγhε(t, y)

is the solution of the HJB equation (6.2). Using this function we
calculate the optimal control variables in (6.3), i.e. we have





π∗(t, ς) =
θ(t, y)

1− γ
+ ε
√

1− ρ2β
σ∗Dyh(t, y)

(1− γ)h(t, y)
;

v∗(t, ς) = (h(t, y))−q
∗ .

(6.6)
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Hence H3).

Now we check condition H4). First note that the equation (A.6) is
identical to the equation (2.4). By the assumptions on the market
parameters, all the coefficients of (2.4) are continuous and bounded
so the usual integrability and Lepshitz conditions are satisfied, this
implies H4). To check the final condition H5) we recall again that

z(t, ς) = xγ(h(t, y))ε

where h(t, y) is some positive function bounded by r∗. Thus

Et,ς z
m(τ,X∗

τ , Yτ ) ≤ (r∗)mε Et,ς (X
∗
τ )

γm .

Therefore, taking m = 1/γ > 1 one gets

Et,ς z
m(τ,X∗

τ , Yτ ) ≤ (r∗)ε/γ Et,x(X
∗
τ ) < ∞

which implies H5). Therefore, thanks to Theorem A.2 we get Theo-
rem 4.3.

7 Numerical example

In this section, through Scilab we calculate the function h(t, y) using
the sequence (4.3) with n = 14 iterations.

The curve is obtained in the following stochastic volatility market
settings: the market consists on one riskless asset (the bound) and a
risky one (that means d = 1). Moreover, we set m = 1, T = 1,

r(t, y) = 0.01(1 + 0.5 sin(yt)) , µ(t, y) = 0.02(1 + 0.5 sin(yt))

and σ(t, y) = 0.5 + sin2(yt). The parameters of the economic factor
are F (t, y) = 0.1 sin(yt), β = 1 and ρ = 0.5. The utility function
parameter is γ = 0, 75.
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8 Appendix

A.1 Verification theorem

In this section we state the verification theorem from [11]. Consider
on the interval [0, T ] the stochastic control process given by the N -
dimensional Itô process

{
dςνt = a(t, ςνt , νt) dt + b(t, ςνt , νt) dWt , t ≥ 0 ,

ςν0 = x ∈ R
N ,

(A.1)

where (W )0≤t≤T is a standard k - dimensional Brownian motion. We
assume that the control process ν takes values in some set Θ. More-
over, we assume that the coefficients a and b satisfy the following
conditions

• for all t ∈ [0, T ] the functions a(t, ·, ·) and b(t, ·, ·) are continuous
on R

N ×Θ;
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• for every deterministic vector υ ∈ Θ the stochastic differential
equation

dςυt = a(t, ςυt , υ) dt + b(t, ςυt , υ) dWt

has an unique strong solution.

Now we introduce admissible control processes for the equation (A.1).
We set Ft = σ{Wu , 0 ≤ u ≤ t} for any 0 < t ≤ T .

Definition A.1. A stochastic control process ν = (νt)0≤t≤T is called
admissible on [0, T ] with respect to equation (A.1) if it is (Ft)0≤t≤T -
progressively measurable with values in Θ, and equation (A.1) has a
unique strong a.s. continuous solution (ςνt )0≤t≤T such that

∫ T

0

(
|a(t, ςνt , νt)|+ |b(t, ςνt , νt)|2

)
dt < ∞ a.s.. (A.2)

We denote by V the set of all admissible control processes with respect
to the equation (A.1).

Moreover, let f : [0, T ] ×R
m× Θ → [0,∞) and h : Rm → [0,∞)

be continuous utility functions. We define the cost function by

J(t, x, ν) = Et,x

(∫ T

t
f(s, ςνs , νs) ds+ h(ςνT )

)
, 0 ≤ t ≤ T ,

where Et,x is the expectation operator conditional on ςνt = x. Our
goal is to solve the optimization problem

J∗(t, x) := sup
ν∈V

J(t, x, ν) . (A.3)

To this end we introduce the Hamilton function, i.e. for any 0 ≤ t ≤ T ,
ς,q ∈ R

N and symmetric N ×N matrix M we set

H(t, ς,q,M) := sup
ϑ∈Θ

H0(t, ς,q,M, ϑ) , (A.4)

where

H0(t, ς,q,M, ϑ) := a′(t, ς, ϑ)q +
1

2
tr
[
bb′(t, ς, ϑ)M

]
+ f(t, ς, ϑ) .

In order to find the solution to (A.3) we investigate the Hamilton-
Jacobi-Bellman equation




zt(t, ς) + H(t, ς,Dςz(t, ς),Dς,ςz(t, ς)) = 0 , t ∈ [0, T ] ,

z(T, ς) = h(ς) , ς ∈ R
N .

(A.5)
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Here zt denotes the partial derivative of z with respect to t,Dςz(t, x)
the gradient vector with respect to ς in R

N and Dς,ςz(t, ς) denotes the
symmetric hessian matrix, that is the matrix of the second order par-
tial derivatives with respect to ς.

We assume that the following conditions hold:

H1) The functions f and h are non negative.

H2) There exists [0, T ]×R
N → (0,∞) function z(t, ς from C1,2([0, T ]×

R
N ) which satisfies the HJB equation (A.5).

H3) There exists a measurable function ϑ∗ : [0, T ] × R
N → Θ such

that for all 0 ≤ t ≤ T and ς ∈ R
N

H(t, ς,Dςz(t, ς),Dς,ςz(t, ς)) = H0(t, ς,Dςz(t, ς),Dς,ςz(t, ς), ϑ
∗(t, ς)) .

H4)There exists a unique strong solution to the Itô equation

dς∗t = a∗(t, ς∗t ) dt+ b∗(t, ς∗t ) dWt , t ≥ 0 , ς∗0 = x , (A.6)

where a∗(t, ·) = a(t, ·, ϑ∗(t, ·)) and b∗(t, ·) = b(t, ·, ϑ∗(t, ·)). Moreover,
the optimal control process ν∗t = ϑ∗(t, ς∗t ) for 0 ≤ t ≤ T belongs to V.

H5) There exists some δ > 1 such that for all 0 ≤ t ≤ T and ς ∈ R
N

sup
τ∈Mt

Et,ς (z(τ, ς
∗
τ ))

δ < ∞ .

where Mt is the set of all stopping times in [t, T ].

Theorem A.2. Assume that V 6= ∅ and H1) − H5) hold. Then for
all t ∈ [0, T ] and for all x ∈ Γ the solution to the Hamilton-Jacobi-
Bellman equation (A.5) coincides with the optimal value of the cost
function, i.e.

z(t, x) = J∗(t, x) = J∗(t, x, ν∗) ,

where the optimal strategy ν∗ is defined in H3) and H4).
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A.2 Properties of the mapping H
In this appendix, we prove some technical lemmas used in the previous
sections :

Lemma A.3. For any t ≤ s ≤ T and 1 ≤ i ≤ m

sup
y∈Rm

sup
f∈X

∣∣∣∣
∂

∂yi
Hf (t, s, y)

∣∣∣∣ ≤ H∗

(
1√
s− t

+ 1

)
, (A.7)

where the parameter H∗ is defined in (4.2).

Proof. By making use of the Girsanov transformation theorem (see
[13] page 254) we can represent the mapping Hf as

Hf (t, s, y) = E f1(s, ξs) e
Φ(t,s,ξ) ,

where f1(s, y) = (f(s, y))1−q
∗ , ξs = y +Us −Ut,

Φ(t, s, ξ) =

∫ s

t

Ψ(v, ξv) dv +

∫ s

t

(α(v, ξv))
′ dUv .

Now we denote by ςv the ith component of the process ξv, i.e.

ςv = [ξv]i = yi + [Us −Ut]i ,

where [x]i is the ith component of the vector x ∈ R
m. Taking this

into account we rewrite Hf as

Hf (t, s, y) =
1√

2π(s − t)

∫

R

Ĥf (s, y, z) e
−

(z−yi)
2

2(s−t) dz , (A.8)

where
Ĥf (s, y, z) = E

(
f1(s, ξs) e

Φ(t,s,ξ)|ςs = z
)
.

To calculate the condition expectation in (A.7) we notice that (see
[10], p. 359) for any s < v1 < . . . < vk < t and for any Borel sets
Γ1, . . . ,Γk

P
(
ςv1 ∈ Γ1, . . . , ςvk ∈ Γk|ςs = z

)
= P

(
Bv1

∈ Γ1, . . . , Bvk
∈ Γk

)
,

where (Bv)s≤v≤t is the Brownian Bridge on the interval [t, s] which is
defined as

Bv = yi + (z − yi)
v − t

s− t
+Uv −Ut −

v − t

s− t
(Us −Ut) .
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From here we immediately obtain that

Ĥf (s, y, z) = E
(
f1(s, ξ̂

i
s) e

Φ(t,s,ξ̂i)
)
, (A.9)

where
ξ̂iv =

(
[ξv]1, . . . , [ξv ]i−1, Bv , [ξv]i+1 . . . , [ξv]m

)′
.

Now we need to show that for any κ > 0

E eκΦ(t,s,ξ̂i) ≤
√
2 eκ(α∗

|z−yi|+γ
∗
(κ)) , (A.10)

where α∗ and γ∗(κ) are introduced in (4.2). To estimate this note that
for any κ > 0 and for j 6= i

E

(
eκ

∫ s

t
[α(v,ξ̂i

v
)]j d[Uv]j−

κ2

2

∫ s

t
([α(v,ξ̂i

v
)]j)

2 dv|Uj

)
= 1 ,

where
Uj = σ{[Uv ]l , 1 ≤ v ≤ T , 1 ≤ l ≤ m, l 6= j} .

Therefore,

E
(
eκ

∫ s

t
[α(v,ξ̂i

v
)]j d[Uv]j |Uj

)
≤ eκ

2α2
∗
T/2 .

Moreover, notice that
∫ s

t

[α(v, ξ̂iv)]i dBv =
z − yi − ςs + ςt

s− t

∫ s

t

[α(v, ξ̂iv)]idv

+

∫ s

t

[α(v, ξ̂iv)]i dςv .

Therefore,
∫ s

t

[α(v, ξ̂iv)]i dBv ≤ (|z − yi|+ |ςs − ςt|)α∗ +

∫ s

t

[α(v, ξ̂iv)]i dςv .

This implies that

E eκ
∫ s

t
[α(v,ξ̂i

v
)]idBv ≤ eκα∗

(|z−yi|)E eκα∗
|ςs−ςt|+κ

∫ s

t
[α(v,ξ̂i

v
)]idςv

≤ eκα∗
|z−yi|

√
E e2κα∗

|ςs−ςt|

√
E e2κ

∫ s

t
[α(v,ξ̂i

v
)]idςv .

It should be noted here that for any κ > 0

E eκ|ςs−ςt| ≤ 2eTκ2/2 .
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Taking this into account we obtain that for any κ > 0

E eκ
∫ s

t
[α(v,ξ̂i

v
)]i dBv ≤

√
2 eα∗

κ|z−yi|+2κ2α2
∗
T .

Thus we come to the upper bound (A.10). Note that this bound
implies immediately

sup
f∈X

∣∣∣Ĥf (s, y, z)
∣∣∣ ≤ eα∗

|z−yi|+γ
∗
(1) . (A.11)

Moreover, we calculate directly

∂

∂yi
Φ(t, s, ξ̂i) =

∫ s

t

∂

∂yi

(
Ψ(v, ξ̂iv)−

[α(v, ξ̂iv ]i
s− t

)
dv

+

∫ s

t

(αi(v, ξv))
′ dUv ,

where αi(v, y) = ∂α(v, y)/∂yi. From this it follows that

E

(
∂

∂yi
Φ(t, s, ξ̂i)

)2

≤ 4(T + 1)2̟2
∗ , (A.12)

where ̟∗ is given in (4.2). From (A.9) it follows that

∂

∂yi
Ĥf (s, y, z) = E

(
f1(s, ξ̂

i
s) e

Φ(t,s,ξ̂i) ∂

∂yi
F (t, s, ξ̂i)

)
.

Therefore, (A.10) and (A.12) we imply

sup
f∈X

∣∣∣∣
∂

∂yi
Ĥf (s, y, z)

∣∣∣∣ ≤
√

E e2Φ(t,s,ξ̂i)

√

E

(
∂

∂yi
Φ(t, s, ξ̂i)

)2

≤ 2
√
2(T + 1)̟∗e

α
∗
|z−yi|+γ

∗
(2) . (A.13)

Now we calculate

∂Hf (t, s, y)

∂yi
=

1√
2π(s − t)

∫

R

∂Ĥf (t, s, y)

∂yi
e
−

(z−yi)
2

2(s−t) dz

+
1√

2π(s − t)

∫

R

(
z − yi
s− t

)
Ĥf (s, y, z) e

−
(z−yi)

2

2(s−t) dz .

By applying here the bounds (A.11) and (A.13) we obtain the inequal-
ity (A.7). Hence Lemma A.3.
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A.3 Properties of the process (4.3)

In this section we study the properties of the process (4.3).

Lemma A.4. Under the conditions A1)–A2) the process (ηt,ys )t≤s≤T

is almost sure continuously differentiable with respect to y ∈ R
m for

any t ≤ s ≤ T , i.e. for any 1 ≤ i ≤ m there exists almost sure the
derivative (5.4) such that

sup
0≤s≤T

sup
y∈Rm

max
1≤i≤m

|υi(s)| ≤ eα
∗

1
T a.s..

Proof. First we introduce the matrix of the first partial derivatives
of the function α(v, y, i.e.

αy(t, y) =

(
∂[α(t, y)]k

∂yl
, 1 ≤ k, i ≤ m

)
.

One can check directly that the processes υi(s) and υi,j(s) satisfy the
following differential equations

υ̇i(s) = As υi(s) , υi(t) = ei ,

where As = αy(s, η
t,y
s ), ei = (0, . . . , 0, 1, 0, , . . . , 0)′ (only ith com-

ponent is equal to 1). Now by applying here the Gronwall-Bellman
inequality we obtain the upper bounds for the derivatives υi(s). Hence
Lemma A.4.

Lemma A.5. Under the conditions A1)–A2) there exist the following
partial derivatives

∂G(t, s, y)
∂yi

= G(t, s, y)Gi(t, s, y) (A.14)

where

Gi(t, s, y) =

∫ s

t

(
Q̃y(u)

)′
υi(u)du .

This Lemma follows immediately from lemma A.4.

Lemma A.6. Under the conditions A1)–A2) there exist the following
partial derivatives

max
1≤i≤m

sup
y∈Rm

∣∣∣∣
∂G(t, s, y)

∂yi

∣∣∣∣ ≤ G∗
1 e

Q
∗
(s−t) , (A.15)

where G∗
1 = mTeα

∗

1
TQ∗

1.

Proof. The representation (A.14) implies directly the upper bound
(A.15). Hence Lemma A.6.
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[11] Klüpelberg, C. and Pergamenchtchikov, S.M. (2009) Optimal
consumption and investment with bounded downside risk for
power utility functions. Optimality and Risk : Modern Trends in
Mathematical Finance, 133-150, Springer-Heidelberg-Dordrecht-
London-New York.
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