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Abstract  
 

A condensed fully coupled beam element for thin-walled laminated composite beams 
having open or closed cross sections is presented. An analytical technique is used to derive 
the cross-sectional stiffness of the beam in a systematic manner considering all the 
deformation effects and their mutual couplings. An efficient finite element approximation is 
adopted for the transverse shear deformation, which has helped to conveniently implement 
the C1 continuous formulation required by the torsional deformation due to incorporation of 
warping deformation. The performance of the element is tested through the solution of 
numerical examples involving open section I and channel (C) beams and closed section box 
beams under different loading conditions, and the obtained results are compared with model 
as well as experimental results available in literature.  
 
Keywords: Thin-walled laminated beams; Shear deformation; Warping deformations; Cross-
sectional rigidities; Finite element approximation; Bending-torsion-extension-shear coupling  
 
 
1. Introduction 
 

The problem of modelling thin-walled laminated composite beam/beam like slender 
structures having open or closed cross section as one dimensional condensed beam elements 
has drawn a significant amount of attention of researchers over the last decades, and a 
number of investigations have been carried out to study the different aspects of this problem. 
A few representative studies relevant to the present context are given in [1-10]. One of the 
initial applications of composite beam theory was found in the analysis of helicopter rotor 
blades. It has subsequently been applied to the analysis of pultruded composite profiles and 
other applications, including the analysis of long and slender wind turbine blades made of 
composite materials.  

The studies carried out so far may broadly be divided into two groups, based on the 
approach adopted for the evaluation of the constitutive matrix of the beam, defined as the 
cross-section stiffness coefficients. The first and most common approach is based on an 
analytical technique, while the other approach requires a two-dimensional finite element 
                                                 
I Author to whom correspondence should be addressed, Tel: +45 9940 9319, Fax: +45 9815 1675,  
Email: ott@ime.aau.dk 



 

 

 

ACCEPTED MANUSCRIPT 

 

analysis to obtain the cross-section stiffness matrix. Hodges and co-workers [3] pioneered the 
second approach, which is referred to as the so-called variational asymptotic beam section 
analysis (VABS). It is based on a method known as the variational asymptotic method 
(VAM) [11], where the three dimensional elasticity problem is systematically divided into a 
two dimensional cross-sectional problem, and a one dimensional beam problem (length 
direction). VABS has the advantage that beams having solid or thick-walled cross sections 
may be analyzed, where the three dimensional stress state can be extracted in the post 
processing stage. Opposed to this, the fully analytical approach may be preferred specifically 
for the analysis of beams with thin walled cross sections in order to avoid the additional two-
dimensional finite element analysis required in VABS.  

In this context it should be mentioned that Hodges and co-workers (e.g., Volovoi et al. 
[12], Volovoi and Hodges [13], Volovoi et al. [14], Volovoi and Hodges [15], Ye et al. [16]) 
further applied the concept introduced by the variational asymptotic method to two 
dimensional cross-sectional problem and derived closed-form expressions for the cross-
sectional stiffness coefficients of thin-walled beams. As the resulting theory [12-16] evolved 
through rigorous mathematical treatments, it involves some additional terms including those 
for in-plane warping of the section, which is found to be important in some specific 
situations. Thus, the generality of the modelling has been enhanced in the asymptotic 
approach, but at the same time the mathematical formulation is very complex. However, the 
approach being a fully analytical one produced final results in the form of relatively simple 
closed-form expressions. The present approach proposes a fully coupled beam model which 
is significantly less mathematically complex, and which includes all effects except in-plane 
cross sectional warping. 

In the present investigation, an analytical (closed-form) approach is adopted for the 
derivation of the cross-sectional stiffness matrix considering different effects and their 
coupling to yield a general formulation, which includes a torsional warping moment in 
addition to the classical (and well known) de St. Venant torsion contribution, an axial force, 
bi-axial bending moments and bi-axial transverse shear forces. In total this yields a 7x7 cross-
sectional stiffness matrix. All the elements of this matrix are explicitly derived for open I and 
channel (or C) sections, and closed box section profiles. For the constitutive equation of any 
beam wall, defined locally, provision is kept to enable the specification of either plane stress 
conditions (zero normal stress along the wall profile, i.e. in the circumferential direction) or 
plane strain conditions (zero normal strain along the wall profile, i.e. in the circumferential 
direction).   

For the finite element approximation of the beam element, the torsional deformation 
requires C1 continuity of the twisting rotation due to incorporation of the out of plane 
warping deformation. This requirement is satisfied with the use of a Hermetian interpolation 
function considering the twisting rotation and its derivative with respect to the length 
coordinate as the nodal unknowns. The association of the derivative of the twisting rotation 
helps to impose warping restraints or warping free conditions by constraining or releasing 
this nodal unknown. At the same time the bending deformation requires C0 continuity of the 
transverse displacements due to the incorporation of the transverse shear deformation of the 
beam walls. This requires a reduced integration technique for the evaluation of the stiffness 
matrix in order to avoid shear locking. As the bending deformation is not uncoupled from the 
other modes of deformation, including torsion, it is difficult to implement a C0 formulation 
with a C1 formulation having different orders of integration schemes. Lee [8] tried to solve 
the problem by an amended representation of the torsional deformation, so as to model it with 
a C0 formulation like for bending deformation, but this involved a non-physical parameter in 
the formulation. Moreover, the C0 formulation with reduced integration technique is 
susceptible to display inherent numerical disturbances like the occurrence of spurious modes.  
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Considering these aspects, the finite element implementation of the bending deformation 
in the present formulation is carried out with a different approach based on a concept 
proposed by the first author [17]. It does not require a reduced integration technique, and this 
effectively eliminates the problem described above. Based on this methodology a three node 
beam element, as shown in Fig. 1, has been developed, where the nodes at the two ends 
contain seven degrees of freedom (three translations, three rotations and the derivative of the 
twisting rotation), while the internal node contains five degrees of freedom (three translations 
and two bending rotations).  

 

Fig. 1.  Three node beam element  
 
A computer program has been written in FORTRAN for the implementation of the 

proposed fully coupled composite beam element, which has been used to solve numerical 
examples of composite beams having open I and channel (C), and closed box sections. The 
results obtained in the form of deflections, angles of twist, and bending slopes are compared 
with analytical, experimental and/or other finite element analysis results available in 
literature. The results show a very good performance of the proposed element in terms of 
convergence and solution accuracy. The developed element is also utilized to derive some 
new results, which are presented for future references.  

 
 

2. Formulation 
 

Figure 2 shows a portion of the composite beam shell wall, with its local coordinate 
system x-s-n, the local displacement components, the global coordinate system x-y-z and 
finally the global beam displacement components.  

In Fig. 2, O is the centroid, and P is the shear centre/pole of the beam section. The 
displacement components at the mid-plane of the shell wall in the local coordinate system (x-
s-n) may be expressed in terms of the global displacement components of the beam [1] as  
 

xzy zyUu θϕθθ ′+++=  (1) 
 

xrWVv θαα −+= sincos  (2) 
 

xqWVw θαα ++−= cossin  (3) 
 
where ϕ  is the warping function, =yθ  yV Ψ+′−  (V ′  is the derivative of V with respect to x, 
and yΨ  is the rotation of beam section about z for the transverse shear deformation) is the 
bending rotation of the beam section with respect to z, and zz W Ψ+′−=θ  is the bending 
rotation of the beam section with respect to y.  
For beams with closed cross sections, the effect of the warping function is not as significant 
as for open cross section beams, as has been nicely demonstrated by Ye et al. [16]. However, 
cross section warping has been included for both both closed and open cross section profiles 
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in order develop a general formulation for both type of beam profiles. Again, Volovoi and 
Hodges [15] have shown that the effect of in-plane warping is significant in some specific 
cases of closed section beams. However, this effect has not been incorporated in the present 
approach as mentioned earlier.   
Considering the effect of shell bending and transverse shear deformation, the corresponding 
displacement components at a point away from the shell mid-plane may be expressed as  
 

⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂

−+= xnx
wnuu ψ  (4) 
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−+= sns
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ww =  (6) 
 

where 
x
w
∂
∂  and 

s
w
∂
∂  are the bending rotations of the shell wall about x and s, respectively. 

Similarly, xnψ  and snψ  are the shear rotations of the shell wall sections about s and x, 
respectively, for the transverse shear deformation. It is assumed that snψ  = 0, while xnψ  may 
be expressed in terms of the corresponding global beam parameter as  
 

ααψ cossin zyxn Ψ+Ψ−=  (7) 
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Fig. 2.  Cross-section of a portion of a shell wall of the thin-walled composite beam with 
local and global coordinate systems and displacement components 

 
 

With the above equations, the displacement components at any point within the shell wall 
may be expressed in terms of the global beam displacement components as 

 
( ) ( ) ( ) xzy nqnznyUu θϕθαθα ′−+++−+= cossin  (8) 

 

( ) xnrWVv θαα +−+= sincos  (9) 
 

xqWVw θαα ++−= cossin  (10) 
 

The strain components at the corresponding point in the local axis system (x-s-n) may be 
expressed as  
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Assuming the normal strain component sε  to be zero (plane strain condition), or the 

normal stress component sσ  to be zero (plane stress condition), the reduced strain vector may 
be expressed in terms of the global displacement parameters with the help of the above Eqs. 
(7-10) as    
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The above equation can further be rearranged in matrix form as 
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Considering the transverse shear deformation of the laminated shell wall [18], the stress 

strain relationship at any point within a lamina of the laminated shell wall in the local 
coordinate system parallel to x-s-n may be expressed as 
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Assuming sε = 0 or sσ = 0 along with nsψ = 0, the above equation reduces to   
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where 1111

~ QQ = , 1616
~ QQ = , 6666

~ QQ =  and 5555
~ QQ =  for the plane strain ( sε = 0) condition; 

and 2212121111 /~ QQQQQ −= , /~
26121616 QQQQ −=  22Q , 2216166666 /~ QQQQQ −=  and 5555

~ QQ =  
for the plane stress ( sσ = 0) condition.    

Using Eqs. (13) and (15), the strain energy of the system can be written as  
 

{ } { } { } [ ]{ }∫∫ == dxFdvU TT εεσε
2
1

2
1~  (16) 

where [ ] [ ] [ ][ ] [ ] [ ][ ]( ) [ ]∫∫ ∫∫ ∫ === dsCdsdnHQHdsdnHQHF TT ~~  

 
All the elements of the cross-sectional stiffness matrix [F] are explicitly derived for open 

I and channel (C) sections as well as for closed box section profiles. The explicit expressions 
for the different elements of the matrix [F] are presented in Appendix B, C and D for I 
section, channel section (C) and box section, respectively. The matrix [C] is common for all 
the considered cross-sections, and its elements are presented in Appendix A. For this purpose 
the warping function ϕ  used in the above equations are taken as  
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δδϕ /2 scArds −= ∫  (17) 

 

where ∫=
66

~Q
ds

sδ , ∫=
66

~Q
dsδ  and cA  is the cross-sectional area enclosed by the mid-plane 

contour in the case of beams having closed section profiles. For an open section profile, the 
warping function may be simply obtained by dropping the second term associated with 
secondary warping, thus giving as ∫= rdsϕ . 

 For the one dimensional finite element implementation, a quadratic approximation has 
been adopted for the axial deformation, which follows a Lagrangian type formulation. The 
torsional deformation is based on a Hermetian formulation as mentioned earlier, where a 
cubic approximation has been adopted. The approximation of the bending deformation 
coupled with transverse shear deformation is based on the concept proposed by Sheikh [17]. 
Based on this the field variables are approximated as follows 

 
2

321 xaxaaU ++=  (18) 
3

7
2

654 xaxaxaaV +++=  (19) 
3

11
2

1098 xaxaxaaW +++=  (20) 

xaay 1312 +=Ψ  (21) 

xaaz 1514 +=Ψ  (22) 
3

19
2

181716 xaxaxaax +++=θ  (23) 
 

It should be noted that yΨ  and zΨ  are adopted as the field variables instead of yθ  and 

zθ , which are usually used in a typical C0 formulation. However, the corresponding nodal 
unknowns are interestingly yθ  and zθ , and these are not simply the field variables yΨ and 

zΨ . Now, with the help of Eqs. (19-22), the bending rotations yθ  and zθ  may be expressed 
as   

 
2

7651312 32 xaxaaxaay −−−+=θ  (24) 

2
111091514 32 xaxaaxaaz −−−+=θ  (25) 

 
The unknowns ( 19321 ,,, aaaa " ) in the above Eqs. (18-23) are expressed in terms of the 

nodal displacement vector { }δ  after substitution of U (18), V (19), W (20), yθ  (24) and zθ  
(25) at all the three nodes of the beam element (see Fig. 1); and xθ  (23) and its derivative xθ′  
at the two external nodes as 

 
{ } [ ]{ }aR=δ  or { } [ ] { }δ1−= Ra  (26) 

 
where{ } [ ]Taaaaaa 1918321 "= , { } [ 1111111 xzyxWVU θθθθδ ′=  
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]Txzyxzy WVUWVU 333333322222 θθθθθθ ′ , and the matrix [R] having an 
order of 19x19 contains the element nodal coordinates.  

The generalized strain vector { }ε  in Eq. (13) may be expressed in terms of { }a  using Eqs. 
(18-23) as  
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where the matrix [S] having an order of 7x19 is a function of x. The strain vector { }ε  can be 
finally expressed in terms of the nodal displacement vector { }δ  using Eq. (26) as 

 
{ } [ ][ ] { } [ ]{ }δδε BRS == −1  (28) 

 
With the above equation, the strain energy (16) of the system may be expressed as  

 
{ } [ ] [ ][ ] { } { } [ ]{ }δδδδ KdxBFBU TTT

2
1

2
1~ == ∫  (29) 

 
where [K] is the element stiffness matrix. Using Eq. (20) and Eq. (26), the element load 
vector due to a distributed transverse load of intensity q acting in the direction of z may be 
expressed as  

 
{ } [ ] [ ]∫−= dxSqRP T

q
T  (30) 

 
where the row matrix [ ]qS  having an order of 19 is function of x. The integrations involved in 
the evaluation of the element stiffness matrix [K] and the load vector {P} are carried out 
numerically following the Gauss quadrature technique. 
 
 
3. Results and discussions 
 

In the following a number of numerical examples involving composite beams with I, 
channel (C) or box cross sections are analysed using the proposed element, and the results 
obtained are compared with analytical, experimental and/or numerical results available in 
literature for most of the cases. The analyses are usually based on plane stress conditions, 
unless specified otherwise. In all examples the beam walls are assumed to be constituted by 
identical layers of the same thickness, but the layers may have different orientations. The 
geometry of the beam sections are defined in terms of their centre line dimensions.  
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3.1. Simply supported I beam subjected to uniformly distributed transverse load  

A 2.5m long open section I beam simply supported at its two ends, and subjected to a 
uniformly distributed transverse load of 1kN/m along the web of the beam, is analysed using 
the proposed element. The beam has a depth of 50mm, a flange width of 50mm and same 
thickness (2.08mm) for the flanges and the web. The study is made with different 
symmetrical stacking sequences, where the flanges and the web are having identical lay-ups 
for all cases. The material properties of the layers are: E1 = 53.78GPa, E2 = 17.93GPa, G12 = 
8.96GPa, G13 = 8.96GPa, G23 = 3.45GPa, ν12 = 0.25. The analysis is carried out assuming 
both plane stress and plane strain conditions. The values of deflection at the centre of the 
beam and the bending slope at its supports obtained in the present analysis are presented in 
Table 1 and Table 2, respectively. The results for the deflections are compared with those of 
Lee [8] and Lee and Lee [19] in Table 1. Lee [8] considered the effect of transverse shear 
deformation, whereas the study of Lee and Lee [19] is based on classical lamination theory. 
In both the studies [8, 19], one dimensional finite element analysis has been applied after 
obtaining the cross-sectional stiffness matrix analytically. For the validation of the results in 
[8, 19], the beam structure was analysed using ABAQUS [20], where the S9R5 shell element 
was used to model the composite beam. The results produced by ABAQUS [20] are also 
included in Table 1. The table shows an excellent agreement between the predictions of the 
present model and the results of the other models mentioned, especially the results of Lee [8]. 
Moreover, the present results based on plane stress conditions are found to be closer to the 
results produced by ABAQUS [20] than the results in [8], [19]. It is further observed that in 
all cases convergence of the results was achieved using only two elements with the approach 
proposed herein.     

 
Table 1   
Deflection w (cm) at the centre of the simply supported I beam   

Stacking sequence [0/0]4S [15/-
15]4S 

[30/-
30]4S 

[45/-
45]4S 

[60/-
60]4S 

[75/-
75]4S 

[0/ 
90]4s 

Present ( sσ = 0) - 2† 6.264 6.929 9.320 13.45 17.00 18.46 9.387 
Present ( sσ = 0) - 4† 6.264 6.929 9.320 13.45 17.00 18.46 9.387 
Present ( sε = 0) - 2† 6.134 6.640 8.309 11.37 15.15 17.68 9.192 
Present ( sε = 0) - 4† 6.134 6.640 8.309 11.37 15.15 17.69 9.192 
Lee [8] ( sσ = 0) 6.259 6.923 9.314 13.45 16.99 18.45 9.381 

Lee [8] ( sε = 0) 6.129 6.637 8.307 11.36 15.15 17.68 9.189 

Lee and Lee [19] ( sσ = 0) 6.233 6.899 9.290 13.42 16.96 18.41 9.299 

Lee and Lee [19] ( sε = 0) 6.103 6.610 8.281 11.34 15.12 17.64 9.153 

ABAQUS [20]  6.340 6.989 9.360 13.48 17.02 18.49 9.400 
† Number of elements 
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Table 2   
Bending rotation θz x 100 (rad) at the support of the simply supported I beam 

Stacking sequence [0/0]4S [15/-
15]4S 

[30/-
30]4S 

[45/-
45]4S 

[60/-
60]4S 

[75/-
75]4S 

[0/ 
90]4s 

Present ( sσ = 0) - 2† 7.978 8.830 11.89 17.18 21.71 23.57 11.97 

Present ( sσ = 0) - 4† 7.978 8.830 11.89 17.18 21.71 23.57 11.97 

Present ( sε = 0) - 2† 7.812 8.461 10.60 14.52 19.35 22.58 11.72 

Present ( sε = 0) - 4† 7.812 8.461 10.60 14.52 19.35 22.58 11.72 

† Number of elements 
 

3.2. Clamped box beam subjected to uniformly distributed transverse load  

A box beam clamped at both ends, and subjected to uniformly distributed transverse load 
of 6.5kN/m along the mid-plane of one of the webs, is analysed using the proposed element 
assuming both plane stress and plane strain conditions. The beam is assumed to be free from 
axial and warping restraints at the supports. The beam is 1.0 m long, 70 mm deep and 50 mm 
wide, and all the beam walls are 2 mm thick having a stacking sequence of (45/-
45)2/(0/0)6/(45/-45)2. The material properties assumed for all layers are: E1 = 148.0 GPa, E2 = 
9.65 GPa, G12 = G13 = G23 = 4.55 GPa, ν12 = 0.3. The values of the deflection and angle of 
twist at the centre of the beam obtained in the present analysis are presented in Table 3, along 
with results obtained by Kollar and Springer [6] assuming plane strain conditions, and Vo 
and Lee [21] assuming both plane stress and plane strain conditions. Kollar and Springer [6] 
solved the problem analytically (closed form), while Vo and Lee [21] applied one 
dimensional finite element analysis after obtaining the cross-sectional stiffness matrix 
analytically. As both of the studies [6, 21] did not consider the effect of transverse shear 
deformation, the present analysis was also carried out with very high values of transverse 
shear moduli (G13 = G23 = G12 x 106), and the results obtained are included in Table 3 
(marked ‡). The results show a significant effect of the transverse shear deformation and a 
wide variation of the values of torsional rotation obtained on the basis of plane stress and 
plane strain assumptions. The table shows that the convergence of the present finite element 
formulation is very good. It also shows a good agreement between the results obtained by the 
different techniques having similar basis.  
 
Table 3   
Deflection and angle of twist at the centre of the clamped box beam 

 w x 104 (m) θx x 103 (rad) 
Number of elements 2 4 6 2 4 6 
Present † ( sσ = 0) - 2♠ 7.811 7.811 7.811 6.705 6.703 6.703 

Present † ( sε = 0) - 2♠ 5.779 5.779 5.779 2.755 2.754 2.754 

Present ‡ ( sσ = 0) - 2♠   4.940 4.940 4.940 6.705 6.703 6.703 

Present ‡ ( sε = 0) - 2♠ 4.378 4.378 4.378 2.755 2.754 2.754 

Vo and Lee [21] ( sσ = 0)  4.940 6.427 
Vo and Lee [21] ( sε = 0) 4.380 2.678 
Kollar and Springer [6] ( sε = 0) 4.880 2.760 
† G13 = G12, ‡ G13 = G23 = G12, x 106, ♠ Number of elements 
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3.3. Cantilever I beam subjected to tip transverse load with restrained warping  

A 0.762 m (30 inch) long cantilever I beam subjected to a transverse unit load of 4.4482 
N (1.0 lb) at the free end is analysed using the proposed element assuming restrained warping 
at both ends. The beam has a depth of 12.7 mm (0.5 inch), a flange width of 25.4 mm (1.0 
inch) and the same thickness of 1.016 mm (0.04 inch) is assumed for the flanges and the web. 
The stacking sequence of the flange is 0/90/0/90/90/0/15/15, while that of the web is 
0/90/0/90/90/0/90/0. The assumed material properties are: E1 = 141.96 GPa (20.59 x106 Psi), 
E2 = 9.7906 GPa (1.42 x106 Psi), G12 = G13 = G23 = 6.1363 GPa (0.89 x106 Psi), ν12 = 0.42.  
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Fig. 3.  Variation of deflection of the I beam 
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Fig. 4.  Variation of bending slope of the I beam 
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Fig. 5.  Variation of twisting rotation of the I beam  
 

The variation of deflection, bending slope and twisting rotation along the length of the 
beam are plotted in Fig. 3, Fig. 4 and Fig. 5, respectively. The results for the bending slope 
and twisting rotation are compared with the numerical results of Jung et al. [5] and the 
experimental results of Chandra and Chopra [22] in Fig. 4 and Fig. 5. Jung et al. [5] has 
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produced results based on a mixed formulation, as well as on the displacement formulation of 
Smith and Chopra [23], where one dimensional finite element has been applied after 
obtaining the cross-sectional stiffness matrix analytically. The figures show an excellent 
agreement between the results of the approach proposed herein and the results given in [5, 22, 
23].  
 
3.4. Cantilever box beam subjected to tip transverse load/twisting moment  

A 0.762 m (30 inch) long cantilever box beam having a depth of 12.7 mm (0.5 inch), a 
width of 23.444 mm (0.923 inch) and assuming the same thickness of 0.762 mm (0.03 inch) 
for all the walls consisting of 6 layers is analysed using the proposed element. The assumed 
loading is either a unit transverse load of 4.4482 N (1.0 lb) or a unit twisting moment of 
0.11299 Nm (1.0 lb-inch) applied at the free end. The stacking sequence of the top and 
bottom walls is (45/45)3, while that of the left and right walls is (45/-45)3. The material 
properties of all layers are assumed to be identical and the same as those adopted in the 
previous example (I beam). The variation of the bending slope and twisting rotation along the 
length of the beam are plotted in Fig. 6 to Fig. 9 along with the analytical and experimental 
results of Chandra et al. [2], and the finite element results of Stemple and Lee [24]. The 
results of the different methods are found to be in excellent agreement.  
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Fig. 6.  Variation of bending slope of the box beam under a transverse load at the tip 
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Fig. 7.  Variation of twisting rotation of the box beam under a transverse load at the tip 
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Fig. 8.  Variation of bending slope of the box beam under a twisting moment at the tip  
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Fig. 9.  Variation of twisting rotation of the box beam under a twisting moment at the tip  
 

 
3.5. A channel beam clamped at one end and simply supported at the other end  

A 2.5 m long beam having a channel (C) section clamped at one end and simply 
supported at the other end is analysed using the proposed element. The channel section has a 
depth of 50 mm, a width of 25 mm and the same thickness of 2.08 mm for all the walls 
consisting of 16 layers. The layers are having identical orientation, which is varied from 00 to 
900 with an interval of 150. The material properties of the layers are: E1 = 53.78GPa, E2 = 
17.93GPa, G12 = 8.96GPa, G13 = 8.96GPa, G23 = 3.45GPa, ν12 = 0.25. The beam is subjected 
to a unit twisting moment 1.0 Nm at the simply supported end.  
 
Table 4  
Maximum angle of twist of a beam having a channel section  
Stacking sequence [0]16 [15]16 [30]16 [45]16 [60]16 [75]16 [90]16 
Present Element – 2† 0.2441 0.2195 0.1934 0.2029 0.2394 0.2793 0.2967 
Present Element – 4† 0.2444 0.2198 0.1939 0.2038 0.2405 0.2804 0.2978 
Present Element – 6† 0.2444 0.2199 0.1940 0.2038 0.2405 0.2805 0.2979 
Present Element – 8†   0.2444 0.2199 0.1940 0.2038 0.2406 0.2805 0.2979 
Closed form solution [25] 0.2444 0.2199 0.1940 0.2038 0.2406 0.2805 0.2979 
Finite Element - I [25] – 1† 0.2444 0.2199 0.1940 0.2038 0.2406 0.2805 0.2979 
Finite Element -II [25] – 4† 0.2444 0.2198 0.1939 0.2038 0.2404 0.2804 0.2978 
ABAQUS [20] 0.2459 0.2250 0.2011 0.2090 0.2427 0.2795 0.2952 
† Number of elements 
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The results for the angle of twist at the simply supported end obtained by the proposed 
element are presented with those obtained by Kim et al. [25] in Table 4.  Kim et al. [25] 
applied an analytical technique (closed form) and two different finite element models to 
analyse the problem. They have also analysed the structure using ABAQUS [20] where the 
structure is modelled with shell elements. Table 4 shows that the results obtained from the 
different sources are showing an excellent agreement with the predictions of the coupled 
beam element proposed herein. Moreover, Table 4 also shows a very good convergence of 
the results obtained by the proposed element. 
 
 
4. Conclusions 
 

A fully coupled beam element has been developed for the analysis of thin-walled 
laminated composite beams of open and closed cross sections including axial displacement, 
torsion, out of plane warping, bi-axial bending and transverse shear deformations. The 
constitutive equations of the beam element are derived analytically considering the coupling 
of all the modes of deformation, i.e. the beam model is fully coupled. The resulting 
composite beam theory is applied to laminated composite beams of open I and channel cross 
sections, as well as to laminated composite beams of closed box cross sections. The 
incorporation of transverse shear deformations demands a C0 formulation for the one 
dimensional finite element approximation of the bending deformations, while the torsional 
deformation demands a C1 formulation for the incorporation of out-of-plane warping. The 
difficulty in implementing both formulations in the present coupled problem is successfully 
overcome by adopting an efficient approach for the finite element approximation of the 
bending deformations. Numerical examples of composite open and closed cross section 
beams having different load and boundary conditions are analysed using the proposed 
element. The results obtained are compared with analytical, experimental and/or other finite 
element results available in literature, and the comparisons show a very good performance of 
the proposed fully coupled beam element. In addition to the comparative studies, some new 
results are also presented for future references.  
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Appendix A 
 
The explicit expressions for the elements of the matrix [C] found in Eq. (16) are presented in 
this Appendix. The matrix [C] is valid for all the three sections considered in this study. As 
the matrix is symmetric, the elements in the upper triangle of the matrix are listed below.  
 

1111 AC = , αsin111112 ByAC −= , αcos111113 BAzC += , 111114 qBAC −=ϕ ,  
( )srABC ,161615 2 ϕ−−−= , αcos1616 AC = , αsin1617 AC = ,  

αα 2
111111

2
22 sinsin2 DyBAyC +−= , ( ) αααα cossinsincos 11111123 DBzyAzyC −−+= ,  

( ) ααϕϕ sinsin 11111124 qDByqAyC ++−= , 
( ) ( ){ } ααϕϕ sin2sin2 16,16,1625 DryByrAC ss +−−−−−= , ααα cossincos 161626 ByAC −= , 

αα 2
161627 sinsin ByAC −= ,  

αα 2
111111

2
33 coscos2 DzBAzC ++= , ( ) ααϕϕ coscos 11111134 qDBzqAzC −−−= , 

( ) ( ){ } ααϕϕ cos2cos2 16,16,1635 DrzBzrAC ss −−+−−−= , αα 2
161636 coscos BAzC += , 

ααα cossinsin 161637 BAzC += ,  

11
2

1111
2

44 2 DqBqAC +−= ϕϕ , ( ) ( ){ } 16,16,1645 22 qDrqBrAC ss +−−−−−= ϕϕϕϕ , 
( ) αϕ cos161646 qBAC −= , ( ) αϕ sin161647 qBAC −=  

( ) ( ) 66,6666
2

,55 44 DrBArC ss +−+−= ϕϕ , ( ) ααϕ cos2cos 66,6656 BrAC s −−−= , 
( ) ααϕ sin2sin 66,6657 BrAC s −−−=  

αα 2
55

2
6666 sincos AAC += , ( ) αα cossin556667 AAC −=  

αα 2
55

2
6677 cossin AAC +=  

 
where ∫= dnQA ijij , ∫= dnnQB ijij  and ∫= dnnQD ijij

2  
 
 
Appendix B 
 
For the open section I profile as shown in Fig. 10, the warping function may be expressed as 

yz=ϕ . Based on this the expressions for the elements in the upper triangle of the symmetric 
matrix [F] found in Eq. (16) are as follows.  
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Fig. 10.  Cross-sectional profile of the I beam  

 
 
Appendix C 
 
For the open section channel profile as shown in Fig. 11, the warping function may be 
expressed as ( )dyeyz +−=ϕ , where the location of the centroid [4] and shear centre [9] are: 

( )
( )dAbAbA

dBbAAyd 3
11

2
11

1
11

3
11

22
11

1
11

2
2
++
−+

=  and 
( )

( )bAdAAt
bAt

e 1
11

3
11

3
111

21
113

6
3

+
=  

 
With the above quantities, the elements of the matrix [F] are expressed as follows.  
 

( ) 3
11

2
11

1
1111 AdAAbF ++= , ( ) 3

11
3
11

2
11

1
1112 BdAdyAAbyF db −−+= , 

( ) ( )2
11

1
11

2
11

1
1113 2/ BBbAAbdF −+−= , ( )( ) ( )( )2

11
1
11

2
11

1
1114 2/ BByybAAyybbdF bppb −+−−−−= , 

( ) 3
16

2
16

1
1615 22 BdBBbF −+−= , ( )2

16
1
1616 AAbF −= , 3

1617 AdF = ,  
( ) ( ) 3

11
3
11

3
11

22
11

1
11

23
22 212/ DdBdyAdyAAbybF ddb +++++= ,  

( ) ( )2
11

1
11

2
11

1
1123 2/ BBbyAAydbF bb −+−= ,  

( ){ }( ) ( )( )2
11

1
11

222
11

1
11

22
24 12/2/212/ BByyybbAAyyyybbdF pbbdpbb −++−−−−+= , 

( ) 3
16

3
16

2
16

1
1625 222 DdBdyBBbyF db +++−= , ( )2

16
1
1626 AAbyF b −= , 3

16
3
1627 BdAdyF d −−= ,  

( ) ( ) ( )2
11

1
11

2
11

1
11

3
11

32
11

1
11

2
33 12/4/ DDbBBbdAdAAbdF ++++++= ,  

( )( ) ( ) ( )( )2
11

1
11

3
11

32
11

1
11

2
34 2/12/4/ BBbyydbAyydAAyybdbF pbpdpb +−+−−++−−=   

      ( )( )2
11

1
11

3
11

3 12/ DDyybBd pb ++−− , ( ) ( )2
16

1
16

2
16

1
1635 2 DDbBBbdF +−−−= ,  

( ) ( )2
16

1
16

2
16

1
1636 2/ BBbAAbdF +++= , 037 =F ,  

( ) ( ){ }( ) ( ) 12/4/22212/ 3
11

232
11

1
11

2222
44 AyydAAyyyyyybbdF dpdpdpbb −++−+−−+=  



 

 

 

ACCEPTED MANUSCRIPT 

 

      ( ){ }( ) ( ) 6/2212/ 3
11

32
11

1
11

22 ByydBByyyyyybbd dpdppdbb −++−−++−  

      ( )( ) 12/212/ 3
11

32
11

1
11

222 DdDDyyyybb ppbb ++++++ ,  

( )( ) ( )( )2
16

1
16

2
16

1
1645 2 DDyybBByybdF pbpb −++−−−−= ,  

( )( ) ( )( )2
16

1
16

2
16

1
1646 2/ BByybAAyybbdF pbpb ++−+−−= , 047 =F , 

( ) 3
66

2
66

1
6655 44 DdDDbF ++= , ( )2

66
1
6656 2 BBbF −−= , 3

6657 2 BdF −= ,  
( ) 3

55
2
66

1
6666 AdAAbF ++= , 067 =F , ( ) 3

66
2
55

1
5577 AdAAbF ++=  

 
 

 
Fig. 11.  Cross-sectional profile of the channel beam  

 
 
Appendix D 
 
For the closed section box profile as shown in Fig. 12, the warping function may be simply 
expressed as yzβϕ = , where ( ) ( )dbdb +−= /β  if all the walls are identical and placed 
symmetrically with respect to the centroid [2]. With this the elements of the matrix [F] may 
be expressed as follows. 
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Fig. 12.  Cross-sectional profile of the box beam  

 
 
 
 
 
 
 
 
 
 
 


