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Finite element analysis of free-edge stresses in

composite laminates under mechanical an

thermal loading
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Champs-sur-Marne, 77455 MARNE-LA-VALLEE, Cedex 2, France

Abstract

In this paper, a multi-particle finite element [1] is applied for general laminated and

is shown to be capable of simultaneously predicting global and local responses. The

analysis of free-edge stresses of composite laminates subjected to mechanical and

thermal loads is performed using this C
o eight-node layer-wise finite element after

a classical bending validation. Laminates with finite dimensions are considered and

three-dimensional out-of-plane stresses in the interior and near the free edges are

evaluated. The results obtained with this finite element modelling are compared

with those available in the literature. The present calculation provides accurate

stresses and can be utilised as and operational tool to predict interlaminar stresses

under the loads of mechanical and thermal combined.
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1 Introduction

The recent widespread use of laminated composites in various industrial fields

necessitates analysis tools which are capable of predicting their mechanical

behaviour more accurately an efficiently.

For laminated composites, it is well known that at the free edges interlaminar

stresses arise from the mismatch of elastic properties between layers. Hence,

the stress distribution in the vicinity of the free edges is in three dimensional

(3D) state even though the laminates are only subjected to in-plane loading.

The interlaminar stresses are important because they have a marked effect on

the failure strengths of composite laminates. Accurate determination of inter-

laminar stresses near the free edge is therefore crucial to correctly describe the

laminate behaviour and to prevent its early failure, notably the delamination

onset.

Classical single layer theories are not able to calculate these out-of-plane

stresses, notably in presence of free edges. Therefore various approaches such as

finite difference [2,3], 3D finite element [4–7], closed-form analytical approach

using mixed formulation and stress based methods [8–10], boundary layer

theories [11–14] and layer-wise theories [15–17] have been used to calculate

interlaminar stresses near free edges. A complete discussion of the literature

on the interlaminar stress analysis can be found in [18].

Finite differences, which are the oldest in the field, have been used in: [2,3]

to solve the two-dimensional governing elasticity equations to determine the

∗ Corresponding author. Tel.: +33-1-6415-3723

Email address: caron@lami.enpc.fr (Jean-Francois Caron ).
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interlaminar stresses in a long symmetric laminate under uniform axial strain.

Although 3D FE method [4–7] is the most universal method that can be ap-

plied to general stacking sequence and boundary conditions, it is quite com-

putational expensive and presents difficulties for convergence in the vicinity of

free edges (see [19]). Consequently, some semi-analytical approaches combin-

ing the traditional FE method with certain analytical techniques have been

proposed. A state space FE method that combines the conventional FE ap-

proximation and the recursive formulation of state space equation: state space

formulation is introduced to solve for through-thickness stress distributions,

while the traditional FE is used to approximate in-plane variations of the state

variables in [20–22].

In order to avoid these somewhat cumbersome 3D FE methods, several approx-

imate analytical methods have been equally proposed. Some pioneering works

involve the perturbation technique by Hsu and Herakovich [23], the boundary

layer theory by Tang and Levy [11], and the approximate elasticity solution by

Pipes and Pagano [24]. Mixed variational principle has been used along with

stress assumption by Pagano [9]. Wang and Choi [12,13] have presented a

formulation of Lekhnitskii’s stress function based on complex variables. Kass-

apoglou and Lagace [10] studied the edge effect using the principle of minimum

complementary energy and the force balance method. A large amount of devel-

opment devoted to free-edge stresses analysis have been formulated based on

this procedure: using stress functions and principle of complementary energy

[14,25–27].

Another alternative method to study the edge effect involves models based

on layer-wise theory [15–17]. Unlike the single layer theories, the layer-wise

theories assume separate field expansions within each layer and thereby pro-
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vide a more kinematically correct representation of the strain and stress field

in each discrete layer. However relatively less attention has been addressed

to the development of layer-wise based FE for interlaminar free-edge stresses

analysis. Most of layer-wise FEs developed for free edge analysis [28–30] are

based on the hybrid stress concept using the variational principle of Pian [31].

Recently, Kimpara and coauthor have developed a layer-wise FE based on as-

sumed higher order displacement in each ply [32]. Imaginary springs attached

at the interlayers have been used to ensure interfacial continuity.

Based on a typical layer-wise model, called the M4-5n (Multi-particle M odel

of Multilayered M aterials with 5 kinematic fields per layer for an n-layer lami-

nate [19,33–35]) a new layer-wise finite element has been developed in [1]. The

potential of this finite element for the analysis of free-edge composites under

mechanical loading has been revealed. In the present work, detail investigation

of free-edge stress fields under mechanical and thermal loadings is performed

with this finite element. Firstly, a rectangular simply supported laminate sub-

jected to a sinusoidal transverse load is examined using this multi-particle FE

and the results will be compared with Pagano’s three-dimensional elasticity

solution [36]. Agreement between the results will show the validity and accu-

racy of the proposed finite element. Then, after the reliability of the FE model

would successfully be validated, straight free edge problem will be considered

in comparison with existed solution in the literature. Discussion of solution’s

sensibility again the number of modelled sub-layers is also presented.
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2 Governing equations of the M4-5n model for general composite

laminates

2.1 Laminated plate geometry, preliminaries

Consider a composite laminated plate (Fig. 1) consisting of n linearly elastic

orthotropic layers, each of them exhibiting individual mechanical properties.

It is assumed that the layers are perfectly bonded together so that slip between

two adjacent layers may not occur. The thickness of each layer k (k = 1, n) is

denoted ek = h+
k −h−

k , where h−

k , h+
k are the bottom and the top z coordinates

of the layer, respectively. The occupied volume is then Ω = ω×
[

h−

1 , h+
n

]

. The

interface between layer j and j + 1 is denoted Γj,j+1 (1 ≤ j ≤ n − 1).

For the sake of convenience, throughout this paper the indicial notations are

used. Greek indices α, β, γ and δ indicate the components on the (x, y) plane

and and run over the range 1,2. Latin indices o, p, q and r indicate the compo-

nents in the (x, y, z) space and run over the range 1,2,3. Superscript k attached

on any quantity identifies affiliation to the k layer. Bold face characters are

used to represent tensors, matrices and vectors.
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2.2 Generalised displacements

The in-plane displacement and rotation fields of layer k of the M4-5n model

are defined in the following way:

Uk
α(x, y) =

1

ek

∫ h+

k

h−

k

Uα(x, y, z)dz,

φk
α(x, y) =

12

ek2

∫ h+

k

h−

k

z − hk

ek
Uα(x, y, z)dz,

(1)

where hk are the mid-plane z coordinate of the layer k.

The transverse displacement of layer k, Uk
3 is defined such that

Uk
3 (x, y) =

1

ek

∫ h+

k

h−

k

U3(x, y, z)dz. (2)

Thus each layer presents 5n kinematic fields. The multi-layered plate (3D

object) becomes a superposition of n Reissner plates (2D object).
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2.3 The strain-displacement equations

The generalised strains are deduced from the generalised displacements as

follows (see [19,37] for more details):

εk
αβ =

1

2

(

Uk
α,β + Uk

β,α

)

,

χk
αβ =

1

2

(

φk
α,β + φk

β,α

)

,

γk
α = φk

α + Uk
3,α,

Dj,j+1
α = U j+1

α − U j
α −

ej

2
φj

α −
ej+1

2
φj+1

α ,

Dj,j+1
ν = U j+1

3 − U j
3 .

(3)

In each layer k, one can find the conventional membranar strain εk
αβ, bending

curvatures χk
αβ and shear strains γk

α. At each interface Γj,j+1, the interlaminar

strains Dj,j+1
α , Dj,j+1

ν are defined associated to interlaminar transverse shear

stresses σα3(x, y, h+
j ) and normal stress σ33(x, y, h+

j ), respectively.

2.4 Generalised stresses and equilibrium equations

In layer k (1 ≤ k ≤ n), the generalised in-plane stress resultants Nk, the

generalised in-plane moment resultants Mk and the generalised out-of-plane
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shear stress resultants Qk are defined as follows:

Nk
αβ(x, y) =

∫ h+

k

h−

k

σαβ(x, y, z) dz,

Mk
αβ(x, y) =

∫ h+

k

h−

k

(z − hk) σαβ(x, y, z) dz,

Qk
α(x, y) =

∫ h+

k

h−

k

σα3(x, y, z) dz.

(4)

The interlaminar shear and normal stresses at interface j, j+1 (1 ≤ j ≤ n−1)

are defined as

τ j,j+1
α (x, y) = σα3(x, y, h+

j ),

νj,j+1(x, y) = σ33(x, y, h+
j ).

(5)

The equilibrium equations of the M4-5n model can be written as

Nk
αβ,β +

(

τk,k+1
α − τk−1,k

α

)

= 0,

Qk
β,β +

(

νk,k+1 − νk−1,k
)

= 0,

Mk
αβ,β +

ek

2

(

τk,k+1
α + τk−1,k

α

)

− Qk
α = 0.

(6)

2.5 Generalised constitutive equations

The M4-5n generalised constitutive equations are obtained in compliance

terms, related to:
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• The membranar stress resultants in layer k (1 ≤ k ≤ n)

















εk
11

εk
22

2εk
12

















=
1

ek
S

k

















Nk
11

Nk
22

Nk
12

















, (7)

where the second-order tensor S
k represents the in-plane compliances of

layer k defined by Sk
αβ = Sααββ(z), Sk

16 = Sk
61 = 2S1112(z), Sk

26 = Sk
62 =

2S2212(z), Sk
66 = 4S1212(z);

• the in-plane moment resultants in layer k (1 ≤ k ≤ n)

















χk
11

χk
22

2χk
12

















=
12

ek3S
k

















Mk
11

Mk
22

Mk
12

















, (8)

• the out-of-plane shear stress resultants in layer k (1 ≤ k ≤ n)











γk
1

γk
2











=
6

5ek
S

k
Q











Qk
1

Qk
2











−
1

10
S

k
Q











τk−1,k
1 + τk,k+1

1

τk−1,k
2 + τk,k+1

2











(9)

where the second-order tensor S
k
Q represents the shearing compliances of

layer k defined by Sk
Qαβ = 4Sα3β3(z);
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• the transverse shear stresses at interface Γj,j+1 (1 ≤ j ≤ n − 1)











Dj,j+1
1

Dj,j+1
2











= −
1

10
S

j
Q











Qj
1

Qj
2











−
1

10
S

j+1
Q











Qj+1
1

Qj+1
2











+
2

15

(

ej
S

j
Q + ej+1

S
j+1
Q

)











τ j,j+1
1

τ j,j+1
2











−
ej

30
S

j
Q











τ j−1,j
1

τ j−1,j
2











−
ej+1

30
S

j+1
Q











τ j+1,j+2
1

τ j+1,j+2
2











(10)

• the normal stresses at interface Γj,j+1 (1 ≤ j ≤ n − 1)

Dj,j+1
ν =

9

70
ejSj

νν
j−1,j +

13

35

(

ejSj
ν + ej+1Sj+1

ν

)

+
9

70
ej+1Sj+1

ν νj+1,j+2

(11)

where the scalar Sj
ν denotes the normal compliance of layer j defined by

Sj
ν = S33(z) = S3333(z).

3 Finite element modelling of M4-5n equations

3.1 Finite element discretisation

The standard finite element formulation with Co continuous plate element

has been used in this investigation. In this approach, the entire domain is
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subdivided in NE number of sub-domains or elements such that

Π(δ) =
NE∑

el=1

Πe(δ) (12)

where Π and Πe are the total potential of the system and the element, re-

spectively. For a n-layer plate, the 5n vector of unknown nodal displacement

variables are defined as

δ = {U1 V 1 W 1 φx
1 φy

1, · · · , Un V n W n φx
n φy

n}
T
, (13)

where the conventional engineering notations U=U1, V =U2, W=U3, φx=φ1

and φy=φ2 are used. Note that to study the through-the-thickness stresses

distribution, each physical layer can be subdivided in to a large number of nu-

merical (or mathematical) layers by introducing more interfaces and therefore

more unknown displacement variables.

In this study, eight-node two-dimensional shape functions Ni (i=1, 8) are

adopted for interpolating both the geometry and generalised displacement

such that:

(x, y) =
8∑

i=1

Ni(xi, yi), (14)

δ =
8∑

i=1

Niδi, (15)

where xi, yi and δi are the nodal values. The interpolation functions matrix

for the node i are Ni = NiI5n. The explicit expressions of Ni can be found in

[38].

The (11n − 3) complete generalised strain vector ǫ is defined as follows:

ǫ = {ǫc, ǫν , ǫQ}T . (16)
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where

ǫ
c = {ε1

xx ε1
yy 2ε1

xy χ1
xx χ1

yy χ1
xy . . . εn

xx εn
yy 2εn

xy χn
xx χn

yy χn
xy}

T . (17)

is the 6n membranar strain vector,

ǫ
ν = {D1,2

3 D2,3
3 . . . Dn−1,n

3 }T . (18)

is the (n − 1) normal strain vector and

ǫ
Q = {γ1

x γ1
y D1,2

x D1,2
y γ2

x γ2
y . . . γn−1

x γn−1
y Dn−1,n

x Dn−1,n
y γn

x γn
y }

T . (19)

is the (4n − 2) shear strain vector.

The associated generalised stress vector can be written as follows:

σ = {σc, σν , σQ}T , (20)

where

σ
c = {N1

xx N1
yy N1

xy M1
xx M1

yy M1
xy . . . Nn

xx Nn
yy Nn

xy Mn
xx Mn

yy Mn
xy}

T ,

σ
ν = {ν1,2 ν2,3 . . . νn−1,n}T , (21)

σ
Q = {Q1

x Q1
y τ 1,2

x τ 1,2
y Q2

x Q2
y . . . Qn−1

x Qn−1
y τn−1,n

x τn−1,n
y Qn

x Qn
y}

T .

The membranar, normal ans shear strains ǫc, ǫν , ǫQ can be written in terms

of the nodal displacements δ by referring to Eq. (3). With the generalised

displacement vector δ known at all points within the element, the generalised

strain vectors at any point are determined with the aid of Eq. (14), as follows:

ǫ =
8∑

i=1

Biδi = [B1, . . . , B8] δ. (22)

The strain energy stored in the element can be computed using stress-strain

12
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relation equations (7) - (11):

πe =
1

2

∫

ω
δ

T
B

TDBδdω =
1

2
δ

TKe
δ. (23)

Detail expression of operator matrix B and elasticity matrix D can be found

in [1]. By assembling the element stiffness matrices and taking into account

the boundary conditions, the nodal d.o.f. can be solved.

3.2 Layer-wise temperature variation

A layer-wise uniform temperature variation can be taken in to account using

the procedure proposed in [35]. The tensor of inelastic strain due to a uniform

temperature variation T i in the k layer is identified as

εk a(x) = T k
(

αk
LeL ⊗ eL + αk

T eT ⊗ eT + αk
Nez ⊗ ez

)

(24)

where αk
L, αk

T et αk
N represent thermal coefficient in material direction.

In the global x, y, z coordinate this inelastic strain tensor can be written as

εk a(x) = T k
(

αk
11ex ⊗ ex + αk

22ey ⊗ ey + αk
12

(

ex ⊗ ey + ey ⊗ ex

)

+ αk
33ez ⊗ ez

)

(25)

where

αk
11 = cos2θk αk

L + sin2θk αk
T

αk
22 = sin2θk αk

L + cos2θk αk
T

αk
12 = cosθk sinθk (αk

L − αk
T )

αk
33 =αk

N .

with θk is the orientation of the i layer.
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Finally, according to [35] the inelastic strain can be expressed as

εk a
αβ(x, y)=αk

αβT i

χk a
αβ(x, y)= 0

γk a
α (x, y)= 0 (26)

Dj,j+1a
α (x, y)= 0

Dj,j+1a
ν (x, y)=αj

33T
j e

j

2
+ αj+1

33 T j+1 ej+1

2

The inelastic strain vector according to the multi-particle finite element for-

mulation are:

ǫ
a = {ǫc a, ǫν a, ǫQ a}

T
(27)

with

ǫ
c a = {ε1 a

xx ε1 a
yy 2ε1 a

xy 0 0 0, . . . , εn a
xx εn a

yy 2εn a
xy 0 0 0

︸ ︷︷ ︸

}T (28)

6n

ǫ
ν a = {D1,2a

ν D2,3a
ν . . . Dn−1,n a

ν
︸ ︷︷ ︸

}T (29)

n − 1

ǫ
Q a = {0 0 0 0 0 0, . . . , 0 0 0 0 0 0

︸ ︷︷ ︸
}T (30)

4n − 2

4 Numerical results

In this section, the developed finite element is initially applied to study the bi-

directional bending problem of laminated plates. This case of simply supported

boundary conditions is evidently used to test the reliability of the FE model,

by comparing its results with existing exact elasticity solution [36]. Hence,
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after the reliability of the proposed FE model has been successfully validated,

stress analysis of free-edge problem under mechanical and thermal loads are

investigated.

4.1 Bending of [0o/90o/0o] laminate under sinusoidal transverse loading

Consider a rectangular simply supported cross-ply laminate of dimension a =

b an thickness h with equal thickness for each layer. subjected to a double

sinusoidal transverse load q = qosin(
πx

a
)sin(

πy

b
). For the purpose of validating

the multi-particle finite element, the following Pagano’s choice of material [36]

has been used:

E1/E2 = 25, E2 = E3 = 7 GPa

G12 = G13 = 0.5E2, G23 = 0.2E2

νLT = νTN = νLN = 0.25

where the subscripts 1, 2, 3 signify the direction parallel to the fibres, the

transverse direction perpendicular to the fibres, and the out-of-plane direction,

respectively. The results of the multi-particle FE calculation will be compared

with Pagano’s exact three-dimensional elasticity solutions for thick laminate

(a = 4h).

Due to the symmetry of the problem, only one quadrant of the plate is mod-

elled (0 < x < a/2, 0 < y < a/2) by a 5 × 5 mesh. The numerical results

shown here are presented by means of the following normalised stresses as the

same form of Pagano [36]:

σz =
σz

qo

, (σxz, σyz) = (σxz, σyz)
h

qoa
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As previously mentioned, in the multi-particle modelling, each actual physical

layer in a laminate can be treated as if it is made of as many layers as it

is wished with, of course, the same fibre direction as the actual layer. The

present FE model provide only direct access to the interfacial stresses by

constitutive equations. Hence, one must use this sublayer modelling to study

through-the-thickness stresses distributions. In Figs. 2-4 out-of-plane stresses

distributions by six and one sub-layers FE modelling are plotted. The result

of three-dimensional elasticity solution [36] is also reported for comparison.

Excellent agreement between the multi-particle FE solution and the exact

three-dimensional elasticity solution is found. This close agreement verifies the

accuracy of the present finite element. It is shown in this case that regardless of

the used sublayer number, interfacial stresses values do not change. Increasing

the numerical layer number only helps to reproduce the stress distribution

shape and does not affect the result’s precision.

4.2 Free-edge laminate under uniform axial extension

In what follows, the classical straight free-edge problem are considered. This

problem have been studied by several investigators. Certain similarities are

observed in these results, however there are also numerous discrepancies, no-

tably in the prediction of interlaminar stresses near free edges. It is reminded

here that no exact elasticity solution to this free-edge problem has been yet

founded. All the results obtained are merely based on approximate analytical

and numerical analyses. For most of these investigations, the longitudinal de-

grees of freedom in the displacement field is neglected and the stress analysis

is then restricted to a generic two-dimensional cross-section of the laminates.
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In this investigation, general finite dimension laminates with the ply config-

uration [0o/90o]s, [90o/0o]s are assumed to have the length 2a, width 2b, and

thickness h = 4e, with b = 8e and a = 2b (see Fig. 5). The laminate is sub-

jected to a prescribed uniform axial strain εx = ∆
a
. The material properties are

taken to be those of a high-modulus graphite/epoxy. The elasticity constants

with respect to principal material axis of each ply are:

E1 = 137, 90 GPa

E2 = E3 = 14, 48 GPa

G12 = G13 = G23 = 5, 86 GPa

ν12 = ν13 = ν23 = 0, 21

Due to the symmetry of the problem, only one quadrant of the plate is mod-

elled (0 < x < a, 0 < y < b). Convergence (influence of the mesh pattern)

study has been performed in [1] and is not presented here. As opposed to 3D

FE analysis [4–7] the multi-particle FE presents converge finite stresses at free

edges. Even a coarse mesh (5 × 5 elements) as shown in Fig. 5 assures a very

good convergence. The following results are evaluated with this 5 × 5 mesh.

Fig. 6 shows the σyz distribution at the 0o/90o interface of a [0o/90o]s laminate

under uniform axial extension. Each physical ply is modelled by one numerical

layer. Results of 3D FE by Wang & Crossman [4] and by Carreira [19], and

Pagano’s local model [9] are also plotted for comparison. It can be seen that

for y/b < 0.8 the interlaminar stress σyz obtained by all the calculations are

very close, however for 0.8 ≤ y/b ≤ 1.0 as the free edge is approached, these

distributions exhibit obvious differences. The results obtained by the use of a

special 3D FE procedure [19] for better convergence than classical one are in

good agreement with present method. Note that Wang & Crossman’s results
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have been obtained using an arbitrate mesh where convergence is not assured

due to the stress singularity at the edge.

The shear stress fields σyz in Pagano’s model verify the free edge conditions

(vanish of shear stress at free edge). For the present FE model, this boundary

condition is only energetically taken in to account. Nevertheless the evaluation

of the shear stress shape is very accurate. Except at the 0o/90o interface, the

value of σyz is quite close to zero (see Fig. 7). The steepness of stress gradient

at the ply interface, particularly near the free edge is often attributed to a

singularity at the 0o/90o interface in conventional 3D FE investigations [4–7].

Due to the mesh dependency of these models, the stress values on the edge are

meaningless and prevent the use of a direct strength of materials approach to

predicting delamination onset. As mention above the present model provides

useful finite stress on the edge which can be used directly in a limit stress

criterion as shown in [37]. The present finite interfacial stresses are in this

sense equivalent to the averages of the 3D FE’s stresses over a characteristic

distance from the edge as used in several delamination onset investigations

[39,40].

The distribution of σyz through thee thickness at the free edge (y = 0.98b)

of the [0o/90o]s laminate is presented in Fig. 7. Each physical ply is modelled

by the same N sublayer. Note that the inconvenient of all the models based

on layer-wise theory is that the calculation’s volume depends on the number

of numerical layers and becomes very large with the increasing of the former.

Moreover, in many layer-wise models [16,17], free-edge stresses are noticeably

dependent on the sublayer division N and one has to incriease N to assure

the convergence (N must be larger than 6 in [16]). It is seen in Fig. 7 that the

stress fields obtained by the present model are not affected by the sublayer
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division number. The multi-particle model employed here is very general in

that the subdivision number can be greater, equal or less than the number of

material layers n. Also the number of sublayer division can vary from layer

to layer. Hence one can use a large number of sublayers in the interested

material layer and a small number of numerical layers elsewhere which is very

useful in the investigation of a multilayer laminate with a very large number of

material layers. Fig. 8 shows an illustrated case where the 0o ply of a [0o/90o]s

is modelled by 9 and 17 numerical layers and one numerical layer is used for

other plies. Again a very good convergence is obtained that confirms the non

existence of singularity in our model.

Fig. 9 shows the σz distribution at the 0o/90o interfaces of [0o/90o]s and

[90o/0o]s laminates. It is noted here that the same quality of convergence has

been found and an uniform sublayer division N = 5 is used to reproduce the

stress shape. The results of the present model and those of Wang & Crossman

[4] are in excellent agreement. The through-the-thickness distribution of σz at

the free edge in a [0o/90o]s laminate is shown in Fig. 10 in comparison with

some results found in the literature. Except a similarity of overall shape, all the

considered models provide a dispersion both in magnitude and in local shape

gradient. Results of Flanagan [14] and Cho & Kim [27] have been obtained

using stress functions and principle of complementary energy. Their results

shows a pronounced singularity of stress fields in the edge that explains the

large values of σz in Fig. 10. In the work of Tian et al. [30], a 3D hybrid stress

element has been used to investigate free-edge stress distribution. The values

of interfacial stresses of the present model and those of [30] are quite close and

both models confirm no existence of stress singularity at the interface.

The through-the-thickness distribution of σz the free edge in a [90o/0o]s lam-
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inate is plotted in Fig. 11. Excellent agreement between the present solutions

and those of Tahani & Nosier [16] and Wang & Crossman [4] is found for this

case.

4.3 Free-edge laminate under thermal loading

In this section, [0o/90o]s, [90o/0o]s and [45o/ − 45o]s free-edge laminates sub-

jected to thermal loading (residual stress due to the curing process) are con-

sidered. The results are compared with 3D FE results [19,41] and those of

stress function based method [27,42]. The following material is used for this

investigation:

E1 = 137, 90 GPa

E2 = E3 = 14, 48 GPa

G12 = G13 = G23 = 5, 86 GPa

ν12 = ν13 = ν23 = 0, 21

α1 = 0.36 × 10−6o
C−1, α2 = α3 = 28.8 × 10−6o

C−1

Cross-ply laminates: Figs. 12 and 13 show the distribution of interlaminar

stresses at the 0o/90o interface of laminate[0o/90o]s laminate under uniform

temperature variation ∆T = 1oC. The 5 × 5 mesh as in the later example

that provides a very good quality of convergence has been used. A very good

agreement between all the models considered has been obtained. All of these

calculations predict a compression at free edge interface for a 1oC temperature

variation (see Fig. 12).

Through-the-thickness distribution of σz at the free edge of [90o/0o]s laminate

for a 1oC temperature variation is plotted in Fig 14 using a sublayer division
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N = 5. The present stress value at the 0o/90o interface is quite close to these

of Cho & Kim [27]. At the 0o/0o interface the present model provides a larger

stress value.

Angle-ply laminate: In this example, a rectangular [−45o/45o]s of dimension

b = 8e and a = 10b is investigated. The symmetry of the problem is no longer

verified in this case. Hence the whole laminate is modelled by the present FE

model. A typical 20 × 10 mesh is presented in Fig 15.

Figs. 16 and 17 show interlaminar stresses distributions at different interfaces.

Once again, the present model and 3D FE [41] provide almost the same results.

5 Conclusions

In this study, free-edge laminates subjected to uniaxial extension and uniform

temperature variation are investigated using multi-particle finite element. This

two-dimensional finite element approach with very coarse mesh, provides very

accurate three-dimensional free-edge stress field. Moreover the present model

allows a flexible choice of sublayer scheme in order to investigate through

thickness local variation of stress fields. Detail investigation of the solution’s

sensibility again the number of sublayer division is also given. Regardless of

the used sublayer’s number, the results stay practically identical. Increasing

the subdivisions number is useful to reproduce shape distribution and does

not affect the precision. This study confirms no existence of stress singularity

at the interface.
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Fig. 1. Stacking sequence of a laminated plate.
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Fig. 2. Distribution of shear stress σxz through the thickness of a simply supported

rectangular laminate under sinusoidal transverse loading.
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Fig. 3. Distribution of shear stress σyz through the thickness of a simply supported

rectangular laminate under sinusoidal transverse loading.
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Fig. 4. Distribution of normal stress σz through the thickness of a simply supported

rectangular laminate under sinusoidal transverse loading.
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Fig. 5. Laminate subjected to uniform axial extension - typical mesh pattern.
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Fig. 6. Distribution of interlaminar shear stress σyz along the 0o/90o interface of

[0o/90o]s laminate under uniform axial extension.
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Fig. 7. Distribution of shear stress σyz versus z at the free edge of [0o/90o]s laminate

under uniform axial extension: influence of the number of modelised sub-layers.
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Fig. 8. Distribution of shear stress σyz at the free edge of the 0o ply of [0o/90o]s

laminate under uniform axial extension.

-500

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

σ
z
/ε

x
(M

P
a)

y/b

Present

Wang & Crossman [4]

[90o/0o]s

[0o/90o]s

Fig. 9. Distribution of interlaminar normal stress σz along the 0o/90o interface of

[0o/90o]s and [90o/0o]s laminates under uniform axial extension.
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Fig. 10. Distribution of normal stress σz versus z at the free edge of [0o/90o]s

laminate under uniform axial extension.
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Fig. 11. Distribution of normal stress σz versus z at the free edge of [90o/0o]s

laminate under uniform axial extension.
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Fig. 12. Distribution of interlaminar shear stress σyz along the 0o/90o interface of

[0o/90o]s laminate under ∆T = 1oC.
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Fig. 13. Distribution of interlaminar normal stress σz along the 0o/90o interface of

[0o/90o]s laminate under ∆T = 1oC.
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Fig. 14. Distribution of normal stress σz versus z at the free edge of [90o/0o]s

laminate under ∆T = 1oC.
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Fig. 15. typical mesh for the angle-ply laminate
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Fig. 16. Distribution of interlaminar shear stress σxz along the 45o/− 45o interface

of [45o/ − 45o]s laminate under ∆T = 1oC.
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Fig. 17. Distribution of interlaminar normal stress σz along the 45o/ − 45o and

−45o/ − 45o interfaces of [45o/ − 45o]s laminate under ∆T = 1oC.
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